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1 Introduction

Most classical computer science methods process information in a continuous
way. For instance, in finite automata theory [4, 7], the read head of finite
automata starts at the beginning of the input word, it moves in left-to-right
direction, and it reads symbol-by-symbol. Jumping finite automata [8] were
proposed as automata process information in a discontinuous way. Jumping
finite automata can jump over a part of the input word after reading a
symbol and continue processing from there. Once a symbol in the input
word is read, it cannot be re-read again later during computation of it. The
read head starts anywhere in the input word to check the input word whether
it is accepted or not, and it can move in either direction; that is, jumping
finite automata are non-deterministic in terms of reading input word. In
[8], it is shown that the language class accepted by jumping finite automata
does not completely include finite language, regular language, and so on.
They establish several results concerning jumping finite automata regarding
commonly studied areas of automata theory, such as decidability and closure
properties.

We propose (right and left) one-way jumping finite automata which are
one of variants of jumping finite automata. Right one-way jumping finite
automata move similar to jumping finite automata except for that the read
head moves deterministically left to right starting from the left most letter
in the input and when it moves to the end of the input word, then it returns
to the beginning of the input word and continues the computation. Fur-
thermore, if there are some symbols to read by the rule, then jumping finite
automata reads the symbol which is the nearest to read head in the right
direction of it. Left one-way jumping finite automata are defined similarly.
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We obtain a pumping lemma for the language accepted by (right or left)
one-way jumping finite automata as well. The lemma is useful to decide
whether or not a certain language is accepted by one-way jumping finite au-
tomata. In addition, we show relationship between the family of languages
accepted by (right or left) jumping finite automata and classical language

families. We also show that the language accepted by right one-way jump-

ing finite automata is different form the language accepted by left one-way
jumping finite automata. We report results obtained but omit proofs. The
details will be published elsewhere.

2 Preliminaries

An alphabet $\Sigma$ is a finite, non-empty set and its elements are called letters. $A$

word is a sequence of letters and the set of all words formed by concatenating

elements of $\Sigma$ is $\Sigma^{*}$ The empty word, i.e., the word containing no letters is
$\epsilon.$

$A$ (nondeterministic) finite automaton, a FA for short, is a quintuple
$M=(Q, \Sigma, R, s, F)$ , where $Q$ is the finite set of states, $\Sigma$ is the finite input

alphabet, $\Sigma\cap Q=\emptyset,$ $R\subseteq Q\cross\{\Sigma\cup\epsilon\}\cross Q,$ $s\in Q$ is the start state, and
$F\subseteq Q$ is the set of final states. Elements of $R$ are referred to as rules of $M$

and we write $pyarrow q\in R$ instead of $(p, y, q)\in R$ . A configuration of $M$ is a
string in $Q\cross\Sigma^{*}$ $M$ is an $\epsilon$-free FA if $pyarrow q\in R$ implies $|y|=1.$ $M$ is a
deterministic finite automaton, a DFA for short, if (1) it is an $\epsilon$-free FA and

(2) for each $p\in Q$ and each $a\in\Sigma$ , there is no more than one $q\in Q$ such
that $paarrow q\in R$ . A FA or DFA makes a transition from configuration $pw$ to
configuration $qw’$ if $w=aw’$ and $paarrow q\in R$ , where $p,$ $q\in Q,$ $w,$

$w’\in\Sigma^{*}$ and
$a\in\Sigma\cup\{\epsilon\}$ . We denote this by $pw\Rightarrow qw’$ and the reflexive and transitive
closure of the relation $\Rightarrow by\Rightarrow^{*}$ A word $w$ is accepted by a FA (or DFA) $M$

if there exists $f\in F$ , such that $sw\Rightarrow^{*}f$ . Then, the language accepted by
$M$ is $L(M)=\{w\in\Sigma^{*}|\exists f\in F:sw\Rightarrow^{*}f\}$

A jumping finite automaton defined in [8], a JFA for short, is a quintuple
$M=(Q, \Sigma, R, s, F)$ , where $Q,$ $\Sigma,$ $R,$ $s$ and $F$ are the same as in the case
of (nondeterministic) finite automata. Therefore, JFA are “based on FA,

but transitions, and therefore the sets of accepted words, are different. $A$

configuration of $M$ is any string in $\Sigma^{*}\cross Q\cross\Sigma^{*}$ . The binary jumping relation,

symbolically denoted by $r*$ , over $\Sigma^{*}\cross Q\cross\Sigma^{*}$ , is defined as follows. Let $x,$ $z,$

$x’,$ $z’$ be strings in $\Sigma^{*}$ such that $xz=x’z’$ and $pyarrow q\in R$ ; then, $M$ makes

ajump from xpyz to x’qz’, symbolically written as $xpyz\cap x’qz’$ . Note that
in every step as above, the JFA deletes the letter it just read (y) . In the

standard manner, we extend $c\sim$ to $\cap^{m}$ , where $m\geq$ O. Let $\cap+and\cap^{*}$
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denote the transitive closure $of\cap and$ the transitive-reflexive closure of
respectively. The language accepted by $M$ , denoted by $L(M)$ , is defined as
$L(M)=\{uv|u, v\in\Sigma^{*}, usv\cap^{*}f, f\in F\}$ , i.e., the language accepted by $M$

is the set of all words, such that starting from the initial state $s$ the JFA $M$

reads and deletes all letters of the input word. Let $w$ be a string in $\Sigma^{*}$ We
say that $M$ accepts $w$ if $w\in L(M)$ and that $M$ rejects $w$ otherwise.

The cardinality of $Q$ , denoted by $|Q|$ , is the number of elements of $Q$ . We
extend this notation to words $w\in\Sigma^{*}$ , where $|w|$ is the length of the word
$w$ , the number of all occurrences of all letters of $\Sigma$ in $w$ . Further extending
the notation, $|w|_{a}$ denotes the number of occurrences of the letter $a$ in $w.$

As usual, a permutation of $n$ elements is a bijection $\sigma$ : $\{$ 1, 2, . . . , $n\}arrow$

$\{1, 2, . . . , n\}$ , which can be represented by $\sigma=$ $(_{\sigma(1)\sigma(2)\sigma(3)}123$ $\sigma(n-1)\sigma(n)n-1n$ ), or
assuming that the upper row is always in increasing order, by $(\sigma(1)\sigma(2)\sigma(3)$

$\sigma(n-1)\sigma(n))$ .
A permutation of a word $w=a_{1}a_{2}\ldots a_{n}$ is a rearrangement of letters of

$w$ , namely, some word $w_{\sigma}=a_{\sigma(1)}a_{\sigma(2)}\ldots a_{\sigma(n)}$ , where $\sigma$ is a permutation of
$n$ elements. The set of all permutations of $w$ is denoted by Perm$(w)$ . For
any language $L$ , the set $\bigcup_{w\in L}Perm(w)$ is denoted by Perm(L) .

It is shown in [8] that the class of languages accepted by JFA and regular
languages are incomparable, and JFA is closed under union, intersection and
complement, respectively. It is easily shown that if a language $L$ is accepted
by a JFA then $L$ must coincide with Perm(L) . Therefore, there is no JFA
accepting the language $\{a\}^{*}\{b\}^{*}$

Throughout the rest of this paper, the language families under discussion
are denoted in the followings; FIN, REG, and CF stand for the families of
finite languages, regular languages, and context-free languages, respectively.
JFA denote the families of languages accepted by JFAs.

$t\#$

Figure 1. Relation between JFA and well-known language families
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3One-way jumping finite automata

In this section, we define variants of jumping finite automata, that is, a left
and right one-way jumping finite automaton. A right one-way jumping finite
automaton $M$ is based on a deterministic finite automaton, but it does not
read the input string in a symbol-by-symbol left-to-right way. The read head
of $M$ starts at the leftmost letter of the input word and it moves rightward.
$M$ can jump over a part of the word after reading a symbol. If the read head
of $M$ reaches the right end of the word, then it continues from the left end,
again. The image of how to read the input word is Figure 2. The beginning
and the end of input word are joined like a circle. The read head moves to
the clockwise rotation and searches the symbol to read.

Figure 2. The image of how to read the input word

Likewise, the read head of a left one-way jumping finite automaton $N$

starts at the right end of the input word and it moves leftward, continuing the
computation from the right end upon reaching the left end. In the following
formal definitions transitions are different from previous automata models.

A right one-way jumping finite automaton, ROWJFA for short, is a quin-
tuple $M=(Q, \Sigma, R, s, F)$ , where $Q,$ $\Sigma,$ $R,$ $s$ and $F$ are defined as in a DFA.
By analogy with a DFA, members of $R$ are referred to as rules of $M$ and we
write $paarrow q\in R$ instead of $(p, a, q)\in R$ . A configuration of $M$ is any string
in $Q\Sigma^{*}$

The right one-way jumping relation, symbolically denoted by $O$ , over
$Q\Sigma^{*}$ , is defined as follows. Suppose that $x$ and $y$ belong to $\Sigma^{*},$ $a$ belongs to
$\Sigma,$ $p$ and $q$ are states in $Q$ and $paarrow q\in R$ . Then the ROWJFA $M$ makes
a jump from the configuration pxay to the configuration $qyx$ , symbolically
written as

pxay $Oqyx$
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if $x$ belongs to $\{\Sigma\backslash \Sigma_{p}\}^{*}$ where $\Sigma_{p}=\{b\in\Sigma|(p, b, q)\in R$ for some $q\in Q\}.$

In the standard manner, we extend $O$ to $\mathcal{O}^{m}$ , where $m\geq 0$ . Let $\mathcal{O}^{*}$ and
$O^{+}$ denote the transitive-reflexive closure and the transitive closure of $\mathcal{O},$

respectively.
The language accepted by the ROWJFA $M$ , denoted by $L(M)$ , is defined

to be
$L(M)=\{w\in\Sigma^{*}|sw\mathcal{O}^{*}f, f\in F\}$

We say that $M$ accepts a string $w$ in $\Sigma^{*}$ if $w$ belongs to $L(M)$ , and $M$ rejects
$w$ otherwise.

Aleft one-way jumping finite automaton, a LOWJFA for short, is a quin-
tuple $M=(Q, \Sigma, R, s, F)$ , where $Q,$ $\Sigma,$ $s$ and $F$ are defined as in an DFA.
Members of $R$ are referred to as rules of $M$ and instead of $(q, a,p)\in R$ , we
write $qarrow ap\in R$ . A configuration of $M$ is any string in $\Sigma^{*}Q$ . The binary
jumping relation, symbolically denoted by $\mathcal{O}$ , over $\Sigma^{*}Q$ , is defined as follows.
Let $x,y\in\Sigma^{*},$ $a\in\Sigma,$ $p,q\in Q$ and $qarrow ap\in R$ ; then, $M$ makes a jump from
yaxp to $xyq$ , symbolically written as

yaxp $Oxyq$

if $x$ belongs to $\{\Sigma\backslash \Sigma_{p}\}^{*}$ where $\Sigma_{p}=\{b\in\Sigma|(q, b,p)\in R$ for some $q\in Q\}.$

In the standard manner, we extend $O$ to $O^{m}$ , where $m\geq$ O. Let $O^{*}$

denote the transitive-reflexive closure of O.
The language accepted by $M$ , denoted by $L(M)$ , is defined as

$L(M)=\{w\in\Sigma^{*}|ws\mathcal{O}^{*}f, f\in F\}$

Let $w\in\Sigma^{*}$ We say that $M$ accepts $w$ if and only if $w\in L(M)$ , and rejects
it otherwise.

Example 1 Let $M_{1}$ be a ROWJFA given by

$M_{1}=(\{q_{0}, q_{1}\}, \{a, b\}, R, q_{0}, \{q_{0}\})$ ,

where $R$ consists of the rules $q_{0}aarrow q_{1}$ and $q_{1}barrow q_{0}.$

Figure 3. The state diagram for $M_{1}$
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Starting from $q_{0},$ $M_{1}$ has to read some $a$ and some $b$ entering again the start
(and also the final) state $q_{0}$ . All these occurrences of $a$ and $b$ can appear
anywhere in the input word. Therefore, $M_{1}$ accepts the non-regular context-
free language $L_{1}=\{w\in\{a, b\}^{*}||w|_{a}=|w|_{b}\}.$

Example 2 Let $M_{2}$ be a ROWJFA given by

$M_{2}=(\{q_{0}, q_{1}, \ldots, q_{n-1}\}, \{a_{1}, a_{2}, \ldots, a_{n}\}, R, q_{0}, \{q_{0}\})$ ,

where $R$ consists of the rules $q_{i}a_{i+1}arrow q_{i+1}$ , for all $i$ with $0\leq i<n-1$ , and
$q_{n-1}a_{n}arrow q_{0}.$

Figure 4. The state diagram for $M_{2}$

Starting from $q_{0},$ $M_{2}$ has to read an $a_{1}$ , then an $a_{2}$ and so on, finally reading
an $a_{n}$ and entering again the start (and also the final) state $q_{0}$ . All these
occurrences of $a_{i},$ $1\leq i\leq n$ , can appear anywhere in the input word. There-
fore, the accepted language is $L_{2}=\{w\in\{a_{1}, a_{2}, . . . , a_{n}\}^{*}||w|_{a1}=|w|_{a2}=$

. . $=|w|_{a_{n}}\}$ , which is not context-free for any $n>2.$

Example 3 Let $M_{3}$ be a ROWJFA given by

$M_{3}=(\{q_{0}, q_{1}\}, \{a, b\}, R, q_{0}, \{q_{0}, q_{1}$

where $R$ consists of the rules $q_{0}aarrow q_{0},$ $q_{0}barrow q_{1}$ and $q_{1}barrow q_{1}.$

Figure 5. The state diagram for $M_{3}$

Starting from $q_{0},$ $M_{3}$ has to read an arbitrary number of symbols $a$ . Then, it
can read an arbitrary number of symbols $b$ . Therefore, $M_{3}$ accepts a language
$L_{3}=\{a\}^{*}\{b\}^{*}$ which cannot be accepted by any JFA(see [8]).

Let $M=(Q, \Sigma, R, s, F)$ be a ROWJFA. Let there exist a sequence of
configurations $\chi_{0},\cdots,$ $\chi_{n}$ for some $n\geq 1$ such that $\chi_{i-1}O\chi_{i}[q_{i-1}a_{\sigma(i)}arrow q_{i}]$

where $q_{i}\in Q$ and $a_{i}\in\Sigma$ for all $i=1,$ $\cdots,$ $n$ ; that is,
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$\chi_{0}\mathcal{O}\chi_{1}O\chi_{2} \{\begin{array}{ll}q_{0}a_{\sigma(1)} arrow q_{1}q_{1}a_{\sigma(2)} arrow q_{2}\end{array}\}$

:

$\zeta)\chi_{n} [q_{n-1}a_{\sigma(n)}arrow q_{n}]$

Then, $M$ makes $n$ moves from $\chi_{0}$ to $\chi_{n}$ according to $r_{1}\cdots r_{n}$ , written as
$\chi_{0}\mathcal{O}^{n}\chi_{n} [(q_{0}a_{\sigma(1)}arrow q_{1})\cdots(q_{n-1}a_{\sigma(n)}arrow q_{n})]$

The definition above formalizes the intuitive notion of computing with a finite
automaton, which, if not completely defined, jumps to the nearest symbol to
the right, which it can process.

4 Jumping finite automata

We answer open problem 17 of Meduna and Zemek [8]. They ask a necessary
and sufficient condition for a language to be accepted by a JFA. The authors
state that a necessary condition is that the language is closed under taking
all permutations of its words, i.e., a language $L$ is accepted by some JFA
only if $L=perm(L)$ ([8], Theorem 13). By a simple argument, we show that
we only need to add the condition that the Parikh image of the language is
semilinear, in order to get a complete characterization.

A linear set $L=(c;p_{1}, \ldots,p_{r})$ is a subset

{ $x|x=c+ \sum_{i=1}^{r}k_{i}p_{i}$ for some nonnegative integers $k_{i},$ $i=1$ , . . . , $r$}

of $\mathbb{N}^{r}$ , where $c,$ $p_{1}$ , . . . , $p_{r}$ are elements of $\mathbb{N}^{r}$ . A subset of $\mathbb{N}^{r}$ is called semi-
linear if it is a finite union of linear sets. The Parikh-image of a word $w$ over
an alphabet $\Sigma=\{a_{1}, . . . , a_{n}\}$ is the vector $\Psi(w)=(|w|_{a}1, \ldots, |w|_{a_{n}})\in \mathbb{N}|\Sigma|.$

The Parikh image of a language $L$ is

$\Psi(L)=\{\Psi(w)|w\in L\}\subseteq \mathbb{N}^{|\Sigma|}.$

We say that a language is linear or semilinear if its Parikh image is linear
or semilinear, respectively. It is obtained in [9] that a regular language is
semilinear and that for any semilinear language $L$ , there exists a regular
language $L’$ such that $\Psi(L)=\Psi(L’)$ , where $\Psi(L)$ is the Parikh image of $L.$

We obtain a necessary and sufficient condition as follow.

Theorem 1. For any language $L\subseteq\Sigma^{*}$ the following statements are equiva-

lent:

$\bullet$ there $exisl\mathcal{S}$ a $JFAM$, such that $L(M)=L.$

$\bullet$ $L$ is commutative and semilinear.
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5 Languages accepted by right one-way jump-
ing finite automata

Throughout the rest of this paper,we denote the families of languages ac-
cepted by right one-way JFA and left one-way JFA by ROWJ and LOWJ,
respectively.

5.1 Basic properties

We obtain the following result.

Theorem 2. The $classe\mathcal{S}$ ROWJ and LOWJ are incomparable.

Theorem 3. Let $M=(Q, \Sigma, R, s, F)$ be a ROWJFA $\mathcal{S}uch$ that $|\Sigma|=1.$

Then, $L(M)$ is regular language.

Corollary 4. There is no ROWJFA that accepts { $a^{p}|pi\mathcal{S}$ a prime number}.

Theorem 5. For any language $L$ accepted by a ROWJFA there exists a
constant $k_{L}$ , such that for every string $w\in L$ with $|w|\geq k$ , there exists a
permutation $P(w)$ of $w$ , which can be written as $P(w)=xyz,$ $\mathcal{S}ati\mathcal{S}fying$ the
following conditions:

1. $y\neq\epsilon.$

2. $|xy|\leq k.$

3. $xy^{m}z\in L$ , for all $m\geq 0.$

Corollary 6. There $i_{\mathcal{S}}$ no ROWJFA that $accepl\mathcal{S}$ a language $\{a^{n}b^{n}|n\geq 0\}.$

A similar argument works for the original JFA.

5.2 Closure properties

We study closure properties of ROWJ as follows.

Theorem 7. The class ROWJ is not closed under

1. concatenation,

2. intersection,

3. intersection with regular $language\mathcal{S},$
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4. concatenation with regular languages,

5. Kleene $\mathcal{S}tar,$

6. homomorphism,

7. substitution,

8. reverse.

It is easy to see that similar results hold for LOWJ. Consequently,
ROWJ (or LOWJ) does not coincide with any of the following language
classes: deterministic context-free languages, context-free languages, indexed
languages [1], context-sensitive languages, recursive languages, or recursively
enumerable languages because these are closed under intersection with reg-
ular languages.

Figure 6. Summary of closure properties.

5.3 Relations with well-known language families

We examine relations among ROWJ, LOWJ and some well-known language
families.

Theorem 8. ROWJ properly includes REG.

Theorem 9. ROWJ $\not\subset JFA.$

Theorem 10. CF and ROWJ are incomparable.
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$b\}$

$\{w:|w|_{a}=|w|_{b}=|w|_{c}\}$

Figure 7. Relation between ROWJ and LOWJ

We compare ROWJ with the class defined by input revolving automata.
In [2] the authors define input revolving automata and describe the way they
work as follows (we recall only the description of right-revolving automata
here).

Definition 11. [2] $A$ (nondeterministic) extended finite automaton is a 6-
tuple $A=(Q, \Sigma, \delta, \Delta, q_{0}, F)$ , where $Q$ is a finite set of states, $\Sigma$ is the input
alphabet, $\delta$ and $\Delta$ are mappings from $Q\cross(\Sigma\cup\{\lambda\})$ to $2^{Q}$ , where $\delta$ is called
the transition function, and $\triangle$ is called the input operation function, $q_{0}\in Q$

$i_{\mathcal{S}}$ the initial state, and $F\subseteq Q$ is the set of accepting $\mathcal{S}tates.$

The different operations on the input are formally distinguished by differ-

ent interpretations of the mapping $\triangle$ . Consider configurations of extended
finite automata to be tuples $(q, w)$ , where $q\in Q$ is the current state, and
$w\in\Sigma^{*}$ is the yet unread part of the input. The transition of a configuration
into a successor configuration can be induced by either $\delta$ or $\triangle.$

$\bullet$ Let $a$ $bein\Sigma\cup\{\lambda\}andw\in\Sigma^{*}$ If $p$ is $in\delta(q, a)$ , then $(q, aw)\vdash_{A}(p, w)$ .
Those transitions are referred to as ordinary transitions.

$\bullet$ An input operation is performed by applying the mapping $\triangle$ . For $a\in$

$\Sigma\cup\{\lambda\},$ $b,$ $c\in\Sigma,$ $w\in\Sigma^{*}$ , and $p\in\triangle(q, a)$ , a right-revolving transition
is defined by $(q, aw)\vdash_{A}(p, wa)$ , if $a\in\Sigma$ , and $(q, bw)\vdash_{A}(p, wb)$ and
$(q, \lambda)\vdash_{A}(p, \lambda)$ , if $a=\lambda.$

So, right-revolving automata may skip certain letters of the input de-
pending on the current state. This is exactly what happens when a ROWJFA
reads the input word and finds a letter for which there is no transition defined
from the current state.
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Theorem 12. For any ROWJFA $M=(Q, \Sigma, R, s, F)$ there exists a right-
revolving automaton $M’=(Q’, \Sigma, \delta, \Delta, q_{0}, F such that L(M)=L(M’)$ .

We note that not all languages accepted by right revolving input au-
tomata are in ROWJ. Take, for instance, revolving automata which in every
step jump over $k$ letters regardless of what they are. Consider the right-
revolving automaton $M=(\{q_{0}, q_{1}, q_{a}, q_{b}\},$ $\{a, b\},$ $\delta,$ $\triangle,$

$q_{0},$ $\{q_{0},$ $q_{1}$ with tran-
sitions given by $\delta(q_{0}, a)=q_{a},$ $\delta(q_{0}, b)=q_{b},$ $\delta(q_{1}, b)=q_{b}$ and $\triangle(q_{a}, \lambda)=q_{0},$

$\triangle(q_{b}, \lambda)=q_{1}$ . This automaton processes the input by reading a letter and
then shifting the next one to the end of the word and accepts if the letters
rearranged in the order of reading them form a word from $a^{*}b^{*}$ It is easy
to see that for a word $w\in L(M)$ , if $|w|_{a}=|w|_{b}$ , then $w=(ab)^{n}$ , whereas
$|w|_{a}=k|w|_{b}$ implies $w=(a^{k}b)^{n}$ , etc. One can easily show, that in a word
$w\in L(M)$ , if the first $b$ occurs at position $i$ , then between every two con-
secutive $b$ ’s there are at least $i-1$ occurrences of $a$ . From here, applying
the techniques seen before, one gets that there exists no ROWJFA, which
accepts $L(M)$ .
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