BB FERTIFFC T Tk
1964 2 2015 4F 27-34

Extractable Codes and Conjugacy Classes

HEETINRY - REFERET B R1T
(Yoshiyuki Kunimochi)
Faculty of Comprehensive Informatics,
Shizuoka Institute of Science and Technology

abstract This paper deals with insertability and mainly extractablity of codes, which are extensions of
well-known strong codes. A code C is called insertable (or extractable) if the free submonoid C* generated
by C satisfies if z,zy € C* implies zzy € C*(or z,zzy € C* implies xy € C*). We show that a finite
insertable code is a full uniform code. On the other hand there are many finite extractable codes which are
not full uniform codes. We cannot still characterize the structures of them.

Here we summarize some results on the extractability of infix codes, especially uniform codes. After that
we give some new results on the relation between periodicity of a word and extractablity of its conjugacy
class.

1 Preliminaries

Let A be a finite nonempty set of letters, called an alphabet and let A* be the free monoid generated by A
under the operation of catenation with the identity called the empty word, denoted by 1. We call an element
of A* a word over A. The free semigroup A* \ {1} generated by A is denoted by A*. The catenation of
two words z and y is denoted by xy. The length |w| of a word w = a4z . .. a, With a; € A is the number
n of occurrences of letters in w. Clearly, |1| = 0.

A word u € A* is a prefix (or suffix) of a word w € A* if there is a word x € A* such that w = uz (or
w = zu). A word u € A* is a factor of a word w € A* if there exist words z,y € A* such that w = zuy.
Then a prefix (a suffix or a factor) u of w is called proper if w # wu.

A subset of A* is called a language over A. A nonempty language C which is the set of free generators
of some submonoid M of A* is called a code over A. Then C is called the base of M and coincides with
the minimal set (M \ {1}) \ (M \ {1})? of generators of M. A nonempty language C is called a prefix (or
suffix) code if u,uv € C (or u,vu € C) implies v = 1. C is called a bifix code if C' is both a prefix code
and a suffix code. A nonempty language C is called an infix code if u, ruy € C implies z = y = 1. The
language A" = {w € A*||w| = n} with n > 1 is called a full uniform code over A. A nonempty subset of
A" is called a uniform code over A.

A word z € At is primitive if x = r™ for some r € A1 implies n = 1, where r™ is the n-th power ofr,

thatis, r® =7rr---r.
PROPOSITION 1.1 (/1] p.7) Each nonempty word w is a power w = r™ of a unique primitive word r.

Then r and n is called the root and the exponent of w, respectively. We sometimes write r = v/w. Note
that /2™ = /z holds for each n > 2 by Propositoin 1.1.

Two words u, v are called conjugate, denoted by u = v if there exist words , y such that u = zy, v = yz.
Then = is an equivalence relation and we call the =-class of w the conjugacy class of w and denote by
cl(w). A language L is called reflexive if L is a union of conjugacy classes, i.e., uv € L <= vu € L.

LEMMA 1.1 ([1]p.7) Two nonempty conjugate words have the same exponent and their roots are con-
jugate.

LEMMA 1.2 ([4]p.7) Letu,v € A*. Ifuv = vu holds, then u = r*,v = 17 for some primitive word r
and some positive integers i, j.

LEMMA 1.3 ([4] p.6) Letu,v,w € A". If uw = wv holds, then u = zy,w = (zy)*z,v = yz for
some x,y € A* and some nonnegative integer k.

28

Let N be a submonoid of a monoid M. N is right unitary (in M) if u,uv € N implies v € N. Left
unitary is defined in a symmetric way. The submonoid NV of M is biunitary if it is both left and right unitary.
Especially when M = A*, a submonoid N of A* is right unitary (resp. left unitary, biunitary) if and only
if the minimal set Ny = (N \ {1}) \ (V \ {1})? of generators of N, namely the base of N, is a prefix code
(resp. a suffix code, a bifix code) ([1] p.46).

Let L be a subset of a monoid M, the congruence P, = {(u,v)|forall z,y € M, zuy € L <=
zvy € L} on M is called the principal congruence (ot syntactic congruence) of L. We write u = v (Pr)
instead of (u,v) € Pr. The monoid M/ Py, is called the syntactic monoid of L, denoted by Syn(L). The
morphism o, of M onto Syn(L) is called the syntactic morphism of L. In particular when M = A*, a
language over A is regular if and only if Syn(L) is finite([1] p.46).

2 Extractable Codes and Insertable Codes

In this section we introduce insertable codes and extractable codes, which are extensions of well-known
strong codes. We use the symbols C and C to indicate subset and proper subset respectively.

2.1 Extractable Codes and Insertable Codes

Here extractable codes and insertable codes are defined below, as well as strong codes.
DEFINITION 2.1 [3] A nonempty code C C A% is called a strong code if

(i) z,y192 € C = yrxy2 € C*
(i) x, 12y € CT = y1y2 € C*

DEFINITION 2.2 Let C be a nonempty code. Then, C is called an insertable (or extractable) code if C
satisfies the condition (i) (or (if)).

A strong code C is described as the base of the identity 1;, = {w € A*|w = 1(Pg)} of the syntactic
monoids Syn(L) of a language L. Moreover if C is finite, it is known that its structure is quite simple, i.e.,
it is a full uniform code.

PROPOSITION 2.1 [3]Let L C A*. Then C = (1, \{1})\ (1 \ {1})? is a strong code if it is not empty.
Conversely, if C C A% is a strong code, then there exists a language L C A* such that 1, = C*.

LEMMA 2.1 ([7],p.166) Let M be a monoid, § : A* — M be a surjective morphism and L = §~*(P)
for some subset P of M. There exists a unique surjective homomorphism ¢ : M — Syn(L) such that
o1, = ¢ o 6, where oy, is the syntactic morphism o1, : A* — Syn(L).

COROLLARY 2.1 Let G be an Abelian group and N is its subgroup. Let 6 : A* — G be a surjective
morphism. Then, the base of L = 0—1(N)) is a strong code.

Proof) Let G/N be the quotient group of G by N. Since G/N is also an Abelian group and N is its
identity, we may consider only the case that N = {e}, where e is the identity of G. By Lemma 2.1, there
exists a unique surjective homomorphism ¢ : G — Syn(L) such that o, = ¢ o 6. Since ¢(e) = or{1)
holds, 8~ 1(e) C oz~'(1) = 1;. Conversely, Let u € 0=}(1) and z,y € A* with zuy € L. Since
then zly = zy € L and L = 0~(e), O(zuy) = O(xzy) = e. Therefore 8(u) = 6(z)~10(y)~! =
(8(y)8(z)) ! = O(xy)~* = e. Therefore o7, *(1) = 11, C 6~ !(e). Thus L == 1, and its base is a strong
code by Proposition 2.1. 1

PROPOSITION 2.2 [3] Let C be a finite strong code over A and B = alph(C), where alph(C) = {a €
A|zay € C}. Then C = B™ for some positive integer n.

EXAMPLE 2.1 The followings are examples of strong codes by Corollary 2.1.
(1) Let G = (g) be a cyclic group of order n, e be the identity of G and 6 : X* — G be a morphism such
that 0(a) = g for any a € X. Then, C = base(6~(N)) = X™ is a strong code.

(2) Let G = (Z,+),N = nZ, 0 : {a,b}* = G,a — +1,b — —1. ThenC = base(§—1(N)) =
{a™, ab, aabb, . .. bbaa, ba, b™} (infinite, regular, palindromic).

(3)G = {(g),0(g) =4, N = {e},e=g* 0 : {a,b}* > G,a € X > g,b—> g Then
C =base(8~'(e)) = {a*, aab, aba, baa, bb} U ({a3, ab, ba}b)*{a?, ab, ba}.

EXAMPLE 2.2 The followings are examples of extractable codes and insertable codes.

(1) A singleton {w} with w € {a}™ is a strong code.

(2) Let A be a finite alphabet with |A| > 2. A singleton {w} with w € AT \ Usca{a}™ is not a
strong code by Proposition 2.2 because it is not a full uniform code. But it is an extractable code. Indeed,
w? = wwv implies uv = w. Therefore there exist finite extractable codes which are not full uniform codes.
(3) The conjugacy class cl(ab) of ab is an extractable code (by Proposition 2.6) but not a strong code.
(4) {a™b"|n is a positive integer} is an (context-free) extractable code but not a strong code.

(5) a*band ba* are (regular) insertable codes but not strong codes. Indeed, a™b is a (prefix) code and
satisfies (i) in Definition 2.2. It is not an extractable code because ab,b € a*b but a ¢ a*b. Similarly in
case of ba*.

Note that when C satisfies the condition (ii), we can easily check whether the submonoid C* is ex-
tractable. If C* is extractable, then C* is biunitary (and thus free). Indeed, uv = luv,u € C* implies v =
1v € C* and uv = wvl,v € C* implies u = 1u € C*. Then the minimal set C = (C*\ {1})\ (C*\ {1})?
of generators of C* becomes a bifix code. Therefore both strong codes and extractable codes are necessarily
bifix codes. Conversely if C is an extractable code, then M = C* forms an extractable submonoid of A*.

Remark that an insertable submonoid M of A*, the minimal set of generators of M is not necessarily
a code. For example, if C = {a?, a®}, then the submonoid C* is insertable but its minimal set C' of
generators is not a code.

2.2 Insertable Codes

We show that if an insertable code C over A is finite, then C is necessarily a full uniform code over some
nonempty alphabet B C A, as well as in case of a strong code.
First of all, for a language L C A*, ins(L) is defined by

ins(L) = {z € A*|Vu € L,u = uyug = uywug € L}.
A language L such that L C ins(L) is called ins-closed.

PROPOSITION 2.3 /5] Let L C A* be a finitely generated ins-closed language and K be its minimal set
of generators. Then:

(i) K contains a finite maximal prefix (suffix) code alph(L);

(ii) If K is a code over alph(L) then K = alph(L)" for some n > 1;

COROLLARY 2.2 IfC is a finite insertable code then C = alph(C)™ for some n > 1.
2.3 Extractablity of Regular Infix Codes

Our aim in this section is to determine whether for a given infix code C it is an extractable code or not in
terms of its syntactic monoid. We introduce the syntactic graph of a language to check the extractability of
the language.

Checking Extractability by a Syntactic Monoid

We begin with a useful and fundamental lemma concerned with the extractability of infix codes.

LEMMA 2.1 Let C C At be an infix code. C* is extractable if and only if z € C and xzy € C? imply
zy € C forany z,y,z € A,

29

30

Let M be a general monoid with identity e and zero 0 and |M| > 2 (hence e # 0). The intersection of
all nonzero ideals of M, if it differs from {0}, is called the core of M, denoted by core(M). An element
¢ € M is called an annihilator if cx = zc = 0 for all z € M \ {e}. Annihil(M) denotes the set of all
annihilators of M. W, = {u € M | MuM N L = 0} is called the residue of a subset L. If Wy, # 0 then
W7y, is an ideal of M, that is, MW M C Wy. If L is a singleton set, L = {c}, we often write c instead of
{c}; thus c being disjunctive means {c} is disjunctive, that is, P, = P(.) is the equality relation.

Let M be a free monoid A* and C C A™ be an infix code. The syntactic monoid Syn(C) of C has the
identity element e = {1} since the set {1} is a Po-class. Syn(C) has a zero element 0 = W /P¢ since
We # 0 is a Po-class. Forany u € C, zuy € C implies x = y = 1. Therefore C is also a Po-class
denoted by c, that is, ¢ = C/Pc. Then the following theorem holds:

THEOREM 2.1 [10] The following conditions (i) and (ii) on a monoid M with identity e are equivalent:
(i) M is isomorphic to the syntactic monoid of an infix code C.
(i) (@) M\ {e} is a subsemigruop of M;
(b) M has a disjunctive zero;
(c) there exists 0 # c € core(M) N Annihil(M).

PROPOSITION 2.4 Let C be an infix code and M = Syn(L) be its syntactic monoid Let c be a Pc-
class of C, that is 0 # ¢ € core(M) N Annihil(M). Then,

(1) C is an extractable code if and only if

c=fofi=fife=fofs = c=fofs forany fo, f1, f2, f3 € M.
(2) C is a reflective and extractable code if and only if

c=fofi=fife = fo=f: forany fo, f1, f2.€ M.

We introduce a graph in order to determine whether a given infix code is an extractable code or not. The
syntactic graph (simply graph) G; = (V, E) of a language L is defined as follows:

(1) V = Syn(L); the syntactic monoid of L.
(2) E ={(a,b) €V x V|ab € or(L)}, where o, is the syntactic morphism of L.

Especially if L is an infix code, then ab € o, (L) is equivalent to ab = ¢ = o,(L).
(vo,v1,. - .,vy)is called a path of length n in a graph G = (V, E) if (v;—1,v;) € Eforalli (1 <i < n).
Proposition 2.4 can be stated in terms of graph.

PROPOSITION 2.5 Let C be an infix code and Gc = (V, E) be the graph of C. Let c be a Pc-class
of C. Then,

(1) C is an extractable code if and only if (vo,v3) € E for every path (vg,v1, v2,v3) in G of length 3.
(2) C is a reflective extractable code if and only if (vo,v1), (v1,v2) € E implies vo = va.

Extractability of Uniform Codes
We summarize some results on extractability of uniform codes over a finite nonempty alphabet A.

PROPOSITION 2.6 Let G be a group and let H be a normal subgroup of G. Let p : A* — G be a
surjective morphism. If C = ¢~ (H) N A™ (n > 0) is nonempty, then it is an extractable reflective uniform
code.

EXAMPLE 2.3 Let B be a nonempty subset of an alphabet A and n,k (k < n) be positive integers. Set
U = {w € A™ | |w|p = k} where |w|p is the number of occurrences of elements of B in w. Then U is an
extractable code.

PROPOSITION 2.7 Let n be an integer withn > 2. Let f1, fa, ... fi be distinct words with | f;| = | f;|
foranyi,j € {1,2,... ,k}. Then U* is extractable, where U = {fi", f2", ... f&"}.

PROPOSITION 2.8 Let x,y € A* with |z| = |y| > 0 and C = {z?, zy, yz,y?}. C* is extractable.

3 Extractability of Conjugacy Classes

Here we state new results on the extractability of conjugacy classes. The extractablity of a conjugacy
class seems to be affected by the periodicity of the class. First we investigate the relation between the
extractablity and the conjugacy exponent of a word. Secondly we introduce the deletion closure operation
to the free monoids generated by extractable uniform codes.

3.1 Periodicity and Conjugacy Classes

A period of w = a3 ...a, with a; € A is an integer p such that a,; = a; fori = 1,...,n — p. The
smallest one among periods of w is called the period of w, denoted by p(w). We call the value defined
by min{p(u) | u € cl(w)} the conjugate period of w, denoted by p°(w). The rate |w|/p°(w)(> 1) of the
length |w| of w for the conjugate period p°(w) is called the conjugate exponent of w or cl(w), denoted by
e®(w)

PROPOSITION 3.1 Letw € A™ be not a primitive word and cl(w) be its conjugacy class. Then cl(w)*
is extractable.

PROPOSITION 3.2 Let w € A™ be a primitive word of the form (uwv)™u withn > 2 and u,v € At,
and cl(w) be its conjugacy class. Then cl(w)* is not extractable.

PROPOSITION 3.3 Letw € A" and e°(w) = 1. Then cl(w)* is extractable.

Proof) Let wy, w2, w € cl(w). We show that wywe = uwv for some u,v € A* implies u = 1 or
u = wp. Suppose that u # 1. By Lemma 1.3, u = zy,w; = zy(ry)*z,w = (zy)*zyz for some
z,y € A* and some k > 0. Since e°(w) = 1 holds and thus w is primitive, z = 1 and k = 0. u # 1 yields
that u = w; = w = ws. By Proposition 2.1, cl(w)* is extractable. g

Thus, cl(w)* is extractable if w is a nonprimitive word w, that is, °(w) is an integer > 2. cl(w)* is not
extractable if €°(w) is a noninteger > 2. If 1 < e°(w) < 2, cl(w)* is almost extractable. That is, there
exists a word w such that 1 < e°(w) < 2 and cl(w)* is not extractable. For example, w = abbabbabab
is of length 10 and e°(w) = |w|/p°(w) = 10/7 but cl(w)* is not extractable. Table 1 summarizes the
extractability and the periodicity of conjugacy classes. In the table e denotes the conjugate exponent of a
conjugacy class.

Table 1. Summary of the extractability and the periodicity of words.

Primitive | not Primitive
e=1 l<e<?2 e>2
noninteger | integer
Extractable Extractable Extractable
not Extactable | not Extactable
(Prop.3.3) Unknown (Prop. 3.2) (Prop.3.1)

Table 2 shows the extractability of conjugacy classes of words of length < 20 on a binary alphabet. In
the table the column of Len indicates the length n of (the conjugacy classes of) words. not Primitive
and Primitive mean repetitive and primitive. e is the conjugacy period of a conjuacy class cl(w), that is
e = €°(w). #word and #class are the numbers of words and conjugacy classes of length n respectively.
Ext (or Ext) indicates the number of conjugacy classes of length n which are extractable codes (or not
extractable codes). rate is the number of conjugacy classes which are of conjugacy period < 2 and not
extractable code divided by the number of all conjugacy classes of length n.

Forn = 1,2, 3,4, 6, the conjugacy class cl(w) of each word of length n is extractable code. The conju-
gacy classes of the shortest length on {a, b} which are not extractable codes are cl(ababa) and cl(babab).

31

Table 2. Extractability and the periodicity of words over a binary alphabet.

Primitive not Primitive
1<ex?2 2<e 2<e
rational noninteger integer
Len | #word #class | FExt FEuxt | Ext Ext | Ext Ext rate
1 2 2 2 0 0 0 0 0 0
2 4 3 1 0 0 0f 2 0 0
3 8 4 2 0 0 0| 2 0 0
4 16 6 3 0 0 0| 3 0 0
5 32 8 4 0 0 21 2 0 0
6 64 14 9 0 0 0] 5 0 0
7 128 20 12 0 0 6| 2 0 0
8 256 36 26 0 0 4 6 0 0
9 512 60 40 0 0 8| 4 0 0
10 1024 108 85 2 0 121 9 0 0.023
11 2048 188 160 0 0 26 | 2 0 0
12 4096 352 317 2 0 16 | 17 0 0.00627
13 8192 632 574 2 0 54 | 2 0 0.00347
14 16384 1182 | 1099 6 0 5 | 21 0 0.00543
15 32768 2192 | 2082 2 0 98 | 10 0 0.00096
16 65536 4116 | 3960 8 0 112 36 0 0.00202
17 131072 7712 | 7470 6 0 23] 2 0 0.00080
18 262144 14602 | 14312 16 0 204{ 70 0 0.00112
19 524288 27596 | 27104 8 0 482 2 0 0.00030
20 | 1048576 52488 | 51881 20 0 476 | 111 0 0.00039

3.2 Deletion Closure and Extractability of Conjugacy Classes

32

Let L1, L, be languages. The deletion of Ly from L, is defined as L; — L2 = {wyuz |ugwug €
Ly, w € Ly}. A language L is del-closed iff L — L C L. The intersection of all the del-closed languages

containing L is called the del-closure of L.
For a language L, D(L) is defined by D(L) = Uyxo Dy (L), where Do(L) = L and Diy1(L) =

Dy (L) — (Dx(L)U{1})

PROPOSITION 3.4 [5] D(L) is the del-closure of a language L.

PROPOSITION 3.5 Let M be a submonoid of A*. Then, D(M) = U Dy (M) is also a submonoid of

A

LEMMA 3.1 Letk > 0. z,y € D (M) => zy € Dy (M)

k>0

Proof) In case of k = 0, the statement is trivial. Assume that the statement holds for k > 0. z,y €
Diry1(M) = Dp(M) — Dy(M). Letz = xyz with 21222, 2 € D(M) and y = y1y2 withyrwys, w €
Dy (M). By hypothesis, z; 2z2y1wy2 € Dok (M). This implies zy € Dok 2(M).

Proof of Proposition 3.5) Since 1 € M = Do(M) C D(M) C --- € D(M) holds, the empty word
1is in D(M). Let z,y € D(M). There exists some integer k such that z,y € Dy(M). By Lemma 3.1,

zy € Do € D(M).

Note that each Dy (M)(k > 1) is not necessarily a submonoid but it contains 1.

LEMMA 3.2 Let 0 # C C A™ Then, Dy (C*) C (D(C*) N A™)* for each k > 0.

Proof) Incase of k = 0. Since Do(C*) = C* = (C* N A")* = (C*NA™)* = (Do(C*) N A™)* holds
by definition, the statement is true.

Assume that the statement holds for & > 0. Let € Dy41(C*) = Dp(C*) — Dp(C*). = z172
with 21222, 2 € Di(C*). By the hypothesis, we can write

T12T2 = Uily ... Ug, u; € D(C*)N A"
2= 2122 ... Zm, 2z e D(C*)N A"

Ty =uy... Us_ 1, T1 = U Usyy ... Up and |u'u"| = n. Since z,uy ... Us—1,Uts1 ... U € D(C*) and

D(C*) is del-closure, we have v'u” € D(C*) and thus z € (D(C*) N A™)*. Hence the statement is true
for any integer k > 0.]

PROPOSITION 3.6 Let) # C C A™ and D(OC*) the minimal set of generators of D(C*). That is,
D (DE)\ D\ (D(C)\ 1)?
Then, D(C*)C A" that is, a uniform code over A containing C.

Proof) Let z €D(C*). There exists some integer k such that ¢ € Dy(C*). By Lemma 3.2, z =
T1...Tm,xi € D(C*)N A™ (1 < i < m). Since z is a generator of the submonoid D(C*) of A*, m =1

must hold. Thus D(C*)= D(C*) N A™ C A™. Moreover C C D(C*) implies C C D(C*) N A™. [
Remark that even if C is reflexive, D(C*) is not necessarily reflexive. For example, let w = ababa and
C = cl(w). D(C*)= cl(w) U {aabba, abbaa, baaab} but bbaaa ¢D(C*).

If D(C*) is a submonoid of A*, then we can define a language operator EXT by

CEXT ¢ def (C*)

EXAMPLE 3.1
(1) Let L = {a™*,a*, ..., a'} be a language over {a} but not a code. Then LEXT = {a%}, where d is the
greatest common dzvzsor of 11582y« vy tn.

(2) If C is an extractable code, then CEXT =C.

The followings are problems related to operator EXT.
(1) When is D(C*) a submonoid of A* ? and then when is CE*T a code ?
(2) If C is an infix code, CEXT is also an infix code ?
(3) If C, C, C; are uniform codes, are the following equations true ?
(C1 U C)EXT — 0 EXT (| C,EXT
(C1 N C)BXT = ¢\ BXT (y 0, BXT,
(Cc)EXT (CEXT)

References

[1] J. Berstel and D. Perrin, Theory of Codes, Pure and Applied Mathematics (Academic Press, 1985).

[2] A.deLucaand S. Varricchio, Finiteness and Regularity in Semigroups and Formal Languages, Mono-
graphs on Theoretical Computer Science - An EATCS Series (Springer, July 1999).

33

34

[3]1 H.J.Shyr, Strong codes, Soochow J. of Math. and Nat. Sciences 3 (1977) 9-16.

[4] H.J.Shyr, Free monoids and Languages, Lecture Notes (Hon Min book Company, Taichung, Taiwan,
1991).

[5] M. Ito, L. Kari and G. Thierrin, Insertion and deletion closure of languages, Theoretical Computer
Science 183 (1997) 3-19.

[6] J.M.Howie, Fundamentals of Semigroup Theory, London Mathematical Society Monographs New
Series 12, London Mathematical Society Monographs New Series 12 (Oxford University Press, 1995).

[7]1 G. Lallement, Semigroups and combinatorial applications (John Wiley & Sons, Inc., 1979).

{81 M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications, Vol. 17
(Cambridge University Press, 1983).

[9] T. Moriya and I. Kataoka, Syntactic congruences of codes, IEICE TRANSACTIONS on Information
and Systems E84-D(3) (2001) 415-418.

{10] M.Petrich and G.Thierrin, The syntactic monoid of an infix code, Proceedings of the American Math-
ematical Society 109(4) (1990) 865-873.

[11] G. Rozenberg and A. Salomaa, Handbook of Formal Languages, Vol.1 WORD, LANGUAGE, GRAM-
MAR (Springer, 1997).

[12] G. Tanaka, Y. Kunimochi and M. Katsura, Remarks on extractable submonoids, Technical Report
kokyuroku, RIMS, Kyoto University 1655 (6 2009) 106-110.

[13] S.-S. Yu, Languages and Codes (Tsang Hai Book Publishing Company, Taiwan, 2005).

[14] S. Yu, A characterization of intercodes, International Journal of Computer Mathematics 36(1-2)
(1990) 39-45.

[15] L. Zhang, Rational strong codes and structure of rational group languages, Semigroup Forum, 35(1),
Springer (1986), pp. 181-193.

