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abstract This paper deals with insertability and mainly extractablity of codes, which are extensions of
well-known strong codes. A code $C$ is called insertable (or extractable) if the free submonoid $C^{*}$ generated

by $C$ satisfies if $z,$ $xy\in C^{*}$ implies $xzy\in C^{*}(or z, xzy\in C^{*}$ implies $xy\in C^{*})$ . We show that a finite

insertable code is a full uniform code. On the other hand there are many finite extractable codes which are
not full uniform codes. We cannot still characterize the structures of them.

Here we summarize some results on the extractability of infix codes, especially uniform codes. After that

we give some new results on the relation between periodicity of a word and extractablity of its conjugacy

class.

1 Preliminaries

Let $A$ be a finite nonempty set of letters, called an alphabet and let $A^{*}$ be the free monoid generated by $A$

under the operation of catenation with the identity called the empty word, denoted by 1. We call an element

of $A^{*}$ a word over $A$ . The free semigroup $A^{*}\backslash \{1\}$ generated by $A$ is denoted by $A^{+}$ . The catenation of

two words $x$ and $y$ is denoted by $xy$ . The length $|w|$ of a word $w=a_{1}a_{2}\ldots a_{n}$ with $a_{i}\in A$ is the number
$n$ of $occu\iota\tau$ences of letters in $w$ . Clearly, $|1|=0.$

A word $u\in A^{*}$ is a prefix (or suffix) of a word $w\in A^{*}$ if there is a word $x\in A^{*}$ such that $w=ux$ (or

$w=xu)$ . A word $u\in A^{*}$ is a factor of a word $w\in A^{*}$ if there exist words $x,$ $y\in A^{*}such$ that $w=xuy.$

Then a prefix (a suffix or a factor) $u$ of $w$ is called proper if $w\neq u.$

A subset of $A^{*}$ is called a language over $A$ . A nonempty language $C$ which is the set of free generators

of some submonoid $M$ of $A^{*}$ is called a code over $A$ . Then $C$ is called the base of $M$ and coincides with

the minimal set $(M\backslash \{1\})\backslash (M\backslash \{1\})^{2}$ of generators of $M$ . A nonempty language $C$ is called a prefix (or

sufix) code if $u,$ $uv\in C$ $(or u, vu\in C)$ implies $v=1.$ $C$ is called a $biJi\mathfrak{r}$ code if $C$ is both a prefix code

and a suffix code. A nonempty language $C$ is called an inffi code if $u,$ $xuy\in C$ implies $x=y=1$ . The
language $A^{n}=\{w\in A^{*}||w|=n\}$ with $n\geq 1$ is called afull uniform code over $A$ . A nonempty subset of
$A^{n}$ is called a uniform code over $A.$

A word $x\in A^{+}$ is primitive if $x=r^{n}$ for some $r\in A^{+}$ implies $n=1$ , where $r^{n}$ is the n-th power of $r,$

that is,
$r^{n}=\hat{rr^{n}\cdot\cdot r}.$

PROPOSITION 1.1 $([l]p.7)$ Each nonempty word $w$ is a power $w=r^{n}$ ofa unique primitive word $r.$

Then $r$ and $n$ is called the root and the exponent of $w$ , respectively. We sometimes write $r=\sqrt{w}$ . Note

that $\sqrt{x^{n}}=\sqrt{x}$ holds for each $n\geq 2$ by Propositoin 1.1.
Two words $u,$ $v$ are called conjugate, denoted by $u\equiv v$ if there exist words $x,$ $y$ such that $u=xy,$ $v=yx.$

Then $\equiv is$ an equivalence relation and we call the $\equiv$-class of $w$ the conjugacy class of $w$ and denote by

$cl(w)$ . A language $L$ is called reflexive if $L$ is a union of conjugacy classes, i.e., $uv\in L\Leftrightarrow vu\in L.$

LEMMA 1.1 ([1] p.7) Two nonempty conjugate words have the same exponent and their roots are con-

jugate.

LEMMA 1.2 ([4] p.7) Let $u,$
$v\in A^{+}$ . If$uv=vu$ holds, then $u=r^{i},$ $v=r^{j}$ for some primitive word $r$

and some positive integers $i,$ $j.$

LEMMA 1.3 ([4] p.6) Let $u,$ $v,$
$w\in A^{+}$ . If $uw=wv$ holds, then $u=xy,$ $w=(xy)^{k}x,$ $v=yx$ for

some $x,$ $y\in A^{*}and$ some nonnegative integer $k.$
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Let $N$ be a submonoid of a monoid M. $N$ is right unitary (in $M$) if $u,$ $uv\in N$ implies $v\in N$ . Left
unitary is defined in a symmetric way. The submonoid $N$ of $M$ is biunitary if it is both left and right unitary.
Especially when $M=A^{*}$ , a submonoid $N$ of $A^{*}$ is right unitary (resp. left unitary, biunitary) if and only
if the minimal set $N_{0}=(N\backslash \{1\})\backslash (N\backslash \{1\})^{2}$ of generators of $N$ , namely the base of $N$ , is a prefix code
(resp. a suffix code, a bifix code) ([1] p.46).

Let $L$ be a subset of a monoid $M$, the congruence $P_{L}=\{(u, v)|for$ all $x,$ $y\in M,$ $xuy\in L$ $\Leftrightarrow$

$xvy\in L\}$ on $M$ is called the principal congruence (or syntactic congruence) of $L$ . We write $u\equiv v(P_{L})$

instead of $(u, v)\in P_{L}$ . The monoid $M/P_{L}$ is called the syntactic monoid of $L$, denoted by $Syn(L)$ . The
morphism $\sigma_{L}$ of $M$ onto $Syn(L)$ is called the syntactic morphism of $L$ . In particular when $M=A^{*},$ $a$

language over $A$ is regular if and only if $Syn(L)$ is finite$([1] p.46)$ .

2 Extractable Codes and Insertable Codes

In this section we introduce insertable codes and extractable codes, which are extensions of well-known
strong codes. We use the symbols $\subseteq and\subsetneq to$ indicate subset and proper subset respectively.

2.1 Extractable Codes and Insertable Codes

Here extractable codes and insertable codes are defined below, as well as strong codes.

DEFINITION 2.1 [3] A nonempty code $C\subseteq A^{+}is$ called a strong code if

(i) $x,$ $y_{1}y_{2}\in C\Rightarrow y_{1}xy_{2}\in C^{+}$

(ii) $x,$ $y_{1}xy_{2}\in C^{+}arrow^{\underline{}.}y_{1}y_{2}\in C^{*}$

DEFINITION 2.2 Let $C$ be a nonempty code. Then, $C$ is called an insertable (or extractable) code if $C$

satisfies the condition (i) $($or $(ii))$ .

A strong code $C$ is described as the base of the identity $i_{L}=\{w\in A^{*}|w\equiv 1(P_{L})\}$ of the syntactic
monoids $Syn(L)$ of a language $L$ . Moreover if $C$ is finite, it is known that its structure is quite simple, i.e.,

it is a full uniform code.

PROPOSITION 2.1 [3] Let $L\subseteq A^{*}$ . Then $C=(\overline{1}_{L}\backslash \{1\})\backslash (i_{L}\backslash \{1\})^{2}$ is a strong code if it is not empty.

Conversely, if $C\subseteq A^{+}is$ a strong code, then there exists a language $L\subseteq A^{*}such$ that $i_{L}=C^{*}.$

LEMMA 2.1 ([7],p. 166) Let $M$ be a monoid, $\theta$ : $A^{*}arrow M$ be a surjective morphism and $L=\theta^{-1}(P)$

for some subset $P$ ofM. There exists a unique surjective homomorphism $\phi$ : $Marrow Syn(L)$ such that
$\sigma_{L}=\phi\circ\theta$, where $\sigma_{L}$ is the syntactic morphism $\sigma_{L}$ : $A^{*}arrow Syn(L)$ .

COROLLARY 2.1 Let $G$ be an Abelian group and $N$ is its subgroup. Let $\theta$ : $A^{*}arrow G$ be a surjective
morphism. Then, the base of $L=\theta^{-1}(N)$ is a strong code.

Proof) Let $G/N$ be the quotient group of $G$ by $N$ . Since $G/N$ is also an Abelian group and $N$ is its
identity, we may consider only the case that $N=\{e\}$ , where $e$ is the identity of $G$ . By Lemma 2.1, there
exists a unique surjective homomorphism $\phi$ : $Garrow Syn(L)$ such that $\sigma_{L}=\phi\circ\theta$ . Since $\phi(e)=\sigma_{L}\langle 1$ )
holds, $\theta^{-1}(e)\subseteq\sigma_{L^{-1}}(1)=\overline{1}_{L}$ . Conversely, Let $u\in\sigma^{-1}(1)$ and $x,$ $y\in A^{*}$ with $xuy\in L$ . Since
then $x1y=xy\in L$ and $L=\theta^{-1}(e)$ , $\theta(xuy)=\theta(xy)=e$ . Therefore $\theta(u)=\theta(x)^{-1}\theta(y)^{-1}=$

$(\theta(y)\theta(x))^{-1}=\theta(xy)^{-1}=e$ . Therefore $\sigma_{L^{-1}}(1)=i_{L}\subseteq\theta^{-1}(e)$ . Thus $L==i_{L}$ and its base is a strong

code by Proposition 2.1. 1

PROPOSITION 2.2 [3] Let $C$ be afinite strong code over $A$ and $B=alph(C)$, where alph$(C)=\{a\in$

$A|xay\in C\}$ . Then $C=B^{n}$ for some positive integer $n.$

EXAMPLE 2.1 Thefollowings are examples ofstrong codes by Corollary 2.1.
(1) Let $G=\langle g\rangle$ be a cyclic group oforder $n,$ $e$ be the identity of $G$ and $\theta$ : $X^{*}arrow G$ be a morphism such

that $\theta(a)=g$ for any $a\in X$ . Then, $C=base(\theta^{-1}(N))=X^{n}$ is a strong code.
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(2) Let $G=(Z, +)$ , $N=nZ,$ $\theta$ : $\{a, b\}^{*}arrow G,$ $a\mapsto+1,$ $b\mapsto-1$ . Then $C=base(\theta^{-1}(N))=$

{ $a^{n}$ , ab, aabb, . . . bbaa, $ba,$ $b^{n}$ } (infinite, regular, palindromic).

(3) $G=\langle g\rangle,$ $o(g)=4,$ $N=\{e\},$ $e=g^{4},$ $\theta$ : $\{a, b\}^{*}arrow G,$ $a\in X\mapsto 9,$ $b\mapsto g^{2}$ . Then
$C=base(\theta^{-1}(e))=\{a^{4}, aab, aba, baa, bb\}\cup(\{a^{3}, ab, ba\}b)^{+}\{a^{3}, ab, ba\}.$

EXAMPLE 2.2 Thefollowings are examples ofextractable codes and insertable codes.
(1) A singleton $\{w\}$ with $w\in\{a\}^{+}is$ a strong code.
(2) Let $A$ be a finite alphabet with $|A|\geq 2.$ A singleton $\{w\}$ with $w \in A^{+}\backslash \bigcup_{a\in A}\{a\}^{+}$ is not a
strong code by Proposition 2.2 because it is not afull unifonn code. But it is an extractable code. Indeed,

$w^{2}=uwv$ implies $uv=w$. Therefore there existfinite extractable codes which are $notfi\ell ll$ unifonn codes.

(3) The conjugacy class $cl(ab)$ ofab is an extractable code (by Proposition 2.6) but not a strong code.

(4) { $a^{n}b^{n}|n$ is a positive integer} is an (context-free) extractable code but not a strong code.
(5) $a^{*}b$ and $ba^{*}are$ (regular) insertable codes but not strong codes. Indeed, $a^{*}b$ is $a$ (prefix) code and

satisfies (i) in Definition 2.2. It is not an extractable code because ab, $b\in a^{*}b$ but $a\not\in a^{*}b$. Similarly in

case of $ba^{*}.$

Note that when $C$ satisfies the condition (ii), we can easily check whether the submonoid $C^{*}$ is ex-
tractable. If $C^{*}$ is extractable, then $C^{*}$ is biunitary (and thus free). Indeed, $uv=1uv,$ $u\in C^{*}$ implies $v=$

$1v\in C^{*}and$ $uv=uv1,$ $v\in C^{*}$ implies $u=1u\in C^{*}$ . Then the minimal set $C=(C^{*}\backslash \{1\})\backslash (C^{*}\backslash \{1\})^{2}$

of generators of $C^{*}$ becomes a bifix code. Therefore both strong codes and extractable codes are necessarily
bifix codes. Conversely if $C$ is an extractable code, then $M=C^{*}$ forms an extractable submonoid of $A^{*}.$

Remark that an insertable submonoid $M$ of $A^{*}$ , the minimal set of generators of $M$ is not necessarily

a code. For example, if $C=\{a^{2}, a^{3}\}$ , then the submonoid $C^{*}$ is insertable but its minimal set $C$ of

generators is not a code.

2.2 Insertable Codes

We show that if an insertable code $C$ over $A$ is finite, then $C$ is necessarily a full uniform code over some
nonempty alphabet $B\subseteq A$ , as well as in case of a strong code.

First of all, for a language $L\subseteq A^{*},$ $ins(L)$) is defined by

$ins(L)=\{x\in A^{*}|\forall u\in L, u=u_{1}u_{2}\Rightarrow u_{1}xu_{2}\in L\}.$

A language $L$ such that $L\subseteq ins(L)$ is called $ins$-closed.

PROPOSITION 2.3 [5] Let $L\subseteq A^{*}be$ afinitely generated $ins$-closed language and $K$ be its minimal set

ofgenerators. Then:
(i) $K$ contains afinite maximal prefix (suffix) code alph(L) ;

(ii) If $K$ is a code over alph(L) then $K=alph(L)^{n}$ for some $n\geq 1$ ;

COROLLARY 2.2 If $C$ is afinite insertable code then $C=alph(C)^{n}$ for some $n\geq 1.$

2.3 Extractablity of Regular Infix Codes

Our aim in this section is to determine whether for a given infix code $C$ it is an extractable code or not in
terms of its syntactic monoid. We introduce the syntactic graph of a language to check the extractability of

the language.
Checking Extractabmty by a Syntactic Monoid
We begin with a useful and fundamental lemma concerned with the extractability of infix codes.

LEMMA 2.1 Let $C\subseteq A^{+}be$ an infix code. $C^{*}$ is extractable if and only if $z\in C$ and $xzy\in C^{2}$ imply

$xy\in C$for any $x,$ $y,$
$z\in A^{+}.$
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Let $M$ be a general monoid with identity $e$ and zero $0$ and $|M|\geq 2$ (hence $e\neq 0$). The intersection of
all nonzero ideals of $M$, if it differs from $\{0\}$ , is called the core of $M$, denoted by core(M). An element
$c\in M$ is called an annihilator if $cx=xc=0$ for all $x\in M\backslash \{e\}.$ $Amihil(M)$ denotes the set of all
annihilators of M. $W_{L}=\{u\in M|MuM\cap L=\emptyset\}$ is called the residue of a subset $L$ . If $W_{L}\neq\emptyset$ then
$W_{L}$ is an ideal of $M$, that is, $MW_{L}M\subseteq W_{L}$ . If $L$ is a singleton set, $L=\{c\}$ , we often write $c$ instead of
$\{c\}$ ; thus $c$ being disjunctive means $\{c\}$ is disjunctive, that is, $P_{c}=P_{\{c\}}$ is the equality relation.
Let $M$ be a free monoid $A^{*}$ and $C\subseteq A^{+}$ be an infix code. The syntactic monoid $Syn(C)$ of $C$ has the

identity element $e=\{1\}$ since the set {1} is a $P_{C}$ -class. $Syn(C)$ has a zero element $0=W_{C}/P_{C}$ since
$W_{C}\neq\emptyset$ is a $P_{C}$ -class. For any $u\in C,$ $xuy\in C$ implies $x=y=1$ . Therefore $C$ is also a $P_{C}$ -class
denoted by $c$, that is, $c=C/P_{C}$ . Then the following theorem holds:

THEOREM 2.1 [10] Thefollowing conditions (i) and (ii) on a monoid $M$ with identity $e$ are equivalent:
(i) $M$ is isomorphic to the syntactic monoid ofan infix code $C.$

(ii) (a) $M\backslash \{e\}$ is a subsemigruop of $M$;

(b) $M$ has a disjunctive zero;
(c) there exists $0\neq c\in core(M)\cap Annihil(M)$ .

PROPOSITION 2.4 Let $C$ be an infix code and $M=Syn(L)$ be its syntactic monoid Let $c$ be a $P_{C^{-}}$

class of $C$, that is $0\neq c\in core(M)\cap Annihil(M)$ . Then,

(1) $C$ is an extrac able code ifand only if
$c=f_{0}f_{1}=f_{1}f_{2}=f_{2}f_{3}\Rightarrow c=f_{0}f_{3}$ forany $f_{0},$ $f_{1},$ $f_{2},$ $f_{3}\in M.$

(2) $C$ is a reflective and extractable code ifand only if

$c=f_{0}f_{1}=f_{1}f_{2}\Rightarrow f_{0}=f_{2}$ for any $f_{0},$ $f_{1},$ $f_{2}\in M.$

We introduce a graph in order to determine whether a given infix code is an extractable code or not. The
syntactic graph (simply graph) $G_{L}=(V, E)$ of a language $L$ is defined as follows:

(1) $V=Syn(L)$ ; the syntactic monoid of $L.$

(2) $E=\{(a, b)\in V\cross V|ab\in\sigma_{L}(L)\}$ , where $\sigma_{L}$ is the syntactic morphism of $L.$

Especially if $L$ is an infix code, then $ab\in\sigma_{L}(L)$ is equivalent to $ab=c=\sigma_{L}(L)$ .
$(v_{0}, v_{1}, \ldots, v_{n})$ is called a path of length $n$ in a graph $G=(V, E)$ if $(v_{i-1},v_{i})\in E$ for all $i(1\leq i\leq n)$ .

Proposition 2.4 can be stated in terms of graph.

PROPOSITION 2.5 Let $C$ be an $in\beta$ code and $G_{C}=(V, E)$ be the graph ofC. Let $c$ be a $P_{C}$ -class

ofC. Then,

(1) $C$ is an extractable code ifand only if $(v_{0}, v_{3})\in E$for every path $(v_{0}, v_{1}, v_{2}, v_{3})$ in $G_{C}$ of length 3.
(2) $C$ is a reflective extractable code ifand only if $(v_{0}, v_{1})$ , $(v_{1}, v_{2})\in E$ implies $v_{0}=v_{2}.$

Extractabmty of Uniform Codes
We summarize some results on extractability of uniform codes over a finite nonempty alphabet $A.$

PROPOSITION 2.6 Let $G$ be a group and let $H$ be a normal subgroup of G. Let $\varphi$ : $A^{*}arrow G$ be a
surjective morphism. If $C=\varphi^{-1}(H)\cap A^{n}(n>0)$ is nonempty, then it is an extractable reflective uniform
code.

EXAMPLE 2.3 Let $B$ be a nonempty subset ofan alphabet $A$ and $n,$ $k(k\leq n)$ be positive integers. Set
$U=\{w\in A^{n}||w|_{B}=k\}$ where $|w|_{B}$ is the number ofoccurrences ofelements of $B$ in $w$ . Then $U$ is an
extractable code.

PROPOSITION 2.7 $I4tn$ be an integer with $n\geq 2$. Let $f_{1},$ $f_{2}$ , . . . $f_{k}$ be distinct words with $|f_{i}|=|f_{j}|$

for any $i,$ $j\in\{1, 2, . . . , k\}$ . Then $U^{*}is$ extractable, where $U=\{f_{1}^{n}, f_{2}^{n}, . . . f_{k^{n}}\}.$

PROPOSITION 2.8 Let $x,$ $y\in A^{*}with$ $|x|=|y|>0$ and $C=\{x^{2}, xy, yx, y^{2}\}.$ $C^{*}is$ extractable.
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3 Extractability of Conjugacy Classes

Here we state new results on the extractability of conjugacy classes. The extractablity of a conjugacy
class seems to be affected by the periodicity of the class. First we investigate the relation between the
extractablity and the conjugacy exponent of a word. Secondly we introduce the deletion closure operation
to the free monoids generated by extractable uniform codes.

3.1 Periodicity and Conjugacy Classes

A period of $w=a_{1}\ldots a_{n}$ with $a_{i}\in A$ is an integer $p$ such that $a_{p+i}=a_{i}$ for $i=1$ , . . . , $n-p$. The

smallest one among periods of $w$ is called the period of $w$ , denoted by $p(w)$ . We call the value defined

by $mn\{p(u)|u\in d(w)\}$ the conjugate period of $w$ , denoted by $p^{o}(w)$ . The rate $|w|/p^{o}(w)(\geq 1)$ of the
length $|w|$ of $w$ for the conjugate period $p^{o}(w)$ is called the conjugate exponent of $w$ or $cl(w)$ , denoted by
$e^{o}(w)$

PROPOSITION 3.1 Let $w\in A^{+}be$ not a primitive word and $cl(w)$ be its conjugacy class. Then $d(w)^{*}$

is extractable.

PROPOSITION 3.2 Let $w\in A^{+}be$ a primitive word of the fonn $(uv)^{n}u$ with $n\geq 2$ and $u,$ $v\in A^{+},$

and $cl(w)$ be its conjugacy class. Then $d(w)^{*}is$ not extractable.

PROPOSITION 3.3 Let $w\in A^{+}and$ $e^{O}(w)=1$ . Then $d(w)^{*}is$ extractable.

$Proo0$ Let $w_{1},$ $w_{2},$ $w\in d(w)$ . We show that $w_{1}w_{2}=uwv$ for some $u,$ $v\in A^{*}$ implies $u=1$ or
$u=w_{1}$ . Suppose that $u\neq 1$ . By Lemma 1.3, $u=xy,$ $w_{1}=xy(xy)^{k}x,$ $w=(xy)^{k}xyx$ for some
$x,$ $y\in A^{*}$ and some $k\geq 0$ . Since $e^{o}(w)=1$ holds and thus $w$ is primitive, $x=1$ and $k=0.$ $u\neq 1$ yields
that $u=w_{1}=w=w_{2}$ . By Proposition 2.1, $d(w)^{*}$ is extractable. 1

Thus, $d(w)^{*}$ is extractable if $w$ is a nonprimitive word $w$ , that is, $e^{o}(w)$ is an integer $\geq 2.$ $cl(w)^{*}$ is not
extractable if $e^{o}(w)$ is a noninteger $\geq 2$ . If $1\leq e^{o}(w)<2,$ $d(w)^{*}$ is almost extractable. That is, there

exists a word $w$ such that $1\leq e^{o}(w)<2$ and $cl(w)^{*}$ is not extractable. For example, $w=$ abbabbabab
is of length 10 and $e^{o}(w)=|w|/p^{o}(w)=10/7$ but $d(w)^{*}$ is not extractable. Table 1 summarizes the
extractability and the periodicity of conjugacy classes. In the table $e$ denotes the conjugate exponent of a
conjugacy class.

Table 1. Summary of the extractability and the periodicity of words.

Table 2 shows the extractability of conjugacy classes of words of length $\leq 20$ on a binary alphabet. In

the table the column of Len indicates the length $n$ of (the conjugacy classes of) words. not Primitive
and Primitive mean repetitive and primitive. $e$ is the conjugacy period of a conjuacy class $cl(w)$ , that is
$e=e^{o}(w)$ . #word and #class are the numbers of words and conjugacy classes of length $n$ respectively.
$Ext$ (or $\overline{Ext}$) indicates the number of conjugacy classes of length $n$ which are extractable codes (or not

extractable codes). rate is the number of conjugacy classes which are of conjugacy period $<2$ and not

extractable code divided by the number of all conjugacy classes of length $n.$

For $n=1$ , 2, 3, 4, 6, the conjugacy class $d(w)$ of each word of length $n$ is extractable code. The conju-
gacy classes of the shortest length on $\{a, b\}$ which are not extractable codes are $d$ (ababa) and $cl$ (babab).

31



Table 2. Extractability and the periodicity of words over a binary alphabet.

3.2 Deletion Closure and Extractability of Conjugacy Classes

Let $L_{1},$ $L_{2}$ be languages. The deletion of $L_{2}$ from $L_{1}$ is defined as $L_{1}arrow L_{2}=\{u_{1}u_{2}|u_{1}wu_{2}\in$

$L_{1},$ $w\in L_{2}\}$ . A language $L$ is $del$-closed iff $Larrow L\subset L$ . The intersection of all the del-closed languages

containing $L$ is called the $del$-closure of $L.$

For a language $L,$ $D(L)$ is defined by $D(L)= \bigcup_{k\geq 0}D_{k}(L)$ , where $D_{0}(L)=L$ and $D_{k+1}(L)=$

$D_{k}(L)arrow(D_{k}(L)\cup\{1\})$

PROPOSITION 3.4 [5] $D(L)$ is the $del$-closure ofa language $L.$

PROPOSITION 3.5 Let $M$ be a submonoid of $A^{*}$ . Then,
$D(M)= \bigcup_{k\geq 0}D_{k}(M)$

is also a submonoid of

$A^{*}.$

LEMMA 3.1 Let $k\geq 0.$ $x,$ $y\in D_{k}(M)\Rightarrow xy\in D_{2k}(M)$

$Pr\infty 0$ In case of $k=0$, the statement is trivial. Assume that the statement holds for $k\geq$ O. $x,$ $y\in$

$D_{k+1}(M)=D_{k}(M)arrow D_{k}(M)$ . Let $x=x_{1}x_{2}$ with $x_{1}zx_{2},$ $z\in D_{k}(M)$ and $y=y_{1}y_{2}$ with $y_{1}wy_{2},$ $w\in$

$D_{k}(M)$ . By hypothesis, $x_{1}zx_{2}y_{1}wy_{2}\in D_{2k}(M)$ . This impliesBy zx wy This implies $xy\in D_{2k+2}(M)$ . I

Proof of Proposition 3.5) Since $1\in M=D_{0}(M)\subseteq D_{1}(M)\subseteq\cdots\subseteq D(M)$ holds, the empty word

1 is in $D(M)$ . Let $x,$ $y\in D(M)$ . There exists some integer $k$ such that $x,$ $y\in D_{k}(M)$ . By Lemma 3.1,

$xy\in D_{2k}\subseteq D(M)$ . I

Note that each $D_{k}(M)(k\geq 1)$ is not necessarily a submonoid but it contains 1.
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LEMMA 3.2 Let $\emptyset\neq C\subset A^{n}$ . Then, $D_{k}(C^{*})\subset(D(C^{*})\cap A^{n})^{*}for$ each $k\geq 0.$

ProoQ In case of $k=0$. Since $D_{0}(C^{*})=C^{*}=(C^{*}\cap A^{n})^{*}=(C^{*}nA^{n})^{*}=(D_{0}(C^{*})\cap A^{n})^{*}$ holds

by definition, the statement is true.
Assume that the statement holds for $k\geq$ O. Let $x\in D_{k+1}(C^{*})=D_{k}(C^{*})arrow D_{k}(C^{*})$ . $x=x_{1}x_{2}$

with $x_{1}zx_{2},$ $z\in D_{k}(C^{*})$ . By the hypothesis, we can write

$x_{1}zx_{2}=u_{1}u_{2}\ldots u_{\ell}, u_{i}\in D(C^{*})\cap A^{n}$

$z=z_{1}z_{2}\ldots z_{m}, z_{i}\in D(C^{*})\cap A^{n}$

$x_{1}=u_{1}\ldots u_{s-1}u’,$ $x_{1}=u"u_{t+1}\ldots u_{\ell}$ and $|u’u"|=n$ . Since $x,$ $u_{1}\ldots u_{s-1},$ $u_{t+1}\ldots u_{\ell}\in D(C^{*})$ and
$D(C^{*})$ is del-closure, we have $u’u”\in D(C^{*})$ and thus $x\in(D(C^{*})\cap A^{n})^{*}$ . Hence the statement is true

for any integer $k\geq 0$ . I

PROPOSITION 3.6 Let $\emptyset\neq C\subset A^{n}$ and $D(\mathring{C}^{*})$ the minimal set ofgenerators of $D(C^{*})$ . That is,

$D(\mathring{C}^{*})^{d}=^{ef}(D(C^{*})\backslash 1)\backslash (D(C^{*})\backslash 1)^{2}.$

Then, $D(\mathring{C}^{*})\subseteq A^{n}$ that is, a uniform code over $A$ containing $C.$

$Proo\mathfrak{h}$ Let $x\in D(\mathring{C}^{*})$ . There exists some integer $k$ such that $x\in D_{k}(C^{*})$ . By Lemma 3.2, $x=$

$x_{1}\ldots x_{m},$ $x_{i}\in D(C^{*})\cap A^{n}(1\leq i\leq m)$ . Since $x$ is a generator of the submonoid $D(C^{*})$ of $A^{*},$ $m=1$

must hold. Thus $D(\mathring{C}^{*})=D(C^{*})\cap A^{n}\subseteq A^{n}$ . Moreover $C\subseteq D(C^{*})$ implies $C\subseteq D(C^{*})\cap A^{n}$ . I

Remark that even if $C$ is reflexive, $D(C^{*})\circ$ is not necessarily reflexive. For example, let $w=ababa$ and

$C=cl(w)$ . $D(C^{*})=\circ cl(w)\cup$ {$aabba$ , abbaa, baaab} but $bbaaa\not\in D(C^{*})\circ.$

If $D(C^{*})$ is a submonoid of $A^{*}$ , then we can define a language operator EXT by

$C^{EXT^{d}}=^{ef}D(\mathring{C}^{*})$ .

EXAMPLE 3.1
(1) Let $L=\{a^{i_{1}}, a^{i_{2}}, . . . , a^{i_{n}}\}$ be a language over $\{a\}$ but not a code. Then $L^{EXT}=\{a^{d}\}$ , where $d$ is the

greatest common divisor of $i_{1},$ $i_{2}$ , . . . , $i_{n}.$

(2) If $C$ is an extractable code, then $C^{EXT}=C.$

The followings are problems related to operator EXT.
(1) When is $D(C^{*})$ a submonoid of $A^{*}?$ and then when is $C^{EXT}$ a code?
(2) If $C$ is an infix code, $C^{EXT}$ is also an infix code?
(3) If $C,$ $C_{1},$ $C_{2}$ are uniform codes, are the following equations true?

$(C_{1}\cup C_{2})^{EXT}=C_{1}^{EXT}\cup C_{2}^{EXT}.$

$(C_{1}\cap C_{2})^{EXT}=C_{1^{EXT}}\cap C_{2^{EXT}}.$

$(C^{c})^{EXT}=(C^{EXT})^{c}.$
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