
An automated reasoning system with a
preparatory inference

Hidetsune Kobayashi (Institute of Computational Logic)

Yoko Ono (Yokohama City University)

1 Introduction

Our automated reasoning system H-prover” uses Isabelle/HOL[l] as an in-
ference engine. To prove a proposition, Isabelle has four tactics rule-tac,
drule, erule and frule-tac. The rule-tac rewrites a proposition by applying
a theorem or a lemma under a condition. That is, except some theorems,

rule-tac works only if two conditions are satisfied:

1. the conclusion of the theorem coincides the conclusion of the proposi-
tion to be proved with a proper substitution of variables

2. the first premise is satisfied.

Therefore if, by checking the conclusion part, a theorem seems to be used
to rewrite the proposition to proved, but the theorem’s first premise is not
satisfied by premises of the proposition, then we try to derive the first premise
of the theorem from premises of the proposition to prove by using a frule-tac.

In this report, we present a method:

1. to choose a theorem applied by using rule-tac.

2. to derive the first premise of the theorem from premises of the propo-
sition to prove.

As noted above a tactic used in the second step is called a “frule-tac”’ in
Isabelle.

We note that in Isabelle each variable has a type, such as $\prime a$
” , $\prime a\Rightarrow$

bool”’ and $\langle Ja\Rightarrow\prime b$
” At first we illustrate a proof procedure:

数理解析研究所講究録

第 1964巻 2015年 35-39 35

1. give a proposition to be proved into emacs

2. ProofGeneral transfers it to Isabelle

3. Isabelle gives a response

4. ProofGeneral transfers them to emacs

5. H-prover takes the response and choose some theorems from a SQL
table which can be used to rewrite the proposition

6. H-prover gives one among chosen theorems to Isabelle and check whether
is works or not

7. if a theorem works, repeats from 4 to 6

2 Extracting a character of a theorem

Given a proposition to be proved, H-prover chooses some candidate theorems
used to rewrite the proposition from a SQL table. In the table each theorems

is stored as a tree.
In this section, we discuss a character of a theorem which enables us to

choose proper theorems applied to rewrite the proposition to prove. At first
we give two examples:

axiom $mp:^{1/}[7parrow?Q;7p]$ $\Rightarrow?Q"$

The tree expression of the axiom mp is

(llrarS (lrBRK (lrarS (7P) (7Q) sclS?$P))$ $(7Q)$)

and both?P and?Q have type “bool” This axiom has two premises (lrarS
(7P) $(?Q))$ and (7P) and the conclusion is (7Q). $7P$ and $7Q$ are sbstituted by

some variables or formulae when this axiom is used to rewrite a proposition.
Using a regular expression (of postgreSQL), we take skeletons of

(7Q) as $\backslash (_{-}+\backslash)$

(lrarS $(?P)(?Q)$) as \backslash $($ lrarS $\backslash (_{-}+\backslash)\backslash (_{-}+\backslash)\backslash)$

lemma $exI:^{1/}?P7_{X}\Rightarrow\exists y.$ $?Py”$

The tree expression of this lemma is

(llrarS $(7p7_{X})$ $(exS$ $x dS 7P$x))

The type of?P is $?^{J}a\Rightarrow boo1$
” , the type of?x is $(?^{J}a$” and the type of $x

is $(\iota?’$ a Skeleton are

$(?P?x)$ as $\backslash (_{-+}-+\backslash)$

$(exS {\}x dS7P {\}x)$ as $\backslash (exS\backslash {\}[^{-}]+dS-+\backslash {\}[^{\sim}] +\backslash)$

36

Thus the skeleton of a proposition tree is obtained by changing a local variable

as $ $[\wedge$ $]$ and changing the other variables as $-+$. In SQL we choose candidate
theorems as

select name from rule-table where conclusionl similar to skele-
ton(conclusion)

where conclusionl is the conclusion of the proposition to prove and conclusion

is the conclusion of a theorem in the table. If the conclusion is simple as in

the axiom mp, since any tree is similar $to\backslash (_{-}+\backslash$), any theorem with the same
type conclusion is selected.

Positions of variables are another character of a proposition. For the tree
$(?P?x)$, the position of?P is $(_{-}e$) and that of?x is $(_{-}c_{-}e$). Here $(_{-}e$) means
root position, and $(-c_{-}e)$ means root position of the child. Since a variable,
say?P , sometimes occur at different positions, we express positions as

$((?Pposition_{1}position_{2}$. . . $position_{n})(?Q$ positions) . . . $)$

Since the branch point of a proposition tree, if any, is binary, a position of
a variable is specified by the shortest path from the root to the variable.
For example the position of the variable?A in the tree (andS (7A) $(?B)$)

is $(_{-}1_{-}e)$ and that of?B is $(_{-}r_{-}e$). means the left-child, and $-\Gamma$ means
the right-child. We have one more sign to express a position within extra
brackets as in the following example:

$(\exists x\in?A. 7P)=((\exists x. x\in 7A)\wedge?P)$

The tree expression of the above is
($=$ ((exS inS ($x $dS7P)(?A))$) $(($ andS ($(exS {\}x dSinS ({\}x) (?A)))$

(7P) $)))$

The position of the variable?P is $(_{-}1_{-}n_{-}c\lrcorner_{-}c_{-}c_{-}e$). Thus the position of
a variable can be expressed by -e, $-C,$ $-1,$ $-\Gamma$ and $-n$. Note that the following
example shows simply taking propositions makes an error.

proposition $xxx:”$ [Pc;Qc] $\Rightarrow\exists x$. Px $\wedge Qx^{\prime\prime\prime\prime}$

This proposition is rewritten by the lemma exI , but the conclusion of exI is
$\exists y$.?Py. The position of -P is $(_{-}c_{-}c_{-}c_{-}e$), but at this point andS is

located in the tree of the proposition to prove. This is because?P in exI is
an operator, and using an operator $\exists x.$ $Px\wedge Qx$ should be expressed

as \exists $x. $\lambda{\}x.$ P $x $\wedge Q$ $x x . Thus an operator should be rewritten by

using λ expression.
We note the type of a tree. We can calculate a type of a tree. We illustrate

how to calculate the type by giving a simple tree $(?f?x)$, where the type of
$?f$ is $?’a\Rightarrow?’b$ and the type of?x is $?’b$. The type of $(?f?x)$ is $?^{J}b$ since the

type of $(?f?x)$ is the type of the image element. Like this we can calculate

the type of a tree.
We saw items that characterize a proposition

37

1. skeleton of the proposition

2. types of variables

3. positions of variables

If the skeleton of the conclusion of a theorem is similar to that of a
proposition to prove, we check whether the type of variables (and trees) are
the same or not. Finally checking positions of each variable of the theorem
coincide that of the proposition to prove, we can obtain variables to substitute
the variables of the theorem.

3 Deriving the first premise

Given a proposition to prove, we choose a theorem as above from the rule-table
omitting the first premise of the theorem. Then we have two cases:

case 1 the first premise of the theorem is satisfied

case 2 the first premise of the theorem is not satisfied

In the case 1, we have only to use a rule-tac with specified variables. In the
case 2

1. checking positions, we specify variables of the theorem (we call $the\mathfrak{c}\succ$

reml the new theorem with substituted variables)

2. choose a theorem which derives the first premise of theoreml

3. applying frule-tac, we rewrite theoreml

4. apply the theorem chosen in 1 by using rule-tac to theoreml

We show how tactics work by giving examples:

prop-to prove injective $:^{\mathfrak{l}/}[$ inj-on $fA;x\in A;y\in A;f$

$x=fy$ $]\Rightarrow$ $x=y\prime$ ’

apply (unfold inj-on def) expand the definition gives the fol-
low ing

$/[\forall x\in A.$ $\forall y\in$ A. fx $=$ fy $arrow x=y;x\in A;y\in A$

$]=\prime fx=fy"$

We use the following theorem bspec and add $fx=fyarrow x$
$=y$ as an extra premise of the proposition to prove.

bspec: $\prime\prime[$ $\forall x\in 7A.$ $?P7_{X;}7_{X}\in$ A I $\Rightarrow 7P7_{X^{I/}}$ as

apply (frule-tac $x=x$ in bspec) then Isabelle returns two
subgoals

1. $/[\forall x\in A.$ $\forall y\in$ A. fx $=$ fy $arrow x=y;x\in A;y\in$

$A;fx=fy] \Rightarrow x\in A"$;

38

2. $/[\forall x\in A.$ $\forall y\in$ A. fx $=$ fy $arrow x=y;x\in A;y\in$
A ; fx $=fy;\forall y\in A$. fx $=$ fy $arrow x=yI\Rightarrow$ $x=y/$

the subgoal 1 is trivial because the conclusion appears within
premises. Applying bspec again to the subgoal 2, we obtain fol-

low ing two propositions.

1. $/[\forall y\in A$. fx $=$ fy $arrow x=y;\forall x\in A.$ $\forall y\in A$. fx $=f$

$yarrow x=y;x\in A;y\in A$; fx $=$ fy $]$ $\Rightarrow y\in A"$

2. $/[\forall y\in A$. fx $=$ fy $arrow x=y;\forall x\in A.$ $\forall y\in A$. fx $=f$

$yarrow x=y;x\in A;y\in A$; fx $=$ fy; fx $=$ fy $arrow x=$

y I $\Rightarrow X=y^{1/}$

Now we can apply $rev_{-}mp:^{1\mathfrak{l}}$ [$7P;?Parrow 7Q$ I $\Rightarrow?Q$ with substi-

tutions?$P\mapsto fx=fy,$ $?Q\mapsto x=y.$

In this example, specialization is the straight forward way because of

$\forall x\in$ A. $\forall y\in$ A. $fx=fyarrow x=y;x\in A$

so frule-tac can be applied without foresight. That is even we don’t know

rev-mp is applied later, we apply frule-tac bspec”’

But there is an example an frule-tac is applied effectively with a scope of
complete proof.

mp-contral: $/[Parrow\neg Q$; Q I \Rightarrow $\neg P"$

For this proposition, neither

rule-tac $P=P$ and $Q=/_{\neg}Q"$ in mp

nor notE do not work. To this proposition, at first, we apply

frule-tac $P=P$ and $Q=$ $t_{\neg}Q"$ Then we can apply notE to complete a
proof.

References

[1] T. Nipkow, L. Paulson and M. Wenzel, $Isabelle/HOL:$ A Proof Assistant

for Higher Order Logic (Springer, 2010)

[2] PostgreSQL 9. 1.1 Documentation (http: $//www$.postgresql. $org/$)

39

