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Abstract

We show flaws in a one of public key encryptions based on conjugacy
search problem which has fatal flaw and apply the leftover hash lemma
to remedy.

1 Flaws CSP-EIG

Three public key encryptions, CSP-EIG, CSP-hElG and CSP-CS schemes,
are proposed by L.Wang, L.Wang, Z.Cao, E.Okamoto and J.Shao in Inscrypt
2010 [7]. Each scheme is claimed to have certain provable security. It is
reported a fatal flaw in CSP-EIG and indicated that there are more erros
in the design of the other two schemes in [8]. In this paper, we review the
results obtained in [8] and consider the future research problems.

Let $M$ be $a$ (not necessarily commutative) monoid. We denote the set
of invertible elements $x$ of $M$ by $G(M)$ . The conjugacy search problem is to
find an element $9\in G(M)$ such that $f=9^{d_{9^{-1}}}$ for given $d,$ $f\in M$ provided
that such an element $g$ exists.

Suppose that $d\in M$ and $g\in G(M)$ and the order of $g$ is $n$ . If the order
of 9 is infinite, then $n$ is specified to be a large enough. The CSP-DDH
problem is a decisional problem to decide whether or not $f=9^{a+b}d9^{-(a+b)}$

for given $d\in M,$ $g\in G(M)$ , $g^{a}dg^{-a},$ $9^{b}d_{9^{-b}}$ and $f=g^{c}dg^{-c}$ , where $a$ and
$b$ and are randomly chosen from $\{$ 1, . . . , $n\}$ and either $c$ is randomly chosen
from $\{$ 1, . .. , $n\}$ or $c=a+b$ with probability $\frac{1}{2}$ . We say that the CSP-DDH
assumption holds for $M$ if there is no efficient algorithm to answer correctly
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$to\frac{1}{2}$

.
a CSP-DDH problem instance with probability non-negligibly larger than

The CSP-EIG scheme is defined as follows. Let $K=\{g^{a}dg^{-a}|1\leq$

$a\leq Ord(g)\}$ , where $Ord(g)$ stands for the order of the element $g$ . Suppose

$H:Karrow P$ is a cryptographic hash function. Let $P$ be the message space
$\{0, 1\}^{k},$ $C$ the ciphertext space $K\cross P$ . Alice picks $a(1\leq a\leq Ord(g))$ and

publicizes $g^{a}d_{9^{-a}}$ . Bob picks $b(1\leq b\leq Ord(g))$ and encrypts a message
$m\in P$ by

$c=(9^{b}dg^{-b}, m\oplus H(g^{b}(g^{a}dg^{-a})g^{-b}))$ .

Receiving the ciphertext $c=(c_{1}, c_{2})$ , Alice decrypts it by $m=c2\oplus H(g^{a}c_{1}g^{-a})$ .
Theorem 1 of [7] claims that the CSP-EIG scheme is indistinguishable

against chosen plaintext attacks in the standard model. On the other hand,

we must not assume an random oracle in the standard model, and so we

may not assume $H$ is a random oracle. We shall see that if $H$ is a random

oracle, the scheme is indistinguishable against chosen plaintext attacks and

a random oracle is vital in the CSP-EIG scheme and this disproves Theorem

1 of [7].

We choose two messages $m_{1}$ and $m_{2}$ from $P$ . One of them is chosen by

coin toss and it is encrypted as $c$ then we are asked to decide whether $c$ is

a ciphertext of $m_{1}$ or $m_{2}$ . First, we define a cryptographic hash function $H$

to be
$H(m)=SHA-1(m)|O$ . (1.1)

The value of $H$ is the concatenation of the value of SHA-I(m) and a bit O.

Then $H$ is a cryptographic hash function of hash size 161 bits and satisfies

collision resistance, pre-image and second pre-image resistance, while it is

not a random oracle because the last bit is always $0$ and so the hash value

is not random.
Let $P=\{0, 1\}^{161}$ . Take $m_{1}$ as any message with the last bit is 1, and

$m_{2}$ as any message with the last bit is O. Then the ciphertext of $m_{1}$ is given

by
$c=(g^{b}dg^{-b}, m_{1}\oplus H(9^{b}(g^{a}dg^{-a})g^{-b}))$ .

The last bit of the second entry is 1 since the last bit of $H(g^{b}(g^{a}dg^{-a})g^{-b})$

is O. The ciphertext of $m_{2}$ is

$c=(g^{b}dg^{-b}, m_{2}\oplus H(g^{b}(g^{a}dg^{-a})g^{-b}))$ .

Similarly the last bit of the second entry is $0$ since the last bit of $H(9^{b}(g^{a}dg^{-a})g^{-b})$

is O. Therefore an attacker can always distinguish the ciphertexts of $m_{1}$ and
$m_{2}$ with probability 1. This shows that the CSP-EIG scheme is not indis-

tinguishable in the standard model and disproves Theorem 1 of [7].
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2Gennaro, Krawczyk and Rabin’s Method

We recall Gennaro, Krawczyk and Rabin’s method to obtain a uniform dis-
tribution over the set $\{0, 1\}^{s}$ of the fixed length bit strings from DH trans-
forms over non-DDH groups for preparation for our fixing the CSP-EIG
scheme. The ElGamal encryption is indistinguishable against chosen plain-
text attacks provided a generator $g$ is chosen adequately and the base group
enjoys the DDH assumption. However, $g$ may be chosen inadequately and
its order may be insufficient in length in real-life systems. For example, SSH
and IPSec standards instantiate groups in which the DDH assumption does
not necessarily hold. Even in such a case, the ElGamal scheme still enjoys
provable security under the so-called $t$-DDH assumption introduced in [3].

We recall necessary terminology. Let $\mathcal{X}$ and $\mathcal{Y}$ be random variables with
support contained in $\{0, 1\}^{n}$ . The statistical distance between $\mathcal{X}$ and $\mathcal{Y}$ is

dist $( \mathcal{X}, \mathcal{Y})=\frac{1}{2}\sum_{x\in\{0,1\}^{n}}|Prob(\mathcal{X}=x)$ –Prob$(\mathcal{Y}=x$

Now suppose $\mathcal{X}_{n}$ and $y_{n}$ are probability ensembles. Let $\mathcal{D}=\{D_{n}\}$

be a family of circuits. Then $\mathcal{X}_{n}$ and $y_{n}$ are called computationally in-
distinguishable (by non-uniform distinguishers) if for every polynomial-size
distinguisher family $\mathcal{D}$ , for every polynomial $P(\cdot)$ and for sufficiently large
$n$ we have

$| Prob_{x\in \mathcal{X}_{n}}(D_{n}(x)=1)-Prob_{y\in \mathcal{Y}_{n}}(D_{n}(y)=1)|\leq\frac{1}{P(n)}.$

Let $\mathcal{X}_{n}$ be a probability ensemble over $A_{n}$ . The $\min$-entropy of $\mathcal{X}_{n}$ is
defined to be

$\min-ent(\mathcal{X}_{n})=m\dot{\ovalbox{\tt\small REJECT}}n_{x\in A_{n}:Prob_{x\in \mathcal{X}_{n}}(x)\neq 0}(-\log(Prob_{x\in \mathcal{X}_{n}}(x)))$ .

Let $\mathcal{G}=\{G_{n}\}$ be a family of cyclic groups. We say that $t(n)-DDH$

assumption holds over $\mathcal{G}$ if for all $n$ there exists a family of probability
distributions $\mathcal{X}_{n}(x^{a}, x^{b})$ such that

1. $\min-ent(\mathcal{X}_{n}(x^{a}, x^{b}))\geq t(n)$

2. The probability ensemble

$\mathcal{D}\mathcal{H}_{n}=\{(x^{a}, x^{b}, x^{ab}|a, b\in U\{1, \ldots, Ord(G_{n})$ }}

is computationally indistinguishable from the ensemble

$\mathcal{R}_{n}^{*}=\{(x^{a}, x^{b}, C|a, b\in U\{1, \ldots, Ord(G_{n})\}$ and $C\in_{\mathcal{X}_{n}(x^{a},x^{b},x^{ab})}G_{n}$ },

where $Ord(G_{n})$ stands for the order of the group $G_{n}.$
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The notation $x\in \mathcal{D}$
$A$ is to be read as $x$ is chosen from $A$ according to

the distribution $\mathcal{D}$ , and $x\in US$ means choosing $x$ uniformly from the set
$S$ . The probability distributions $\mathcal{X}_{n}(x^{a}, x^{b})$ may be different for each triple

$x,$ $x^{a},$
$x^{b}$ . Intuitive meaning of the assumption is that a DH output $x^{ab}$ has

some degree of unpredictability.

2.1 Universal hashing

Universal hashing was introduced by Carter and Wegman [2] in 1979 and

has been a basic technique in many areas of information security. It real-

izes pseudorandom generators, privacy amplification and derandomization.

Universal hashing is formed by orthogonal arrays and error correcting codes,

and so on [6]. Leftover hash lemma was given by Impagliazzo, Levin and

Luby [5] and has many applications together with universal hashing. See

also [1]. We use universal hashing to correct one of public key encryptions

based on conjugacy search problem proposed in Inscrypt 2010 [7].

Suppose $h:\{0, 1\}^{n}\cross\{0, 1\}^{l(n)}arrow\{0, 1\}^{m(n)}$ is a function. For each fixed
$Y\in\{0, 1\}^{l(n)}$ we have a function $h_{Y}(\cdot)=h(\cdot, Y)$ that maps $n$ bits to $m(n)$

bits. Then $h$ is called $a$ (pairwise independent) universal $ha\mathcal{S}h$ function if for

all $x_{1},$
$x_{2}\in\{0, 1\}^{n}(x_{1}\neq x_{2})$ and for all $a_{1},$ $a2\in\{0, 1\}^{m(n)}$ , we have

$Prob_{Y\in U\{0,1\}^{l(n)}}$ $(h_{Y}(x_{1})=a_{1}$ and $h_{Y}(x_{2})=a_{2})= \frac{1}{2^{2m(n)}}.$

Leftover $ha\mathcal{S}h$ lemma is introduced and used to construct pseudorandom bit

strings in [4] and used to smooth distributions in [3]. See also [1] for a recent

development of the leftover hash lemma.

Lemma 2.1 (Leftover hash lemma [4]) Let $\mathcal{X}_{n}$ be a probability ensem-
ble such that $m\ovalbox{\tt\small REJECT} n-ent(\mathcal{X}_{n})=m(n)$ . Let $e(n)$ be a $p_{0\mathcal{S}}itive$ integer valued

parameter. Let $h$ : $\{0, 1\}^{n}\cross\{0, 1\}^{l(n)}arrow\{0, 1\}^{m(n)-2e(n)}$ be a universal hash

function. Let $X\in \mathcal{X}_{n}\{0, 1\}^{n},$ $Y\in U\{0, 1\}^{l(n)}$ and $Z\in U\{0, 1\}^{m(n)-2e(n)}.$

Then we have

dist $( \langle h_{Y}(X), Y\rangle, \langle Z, Y\rangle)\leq\frac{1}{e(n)+1},$

where $\langle$X, $Y\rangle$ stands for the concatenation of $X$ and $Y.$

Using the leftover hash lemma, Gennaro et al. [3] show that if $\mathcal{G}=$

$\{G_{n}\}_{n}$ is a group family in which the $t(n)$-DDH assumption holds and
$h$ : $\{0, 1\}^{|G_{n}|}\cross\{0, 1\}^{l(n)}arrow\{0, 1\}^{t’(n)}$ is a universal hash function, where
$t’(n)=t(n)-\omega(\log n)$ , then the induced distribution of $h(g_{n}^{ab}, Y)$ for $a,$ $b\in U$
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$\{1, 2, \cdots, Ord(G_{n})\}$ and $Y\in U\{0, 1\}^{l(n)}$ is computationally indistinguish-
able from the uniform distribution over $\{0, 1\}^{t’(n)}$ even when $h,$ $9_{n}^{a}$ and $9_{n}^{b}$

are given to the distinguisher. This implies that the ElGamal scheme using
the hashed value $h(9_{n}^{ab}, Y)$ instead of $g_{n}^{ab}$ to mask a plaintext is indistin-
guishable if the underlying group satisfies $t(n)$-DDH assumption. In this
case the universal hash function is common knowledge between Alice and
Bob and $Y(\in\{0,1\}^{l(n)})$ is a piece of a ciphertext.

3 Revised CSP-EIG scheme

In [8], CSP-EIG scheme is revised. Suppose $t(n)$ CSP-DDH assumption
(one of a concrete instance of the $t(n)$ MA-DDH assumption) holds for $M,$

$d\in M,$ $g\in G(M)$ and $h$ : $\{0$ , 1 $\}^{|M_{n}|}\cross\{0, 1\}^{l(n)}arrow\{0, 1\}^{t’(n)}$ is a universal
hash function. A public key is a pair $(g,g^{a}dg^{-a})$ . A plaintext $P\in\{0, 1\}^{t’(n)}$

is encrypted as
$(Y,g^{b}dg^{-b}, P\oplus h(Y_{9^{a+b}}dg^{-(a+b)}))$ ,

where $Y\in\{0, 1\}^{l(n)}$ . In this case, the universal hash function $h$ is publicized
and $Y(\in U\{0,1\}^{l(n)})$ is a piece of a ciphertext.

We have the following the theorem. The reader is referred to [8] for
detail proof.

Theorem 3.1 The revised CSP-ElG scheme is indistinguishable against
chosen plaintext attacks in the standard model if the $t(n)-CSP-DDH$ as-
sumption holds.

4 CSP-hElG and CSP-CS

In addition to CSP-EIG, CSP-hElG and CSP-CS are proposed in [7]. The
authors claim the schemes have provable security. However, it is no longer
trustworthy after CSP-EIG has a security flaw. The missing argument is
that the authors in [7] did not tell random oracles from collision resistent
hash functions. In the case of CSP-EIG, we use the universal hash functions
to remedy. It is plausible to use the same method to remedy CSP-hElG
and CSP-CS. On the other hand, the proof of the security for CSP-hElG
and CSP-CS would be extremely harder than that of CSP-EIG and so we
may need some more idea. It is also necessary to obtain more algebraic
systems with computationally hard CSP problem. Furthermore, the study
of universal hashing is also of significance.
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