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A ring R is (right) primitive provided it has a faithful irreducible (right) R-module, or
equivalently, there exists a maximal right ideal in R which includes no non-trivial ideal of R.
In the present note, we improve or generalize [1] and [6]; we give primitivity of group rings of

amalgamated free products and HNN-extensions of groups.

1 Introduction

A ring R is (right) primitive provided it has a faithful irreducible (right) R-
module. If a non-trivial group G is finite or abelian, then the group ring KG
over a field K is never primitive. The first example of a primitive group ring
was offered by Formanek and Snider [5] in 1972. After that, many examples of
primitive group rings were constructed. In 1978, Domanov [2], Farkas-Passman
[3], and Roseblade [10] gave the complete solution to primitivity of group rings
of polycyclic-by-finite groups. Such groups belong to the class of noetherian
groups. It is not easy to find a noetherian group which is not polycyclic-by-
finite [9]. Therefore, almost all other known infinite groups belong to the class of
non-noetherian groups. A group of the class of finitely generated non-noetherian
groups has often non-abelian free subgroups; for instance, a free group, a locally
free group, a free product, an amalgamated free product, an HNN-extension,
a Fuchsian group, a one relator group, etc. Primitivity of group rings of non-
noetherian groups have been obtained gradually (in 1973 [4], in 1989 [1], in 2007
[6], in 2011 [7]). However, much of them remains unknown.

In [8], we considered the following condition:

(x) For each subset M of G consisting of finite number of elements
not equal to 1, there exist three distinct elements a, b, c in G such
that whenever z; € {a,b,c} and (z7'g171) - - - (Z;; gmTm) = 1 for
some g; € M, x; = x;41 holds for some ¢,
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and gave the following theorem:

Theorem 1.1. Let G be a non-trivial group which has a free subgroup whose
cardinality is the same as that of G. Suppose that G satisfies the condition (x):

If R is a domain with |R| < |G|, then the group ring RG of G over R is
primative.

In particular, the group algebra KG is primitive for any field K.

In order to prove the above theorem, we construct a maximal right ideal in
KG which includes no non-trivial ideal of KG. We need then to show that
the constructed right ideal is proper. To do this, we use an elementary graph-
theoretic method. That is, we define an SR-graph and a SR-cycle. Then the
proof of Theorem 1.1 can be reduced to finding an SR-~cycle in a given SR-graph
(See the next section for the details).

In the present note, as an application of the above theorem, we improve or
generalize [1] and [6]; we give primitivity of group algebras of amalgamated free
products and HNN-extensions of groups.

2 SR-graphs

Let G = (V, E) denote a simple graph; a finite undirected graph which has no
multiple edges or loops, where V is the set of vertices and E is the set of edges. A
finite sequence voe1v; - - - €,U, Whose terms are alternately elements e,’s in ' and
vy's in V is called a path of length p in G if v, # vy for any q,¢' € {0,1,---,p}
with ¢ # ¢'; it is often simply denoted by vov; - - - vp. Two vertices v and w of G
are said to be connected if there exists a path from v to w in G. Connection is an
equivalence relation on V, and so there exists a decomposition of V into subsets
Ci’s (1 < i < m) for some m > 0 such that v,w € V are connected if and only if
both v and w belong to the same set C;. The subgraph (C;, E;) of G generated
by C; is called a (connected) component of G. Any graph is a disjoint union of
components. For v € V| we denote by C(v) the component of G which contains
the vertex v.

We define a graph which has two distinct edge sets E and F' on the same vertex
set V. We call such a triple (V, E, F) an SR-graph provided that (V,EUF) is a
simple graph (i.e. a finite undirected graph which has no multiple edges or loops)
and every component of the graph (V, E) is a complete graph (see Fig 1 and Fig
2). That is, we define an SR-graph as follows:

Definition 2.1. Let G = (V, E) and H = (V, F) be simple graphs with the same
vertez set V. Forv € V, let U(v) be the set consisting of all neighbours of v in 'H
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and v itself: U(v) ={w eV | vw € F}U{v}. A triple (V,E, F) is an SR-graph
(for a sprint relay like graph) if it satisfies the following conditions:

(SR1) For anyv € V, C(v) NU(v) = {v}.

(SR2) Every component of G is a complete graph.

If G has no isolated vertices, that is, if v € V then vw € E for some w € V, then
SR-graph (V,E, F) is called a proper SR-graph.

We call U(v) the SR-neighbour set of v € V, and set (V) = {U(v) | v € V}.
For v,w € V with v # w, it may happen that U(v) = U(w), and so |U(V)| < |V]|
generally. Let S = (V| E, F) be an SR-graph. We say S is connected if the graph
(V, EUF) is connected.

s
f, N
€ s £
E2
Fig1. Anexampleof an SR-graph: bold solid Fig 2. Prohibits: It isnot
lines are edges in E and normal solid lines are allowed to exist the above
edges in F. Sequences(e,, [, €,,f;, €, [ ), (€.a subgraphinan SR-graph.

.ﬂ‘v egfa; ez_fs) and (epfay e.i?f) are SR—cycles

Definition 2.2. Let S = (V, E,F) be an SR-graph and p > 1. Then a path
VW1 VaWa, - -, UpWpUpt1 0 the graph (V,E U F) is called a SR-path of length
p in S if either e = vyw, € E and f; = wgvgpn € F or f, = vgwg € F
and e, = waug41 € E for 1 < q < p; simply denoted by (ey, f1, -, ¢€p, fp) oOT
(fi,e1, -+, fp, €p), Tespectively. If, in addition, it is a cycle in (V, EUF); namely,
Vpt1 = V1, then it is an SR-cycle of length p in S.

To prove Theorem 1.1, we use two results for SR-graphs (Theorem 2.4 and
Theorem 2.5) and apply them to the Formanek’s method. We can give Formanek’s
method, as follows:

Proposition 2.3. (See [4]) Let RG be the group ring of a group G over a ring
R with identity. If for each non-zero a € RG, there exists an element €(a) in the
ideal RGaRG generated by a such that the right ideal p = 3, pe\ (0} (€(a) + 1) RG
is proper; namely, p # RG, then RG is primitive.



The main difficulty here is how to choose elements £(a)’s so as to make p
be proper. Now, p is proper if and only if » # 1 for all » € p. Since p is
generated by the elements of form (¢(a) + 1) with a # 0, r has the presentation,
r =3 (apenl€(a) + 1)b, where II is a subset which consists of finite number of
elements of RG x RG both of whose components are non-zero. Moreover, £(a)
and b are linear combinations of elements of G, and so we have

r= Z Z (agBrgh + Brh), (1)

(a,b)EIL g€Sa,heTs

where S, and T; are the support of €(a) and b respectively and both o, and Gy
are elements in K. In the above presentation (1), if there exists gh such that
gh # 1 and does not coincide with the other g’h”’s and h'’s, then r # 1 holds.
Strictly speaking: Let Q4 = S, X Tp. If there exist (a,b) € II and (g, h) in Qg
with gh # 1 such that gh # ¢'h’ and gh # K for any (c,d) € II and for any
(¢g', 1) in Q4 with (¢', h') # (g, h), then r # 1 holds.

On the contrary, if r = 1, then for each gh in (1) with gh # 1, there exists
another g’h’ or A’ in (1) such that either gh = g’h’ or gh = b’ holds. Suppose here
that there exist (go;—1, h;) and (gos, hsyq) (i=1,---,m)inV = U(a,b)en Qo UT}
such that the following equations hold:

gih1 = g2h2,
gzha = gahs,
. (2)

g2m—1hm = g2mhm+1 and hm+1 = hy.

Eliminating h;’s in the above, we can see that these equations imply the equation
97 92 - gom_192m = 1. If we can choose £(a)’s so that their supports g;’s never
satisfy such an equation, then we can prove that r # 1 holds by contradiction.
We need therefore only to see when supports g’s of €(a)’s satisfy equations as
described in (2).

V={gh, hlij}

Fig 3. Equations as described in (2) for m=4.
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Roughly speaking, we regard V above as the set of vertices and for v = (g, h)
and w = (¢, #’) in V, we take an element vw as an edge in E provided gh = g'h’
in G, and take vw as an edge in F provided g # ¢’ and h = b’ in G (see Fig 3). In
this situation, if there exists an SR-cycle v;wivaws, - - -, vpwyvy in the SR-graph
(V,E, F) whose adjacent terms are alternately elements v;w; in E' and w;v;41 in
F, then there exist (g;, h;)’s in V satisfying the desired equations as described in
(2). Thus the problem can be reduced to find an SR-cycle in a given SR-graph.

By making use of graph theoretic considerations, we can prove the following
theorems:

Theorem 2.4. Let S = (V, E, F) be an SR-graph and let wg and wr be, respec-
tively, the number of components of G = (V,E) and H = (V, F). Suppose that
every component of H = (V, F) is a complete graph and S is connected. Then S
has an SR-cycle if and only if wg +wp < |V|+ 1.

In particular, if S is proper and a < vy then S has an SR-cycle.

Theorem 2.5. Let S = (V,E,F) be an SR-graph and €(V) = {V;,---,V,.}
with n > 0. Suppose that every component H; = (Vi, F;) of H is a complete
k-partite graph with k > 1, where k is depend on H;. If |Vi| > 2u(H;) for each
i €{1,---,n} and |Ig(V)| < n then S has an SR-cycle.

3 Amalgamated free products

In what follows in this section, let A xz B be the free product of A and B with
H amalgamated, and suppose that A # H # B.

Forr € AxyBwithz ¢ H and for u; € (AUB)\H (i=1,---,n), T =u; - Up
is a normal form for z provided u; and w;;; are not both in A or not both in
B. Although a normal form z = u; ---u, is not unique, the length n of x is
well defined and it is denoted here by I(z). If z € H, we define l(z) = 0. For
z, Vi, -+, Vi € Axy B, we write £ = V; - - - V;,, and say that the product V; - -V,
is a reduced form provided that z =V, ---V,, and l(z) = I(V1) + - - - + (V).

Let KG be the group algebra of a group G over a field K. In 1973, Formanek
gave the primitivity of KG of the free product G = A * B:

Theorem 3.1. (Formanek[{]) Let A and B be non-trivial groups, and G = A* B
the free product of A and B. If G # Zs * Zy, then KG is primitive for any field
K.

In 1989, Balogn [1] showed the following result for amalgamated free products:



Theorem 3.2. (Balogn [1]) Let A and B be non-trivial groups, and G = Ay B
the free product of A and B with H amalgamated. If there exist a € A and
b € B with a®> ¢ A and b* & B such that (aba, bab) is free, a ' HaN H =1 and
b~HbN H =1, then KG 1is primitive for any field K.

If H = 1 in the above then Theorem 3.2 needs the condition A # Zs and B # Z,
for KG to be primitive, and so the above result is not complete generalization
of Theorem 3.1. As a complete generalization of Theorem 3.1, we can get the
following theorem:

Theorem 3.3. Let A and B be non-trivial groups, and G = A xg B the free
product of A and B with H amalgamated. If B # H and there erist a € A with
a®? € A such that a™*HaN H = 1, then KG is primitive for any field K.

In order to prove above theorem, we need the following lemma:

Lemma 3.4. Let G = Ax*y B the free product of A and B with H amalgamated.
If B # H and there exist a € A with a®> € A such that a”'HaN H = 1, then G
satisfies the condition (x).

Proof. Let 1 # f € G with I(f) = [. If a normal form for f begins with an
element in A\ H and ends with an element in B\ H, then we say that f is of
type AB. Similarly, we define the types BA, AA and BB. If | > 0 then f is of
type one of the above four types.

Let a be an element in A with a? € A such that a=*Ha N H = 1. For finite
number of elements fi,---.f, with f; # f; for i # j in G, we set

z; = (b7*a)¥ab ta (b7 a)“,

where w; = |+ 4 for ¢ € {1,2,3} and [ is the maximum number in the set
{i(f) 11 <i<n}

Let gip = z; " f,x; (p = 1,--+,n). We see then that for each ¢ € {1,2,3} and
each p € {1,2,---,n}, a reduced form of W, = (a=1b)*i f,(b~'a)** has the form
either W, = (b~'a)** for some k > 0 or W, = (a~'b)Vip(b~'a) for some non-
empty word Vj,. In either case, since a®> € A\ H, a normal form of a='Wj,a is of
type AA. We have then that

Gip = Xi—lAipXia (3)

where X; = b~ta"}(b71a)*i and A;, = a ' Wipa. If i # j, say ¢ > j, then a normal
form of X;X;* is b~'a~!(b~'a)*~“i~ b~ a?b which is of type BB. Therefore we
have

9iniq = X; ' AipBijAse X, (4)

where B;; = b~la "} (b71a)¥i~*~1b"1a?b.
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Now, let g = g; - - - gx be the product of any finite number of elements g;’s in
U;’.‘:l M*=3, where M® = {z;'fiz; | 1 <14 < n}. Since a reduced form of g; has
the form (3), if both of g; and g;41 are not in the same M® for any i, then by
noting that a reduced form of g;g;1; has the form (4), it can be easily seen by
induction on k that ¢ = X; U X} holds for some non-empty word U in G. Hence,
in particular, g # 1. This completes the proof of the lemma. O

Proof of Theorem 3.3. By virtue of Lemma 3.4, we need only to show that G
has a free subgroup whose cardinality is the same as that of G. Let I be a set with
|I| = |G|, and let a € A\ H such that a™'HaNH =1and b€ B\ H. If |A\H| =
|G| (resp. |B\ H| = |G]|), then for each i € I, there exists a; € A\ H (resp.
b; € B\ H) such that a; # a; (resp. b; # b;) for i # j. We have then that the
subgroup of G generated by a;b(ab)%a;b (resp. (ab;)?) (i € I) is freely generated
by them. On the other hand, if |H| = |G|, then for each ¢ € I, there exists
h; € H such that h; # h; for i # j. We set My = { =i, z;'z;] i,5 € 1,5 # j}
and M, = { v,y y;| 4,7 € I,i # j} where z; = a*h;a and y; = b~'a "' h;ab. It
is obvious that for each finite number of elements g1, - - -, g, in M;UM>, whenever
g1 - gm = 1, both g; and g;1; are in the same M; for some i and j. Hence, it
easily follows that the subgroup of G generated by z; = z;y;* (i € I), is freely
generated by them. O

4 HNN-extensions of groups

Let G be a group, and let A and B be subgroups of G with an isomorphism
¢ : A — B. Then HNN extension of G relative to A, B and ¢ is the group

G* = (G,t |t 'at = p(a),a € A).

The group G is called the base of G*, t is called the stable letter, and A and B are
called the associated subgroups. If A = G then G* = G, is called the ascending
HNN extension of G determined by ¢.

In [6], the present author showed the following result, which has been general-
ized to arbitrary cardinal case in [7]:

Theorem 4.1. Let F be a nonabelian free group, and F, the ascending HNN
extension of F determined by .

(i) In case p(F) = F, the group ring KF, is primitive for a field K if and only
if either |K| < |F| or F, is not virtually the direct product F' X Z.

(ii) In case o(F) # F, if the rank of F is at most countably infinite, then the
group ring KF,, is primitive for any field K.

To prove the above theorem, the main difficulty was to prove (ii), and it can
be easily done by Theorem 1.1 as follows.



Let F; be the subgroup of F,, generated by {t'ft™" | f € F}, and Foo = U2, Fi-
Since F, is a normal subgroup of F,, it suffices to show KFy, is primitive. Let
fi,- -, fn be finite number of elements in Fy, with f; # f; for ¢ # j. Then there
exists k > 0 such that f; € Fy, for alli = 1,---,n. Since Fy is a non-abelian free
group, there exists a base X with |X| > 1 such that Fy = (X). Let z1,22 € X
with z; # zo, and let m be the maximum length of the words in {f1,---, fn} on
X, where the length of a word v is defined for the reduced word equivalent to
v on X. We set z; = £2™Hxo03™H where | = 1,2,3. Then it is easily verified
that the above z1, 29, 23 satisfy (x) for f; # f;. Hence the conclusion follows from
Theorem 1.1.

Now, as we saw just above, a non-abelian free group always satisfies (x). In
the same way as above, we can have the following result generally:

Theorem 4.2. Let G be a group, and let G* = (G,t | t71at = ¢(a),a € A) be
the HNN extension of G relative to A, B and ¢, where A and B are subgroups of
G with B # G and ¢ is an isomorphism ¢ : A — B.

(i) If A # G then KG* is primitive for any field K.

(ii) If A = G and G satisfies the condition (%), then KG* is primitive for any
field K.
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