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A ring $R$ is (right) primitive provided it has a faithful irreducible (right) $R$-module, or

equivalently, there exists a maximal right ideal in $R$ which includes no non-trivial ideal of $R.$

In the present note, we improve or generalize [1] and [6]; we give primitivity of group rings of

amalgamated free products and HNN-extensions of groups.

1 Introduction

A ring $R$ is (right) primitive provided it has a faithful irreducible (right) R-
module. If a non-trivial group $G$ is finite or abelian, then the group ring $KG$

over a field $K$ is never primitive. The first example of a primitive group ring

was offered by Formanek and Snider [5] in 1972. After that, many examples of
primitive group rings were constructed. In 1978, Domanov [2], Farkas-Passman
[3], and Roseblade [10] gave the complete solution to primitivity of group rings

of polycyclic-by-finite groups. Such groups belong to the class of noetherian
groups. It is not easy to find a noetherian group which is not polycyclic-by-

finite [9]. Therefore, almost all other known infinite groups belong to the class of

non-noetherian groups. A group of the class of finitely generated non-noetherian

groups has often non-abelian free subgroups; for instance, a free group, a locally

free group, a free product, an amalgamated free product, an HNN-extension,

a Fuchsian group, a one relator group, etc. Primitivity of group rings of non-
noetherian groups have been obtained gradually (in 1973 [4], in 1989 [1], in 2007
[6], in 2011 [7]). However, much of them remains unknown.

In [8], we considered the following condition:

$(*)$ For each subset $M$ of $G$ consisting of finite number of elements
not equal to 1, there exist three distinct elements $a,$ $b,$ $c$ in $G$ such
that whenever $x_{i}\in\{a, b, c\}$ and $(x_{1}^{-1}g_{1}x_{1})\cdots(x_{m}^{-1}g_{m}x_{m})=1$ for
some $g_{i}\in M,$ $x_{i}=x_{i+1}$ holds for some $i,$
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and gave the following theorem:

Theorem 1.1. Let $G$ be a non-trivial group which has a free subgroup $who\mathcal{S}e$

cardinality is the same as that of G. Suppose that $G$ satisfies the condition $(*)$ :

If $R$ is a domain with $|R|\leq|G|$ , then the group ring $RG$ of $G$ over $R$ is

primitive.

In particular, the group algebra $KG$ is primitive for any field $K.$

In order to prove the above theorem, we construct a maximal right ideal in
$KG$ which includes no non-trivial ideal of $KG$ . We need then to show that

the constructed right ideal is proper. To do this, we use an elementary graph-

theoretic method. That is, we define an SR-graph and a SR-cycle. Then the

proof of Theorem 1.1 can be reduced to finding an SR-cycle in a given SR-graph

(See the next section for the details).

In the present note, as an application of the above theorem, we improve or
generalize [1] and [6]; we give primitivity of group algebras of amalgamated free

products and HNN-extensions of groups.

2 SR-graphs

Let $\mathcal{G}=(V, E)$ denote a simple graph; a finite undirected graph which has no
multiple edges or loops, where $V$ is the set of vertices and $E$ is the set of edges. $A$

finite sequence $v_{0}e_{1}v_{1}\cdots e_{p}v_{p}$ whose terms are alternately elements $e_{q}$ ’s in $E$ and

$v_{q}$ ’s in $V$ is called a path of length $p$ in $\mathcal{G}$ if $v_{q}\neq v_{q’}$ for any $q,$ $q’\in\{0, 1, p\}$

with $q\neq q’$ ; it is often simply denoted by $v_{0}v_{1}\cdots v_{p}$ . Two vertices $v$ and $w$ of $\mathcal{G}$

are said to be connected if there exists a path from $v$ to $w$ in $\mathcal{G}$ . Connection is an
equivalence relation on $V$ , and so there exists a decomposition of $V$ into subsets
$C_{i}’ s(1\leq i\leq m)$ for some $m>0$ such that $v,$ $w\in V$ are connected if and only if

both $v$ and $w$ belong to the same set $C_{i}$ . The subgraph $(C_{i}, E_{i})$ of $\mathcal{G}$ generated

by $C_{i}$ is called $a$ (connected) component of $\mathcal{G}$ . Any graph is a disjoint union of

components. For $v\in V$ , we denote by $C(v)$ the component of $\mathcal{G}$ which contains

the vertex $v.$

We define a graph which has two distinct edge sets $E$ and $F$ on the same vertex
set $V$ . We call such a triple $(V, E, F)$ an SR-graph provided that $(V, E\cup F)$ is a
simple graph (i.e. a finite undirected graph which has no multiple edges or loops)

and every component of the graph $(V, E)$ is a complete graph (see Fig 1 and Fig

2). That is, we define an SR-graph as follows:

Definition 2.1. Let $\mathcal{G}=(V, E)$ and $\mathcal{H}=(V, F)$ be simple graphs with the same
vertex set V. For $v\in V$ , let $U(v)$ be the set consisting of all neighbours of $v$ in $\mathcal{H}$
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and $v$ itself.$\cdot$ $U(v)=\{w\in V|vw\in F\}\cup\{v\}.$ A triple $(V, E, F)$ is an $SR$-graph
(for a sprint relay like graph) if it satisfies the following conditions:

(SR1) For any $v\in V,$ $C(v)\cap U(v)=\{v\}.$

(SR2) Every component of $\mathcal{G}$ is a complete graph.

If $\mathcal{G}$ has no isolated vertices, that is, if $v\in V$ then $vw\in E$ for some $w\in V$ , then
$SR$-graph $(V, E, F)$ is called a proper $SR$-graph.

We call $U(v)$ the SR-neighbour set of $v\in V$ , and set $U(V)=\{U(v)|v\in V\}.$

For $v,$ $w\in V$ with $v\neq w$ , it may happen that $U(v)=U(w)$ , and so $|U(V)|\leq|V|$

generally. Let $S=(V, E, F)$ be an SR-graph. We say $S$ is connected if the graph
$(V, E\cup F)$ is connected.

$e_{i}$

Figi. An exampleof an SR-graph: bddsolid Bga Prohibits: It is not
lines are edges inE and normal solidlines are alowed to existthe above
edges in F. Sequences $(e_{4},f_{l}, e_{\alpha}f_{s}, e_{\phi}f_{\phi})$ , $(e_{1}$, subgraph in anSR-graph.

$f_{z/}e_{p}f_{S/}e_{x}J_{5})aJd(e_{\iota},f_{z}e_{s}f,)$ are SR-cycles.

Definition 2.2. Let $S=(V, E, F)$ be an $SR$-graph and $p>1$ . Then a path
$v_{1}w_{1}v_{2}w_{2},$ $\cdots,$ $v_{p}w_{p}v_{p+1}$ in the graph $(V, E\cup F)i\mathcal{S}$ called a $SR$-path of length
$p$ in $S$ if either $e_{q}=v_{q}w_{q}\in E$ and $f_{q}=w_{q}v_{q+1}\in F$ or $f_{q}=v_{q}w_{q}\in F$

and $e_{q}=w_{q}v_{q+1}\in E$ for $1\leq q\leq p$; simply denoted by $(e_{1}, f_{1}, \cdots, e_{p}, f_{p})$ or
$(f_{1}, e_{1}, \cdots, f_{p}, e_{p})$ , respectively. If, in addition, it is a cycle in $(V, E\cup F)$ ; namely,

$v_{p+1}=v_{1}$ , then it is an $SR$-cycle of length $p$ in $S.$

To prove Theorem 1.1, we use two results for SR-graphs (Theorem 2.4 and
Theorem 2.5) and apply them to the Formanek’s method. We can give Formanek’s
method, as follows:

Proposition 2.3. (See [4]) Let $RG$ be the group ring of a group $G$ over a ring
$R$ with identity. If for each non-zero $a\in RG$ , there exists an element $\epsilon(a)$ in the
ideal $RGaRG$ generated by $a$ such that the right ideal $\rho=\sum_{a\in RG\backslash \{0\}}(\epsilon(a)+1)RG$

is proper; namely, $\rho\neq RG$ , then $RG$ is primitive.
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The main difficulty here is how to choose elements $\epsilon(a)$ ’s so as to make $\rho$

be proper. Now, $\rho$ is proper if and only if $r\neq 1$ for all $r\in\rho$ . Since $\rho$ is

generated by the elements of form $(\epsilon(a)+1)$ with $a\neq 0,$ $r$ has the presentation,
$r= \sum_{(a,b)\in\Pi}(\epsilon(a)+1)b$ , where $\Pi$ is a subset which consists of finite number of
elements of $RG\cross RG$ both of whose components are non-zero. Moreover, $\epsilon(a)$

and $b$ are linear combinations of elements of $G$ , and so we have

$r= \sum_{(a,b)\in\Pi g\in}\sum_{S_{a},h\in T_{b}}(\alpha_{9}\beta_{h}gh+\beta_{h}h)$
, (1)

where $S_{a}$ and $T_{b}$ are the support of $\epsilon(a)$ and $b$ respectively and both $\alpha_{g}$ and $\beta_{h}$

are elements in $K$ . In the above presentation (1), if there exists $gh$ such that
$gh\neq 1$ and does not coincide with the other g’h”s and $h”s$ , then $r\neq 1$ holds.

Strictly speaking: Let $\Omega_{ab}=S_{a}\cross T_{b}$ . If there exist $(a, b)\in\Pi$ and $(g, h)$ in $\Omega_{ab}$

with $gh\neq 1$ such that $gh\neq g’h’$ and $gh\neq h’$ for any $(c, d)\in\Pi$ and for any
$(g’, h’)$ in $\Omega_{cd}$ with $(g’, h’)\neq(g, h)$ , then $r\neq 1$ holds.

On the contrary, if $r=1$ , then for each $gh$ in (1) with $gh\neq 1$ , there exists
another $g’h’$ or $h’$ in (1) such that either $gh=g’h’$ or $gh=h’$ holds. Suppose here

that there exist $(g_{2i-1}, h_{i})$ and $(g_{2i}, h_{i+1})(i=1, \cdots, m)$ in $V= \bigcup_{(a,b)\in\Pi}\Omega_{ab}\cup T_{b}$

such that the following equations hold:

$g_{1}h_{1}=g_{2}h_{2},$

$g_{3}h_{2}=g_{4}h_{3},$

(2)
$\cdots$

$g_{2m-1}h_{m}=g_{2m}h_{m+1}$ and $h_{m+1}=h_{1}.$

Eliminating $h_{i}$ ’s in the above, we can see that these equations imply the equation
$g_{1}^{-1}g_{2}\cdots g_{2m-1}^{-1}g_{2m}=1$ . If we can choose $\epsilon(a)$ ’s so that their supports $g_{i}$ ’s never
satisfy such an equation, then we can prove that $r\neq 1$ holds by contradiction.
We need therefore only to see when supports $g$ ’s of $\epsilon(a)$ ’s satisfy equations as
described in (2).

$V=\{g_{i}h_{j}, h_{i}|i,j\}$

– :edges in $E$, – : edges in $F_{-}$

$S=(V, E, F)$

$g_{5}h_{3}$

FIg3. Equations as described in $(2\rangle$ fer $m=4.$

49



Roughly speaking, we regard $V$ above as the set of vertices and for $v=(g, h)$

and $w=(g’, h’)$ in $V$ , we take an element $vw$ as an edge in $E$ provided $gh=g’h’$

in $G$ , and take $vw$ as an edge in $F$ provided $g\neq g’$ and $h=h’$ in $G$ (see Fig 3). In

this situation, if there exists an SR-cycle $v_{1}w_{1}v_{2}w_{2},$ $\cdots,$ $v_{p}w_{p}v_{1}$ in the SR-graph
$(V, E, F)$ whose adjacent terms are alternately elements $v_{i}w_{i}$ in $E$ and $w_{i}v_{i+1}$ in
$F$ , then there exist $(g_{i}, h_{j})$ ’s in $V$ satisfying the desired equations as described in

(2). Thus the problem can be reduced to find an SR-cycle in a given SR-graph.

By making use of graph theoretic considerations, we can prove the following

theorems:

Theorem 2.4. Let $\mathcal{S}=(V, E, F)$ be an $SR$-graph and let $\omega_{E}$ and $\omega_{F}$ be, respec-

tively, the number of components of $\mathcal{G}=(V, E)$ and $\mathcal{H}=(V, F)$ . $Suppo\mathcal{S}e$ that

$ever1/$ component of $\mathcal{H}=(V, F)$ is a complete graph and $\mathcal{S}$ is connected. Then $\mathcal{S}$

has an $SR$-cycle if and only if $\omega_{E}+\omega_{F}<|V|+1.$

In particular, if $S$ is proper and $\alpha\leq\gamma$ then $S$ has an $SR$-cycle.

Theorem 2.5. Let $S=(V, E, F)$ be an $SR$-graph and $\mathfrak{C}(V)=\{V_{1}, \cdots, V_{n}\}$

with $n>$ O. Suppose that every component $\mathcal{H}_{i}=(V_{i}, F_{i})$ of $\mathcal{H}$ is a complete
$k$ -partite graph with $k>1$ , where $k$ is depend on $\mathcal{H}_{i}.$ $If|V_{i}|>2\mu(\mathcal{H}_{i})$ for each
$i\in\{1, \cdots, n\}$ and $|I_{\mathcal{G}}(V)|\leq n$ then $S$ has an $SR$-cycle.

3 Amalgamated free products

In what follows in this section, let $A*HB$ be the free product of $A$ and $B$ with
$H$ amalgamated, and suppose that $A\neq H\neq B.$

For $x\in A*HB$ with $x\not\in H$ and for $u_{i}\in(A\cup B)\backslash H(i=1, \cdots, n)$ , $x=u_{1}\cdots u_{n}$

is a normal form for $x$ provided $u_{i}$ and $u_{i+1}$ are not both in $A$ or not both in
$B$ . Although a normal form $x=u_{1}\cdots u_{n}$ is not unique, the length $n$ of $x$ is

well defined and it is denoted here by $l(x)$ . If $x\in H$ , we define $l(x)=$ O. For

$x,$ $V_{1},$
$\cdots,$ $V_{m}\in A*HB$ , we write $x\equiv V_{1}\cdots V_{rn}$ and say that the product $V_{1}\cdots V_{m}$

is a reduced form provided that $x=V_{1}\cdots V_{m}$ and $l(x)=l(V_{1})+\cdots+l(V_{m})$ .

Let $KG$ be the group algebra of a group $G$ over a field $K$ . In 1973, Formanek

gave the primitivity of $KG$ of the free product $G=A*B$:

Theorem 3.1. (Formanek[4]) Let $A$ and $B$ be non-trivial groups, and $G=A*B$

the free product of $A$ and B. If $G\not\simeq \mathbb{Z}_{2}*\mathbb{Z}_{2}$ , then $KG$ is primitive for any field
$K.$

In 1989, Balogn [1] showed the following result for amalgamated free products:
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Theorem 3.2. (Balogn [1]) Let $A$ and $B$ be non-trivial $group_{\mathcal{S}}$, and $G=A*HB$

the free product of $A$ and $B$ with $H$ amalgamated. If there exist $a\in A$ and
$b\in B$ with $a^{2}\not\in A$ and $b^{2}\not\in B$ such that $\langle aba,$ $bab\rangle$ is free, $a^{-1}Ha\cap H=1$ and
$b^{-1}Hb\cap H=1$ , then $KG$ is primitive for any field $K.$

If $H=1$ in the above then Theorem 3.2 needs the condition $A\neq \mathbb{Z}_{2}$ and $B\neq \mathbb{Z}_{2}$

for $KG$ to be primitive, and so the above result is not complete generalization

of Theorem 3.1. As a complete generalization of Theorem 3.1, we can get the

following theorem:

Theorem 3.3. Let $A$ and $B$ be non-trivial groups, and $G=A*HB$ the free
product of $A$ and $B$ with $H$ amalgamated. If $B\neq H$ and there exist $a\in A$ with
$a^{2}\not\in A$ such that $a^{-1}Ha\cap H=1$ , then $KG$ is primitive for any field $K.$

In order to prove above theorem, we need the following lemma:

Lemma 3.4. Let $G=A*HB$ the free product of $A$ and $B$ with $H$ amalgamated.

If $B\neq H$ and there exist $a\in A$ with $a^{2}\not\in A$ such that $a^{-1}Ha\cap H=1$ , then $G$

satisfies the condition $(*)$ .

Proof. Let $1\neq f\in G$ with $l(f)=l$ . If a normal form for $f$ begins with an
element in $A\backslash H$ and ends with an element in $B\backslash H$ , then we say that $f$ is of
type $AB$ . Similarly, we define the types $BA,$ $AA$ and $BB$ . If $l>0$ then $f$ is of

type one of the above four types.

Let $a$ be an element in $A$ with $a^{2}\not\in A$ such that $a^{-1}Ha\cap H=1$ . For finite

number of elements $f_{1},$ $f_{n}$ with $f_{i}\neq f_{j}$ for $i\neq j$ in $G$ , we set

$x_{i}=(b^{-1}a)^{\omega_{i}}ab^{-1}a^{-1}(b^{-1}a)^{\omega_{i}},$

where $\omega_{i}=l+i$ for $i\in\{1$ , 2, 3 $\}$ and $l$ is the maximum number in the set
$\{l(f_{i})|1\leq i\leq n\}.$

Let $g_{ip}=x_{i}^{-1}f_{p}x_{i}(p=1, \cdots, n)$ . We see then that for each $i\in\{1$ , 2, 3 $\}$ and

each $p\in\{1, 2, \cdots, n\}$ , a reduced form of $W_{ip}=(a^{-1}b)^{\omega_{i}}f_{p}(b^{-1}a)^{\omega_{i}}$ has the form

either $W_{ip}\equiv(b^{-1}a)^{\pm k}$ for some $k>0$ or $W_{ip}\equiv(a^{-1}b)V_{ip}(b^{-1}a)$ for some non-
empty word $V_{ip}$ . In either case, since $a^{2}\in A\backslash H$ , a normal form of $a^{-1}W_{ip}a$ is of
type $AA$ . We have then that

$g_{ip}\equiv X_{i}^{-1}A_{ip}X_{i}$ , (3)

where $X_{i}=b^{-1}a^{-1}(b^{-1}a)^{\omega_{i}}$ and $A_{ip}=a^{-1}W_{ip}a$ . If $i\neq j$ , say $i>j$ , then a normal

form of $X_{i}X_{j}^{-1}$ is $b^{-1}a^{-1}(b^{-1}a)^{\omega_{i}-\omega_{j}-1}b^{-1}a^{2}b$ which is of type $BB$ . Therefore we
have

$g_{ip}g_{jq}\equiv X_{i}^{-1}A_{ip}B_{ij}A_{jq}X_{j}$ , (4)

where $B_{ij}=b^{-1}a^{-1}(b^{-1}a)^{\omega_{i}-\omega-1}jb^{-1}a^{2}b.$
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Now, let $g=g_{1}\cdots g_{k}$ be the product of any finite number of elements $g_{i}$ ’s in
$\bigcup_{j=1}^{3}M^{x}j$ , where $M^{x_{j}}=\{x_{j}^{-1}f_{i}x_{j}|1\leq i\leq n\}$ . Since a reduced form of $g_{i}$ has

the form (3), if both of $g_{i}$ and $g_{i+1}$ are not in the same $M^{x_{j}}$ for any $i$ , then by

noting that a reduced form of $g_{i}g_{i+1}$ has the form (4), it can be easily seen by

induction on $k$ that $g\equiv X_{1}^{-1}UX_{k}$ holds for some non-empty word $U$ in $G$ . Hence,

in particular, $g\neq 1$ . This completes the proof of the lemma. $\square$

Proof of Theorem 3.3. By virtue of Lemma 3.4, we need only to show that $G$

has a free subgroup whose cardinality is the same as that of $G$ . Let $I$ be a set with

$|I|=|G|$ , and let $a\in A\backslash H$ such that $a^{-1}Ha\cap H=1$ and $b\in B\backslash H$ . If $|A\backslash H|=$

$|G|$ $($ resp. $|B\backslash H|=|G|)$ , then for each $i\in I$ , there exists $a_{i}\in A\backslash H$ (resp.
$b_{i}\in B\backslash H)$ such that $a_{i}\neq a_{j}$ (resp. $b_{i}\neq b_{j}$ ) for $i\neq j$ . We have then that the

subgroup of $G$ generated by $a_{i}b(ab)^{2}a_{i}b$ (resp. $(ab_{i})^{3}$ ) $(i\in I)$ is freely generated

by them. On the other hand, if $|H|=|G|$ , then for each $i\in I$ , there exists
$h_{i}\in H$ such that $h_{i}\neq h_{j}$ for $i\neq j$ . We set $M_{1}=\{x_{i}^{\pm 1}, x_{i}^{-1}x_{j}|i,j\in I, i\neq j\}$

and $M_{2}=\{y_{i}^{\pm 1}, y_{i}^{-1}y_{j}|i,j\in I, i\neq j\}$ where $x_{i}=a^{-1}h_{i}a$ and $y_{i}=b^{-1}a^{-1}h_{i}ab$ . It

is obvious that for each finite number of elements $g_{1},$ $\cdots,$ $g_{m}$ in $M_{1}\cup M_{2}$ , whenever
$g_{1}\cdots g_{m}=1$ , both $g_{i}$ and $g_{i+1}$ are in the same $M_{j}$ for some $i$ and $j$ . Hence, it

easily follows that the subgroup of $G$ generated by $z_{i}=x_{i}y_{i}^{-1}(i\in I)$ , is freely

generated by them. $\square$

4 HNN-extensions of groups

Let $G$ be a group, and let $A$ and $B$ be subgroups of $G$ with an isomorphism

$\varphi$ : $Aarrow B$ . Then HNN extension of $G$ relative to $A,$ $B$ and $\varphi$ is the group

$G^{*}=\langle G, t|t^{-1}at=\varphi(a) , a\in A\rangle.$

The group $G$ is called the base of $G^{*},$ $t$ is called the stable letter, and $A$ and $B$ are

called the associated subgroups. If $A=G$ then $G^{*}=G_{\varphi}$ is called the ascending

HNN extension of $G$ determined by $\varphi.$

In [6], the present author showed the following result, which has been general-

ized to arbitrary cardinal case in [7]:

Theorem 4.1. Let $F$ be a nonabelian free group, and $F_{\varphi}$ the ascending $HNN$

extension of $F$ determined by $\varphi.$

(i) In case $\varphi(F)=F$ , the group ring $KF_{\varphi}$ is primitive for a field $K$ if and only

if either $|K|\leq|F|$ or $F_{\varphi}$ is not virtually the direct product $F\cross \mathbb{Z}.$

(ii) In case $\varphi(F)\neq F$ , if the rank of $F$ is at $mo\mathcal{S}t$ countably infinite, then the

group ring $KF_{\varphi}$ is primitive for any field $K.$

To prove the above theorem, the main difficulty was to prove (ii), and it can

be easily done by Theorem 1.1 as follows.
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Let $F_{i}$ be the subgroup of $F_{\varphi}$ generated by $\{t^{i}ft^{-i}|f\in F\}$ , and $F_{\infty}= \bigcup_{i=1}^{\infty}F_{i}.$

Since $F_{\infty}$ is a normal subgroup of $F_{\varphi}$ , it suffices to show $KF_{\infty}$ is primitive. Let

$f_{1},$
$\cdots,$

$f_{n}$ be finite number of elements in $F_{\infty}$ with $f_{i}\neq f_{j}$ for $i\neq j$ . Then there

exists $k>0$ such that $f_{i}\in F_{k}$ for all $i=1,$ $\cdots,$
$n$ . Since $F_{k}$ is a non-abelian free

group, there exists a base $X$ with $|X|>1$ such that $F_{k}=\langle X\rangle$ . Let $x_{1},$ $x_{2}\in X$

with $x_{1}\neq x_{2}$ , and let $m$ be the maximum length of the words in $\{f_{1}, \cdots, f_{n}\}$ on
$X$ , where the length of a word $v$ is defined for the reduced word equivalent to

$v$ on $X$ . We set $z_{l}=x_{1}^{2m+l}x_{2}x$ , where $l=1$ , 2, 3. Then it is easily verified

that the above $z_{1},$ $z_{2},$ $z_{3}$ satisfy $(*)$ for $f_{i}\neq f_{j}$ . Hence the conclusion follows from

Theorem 1.1.
Now, as we saw just above, a non-abelian free group always satisfies $(*)$ . In

the same way as above, we can have the following result generally:

$T$heorem 4.2. Let $G$ be a group, and let $G^{*}=\langle G,$ $t|t^{-1}at=\varphi(a)$ , $a\in A\rangle$ be

the $HNN$ extension of $G$ relative to $A,$ $B$ and $\varphi$ , where $A$ and $B$ are subgroups of
$G$ with $B\neq G$ and $\varphi$ is an isomorphism $\varphi$ : $Aarrow B.$

(i) If $A\neq G$ then $KG^{*}$ is primitive for any field $K.$

(ii) If $A=G$ and $G$ satisfies the condition $(*)$ , then $KG^{*}$ is primitive for any

field $K.$
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