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Abstract. This paper explains the gist underlying regulated grammars and automata as well as the
main purpose of their investigation. This investigation is classified into four major topics–the study
of their power, properties, reduction, and mutual convertibility. The paper illustrates this investigation
by a case study in terms of one-sided random-context grammars. Most importantly, it points out that
propagating versions of onesided random-context grammars characterize the family of context-sensitive
languages, and with erasing rules, they characterize the family of recursively enumerable languages; as a
result, they are stronger than ordinary random context grammars. Open problem areas are formulated.

1 Introduction

Formal language theory represents a branch of mathematics that formalizes languages and devices
that define them strictly rigorously. This theory defines languages as sets of sequences consisting
of symbols. This definition encompasses almost all languages as they are commonly understood.
Indeed, natural languages, such as English, are included in this definition. Of course, all artificial
languages introduced by various scientific disciplines can be viewed as formal languages as well;

perhaps most illustratively, every programming language represents a formal language in terms of
this definition. Consequently, formal language theory is important to all the scientific areas that
make use of these languages to a certain extent.

The strictly mathematical approach to languages necessitates introducing formal language mod-
els that define them, and formal language theory have introduced a great variety of them over its
history. Most of them are based upon rules by which they repeatedly rewrite sequences of symbols,
called strings. Despite their diversity, they can be classified into two basic categories–generative
and recognition language models. Generative models, better known as grammars, define strings of
their language so their rewriting process generates them from a special start symbol. On the other
hand, recognition models, better known as automata, define strings of their language by rewrit-
ing process that starts from these strings and ends in a special set of strings, usually called final
configurations.

Like any branch of mathematics, formal language theory has defined its language models gener-
ally. Unfortunately, from a practical viewpoint, this generality actually means that the models work
in a completely non-deterministic way, and as such, they are hardly implementable and, therefore,
applicable in practice. Being fully aware of this pragmatic difficulty, formal language theory have
introduced fully deterministic versions of these models; sadly, their application-oriented perspec-
tives are also doubtful. First and foremost, in an ever-changing environment in which real language
processors work, it is utterly naive, if not absurd, that these deterministic versions might adequately
reflect and simulate real language processors applied in such pragmatically oriented areas as various
engineering techniques for language analysis. Second, in many case, this determinism decreases the
power of their general counterparts–another highly undesirable feature of this strict determinism.
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2 The Gist and Purpose of Regulated Grammars and Automata

Considering all the difficulties sketched above, formal language theory have introduced yet another

version of language models, generally referred to as regulated language models, which formalize real

language processors perhaps most adequately. In essence, these models are based upon their general

versions extended by an additional mathematical mechanism that prescribes the use of rules during

the generation of their languages. Rom a practical viewpoint, an important advantage of these

models consists in controlling their language-defining process and, therefore, operating in a more

deterministic way than general models, which perform their derivations in a quite unregulated way.

Perhaps even more significantly, the regulated versions of language models are stronger than their

unregulated versions. Considering these advantages, it comes as no surprise that formal language

theory has paid an incredibly high attention to regulated grammars and automata.

Over the past quarter century, literally hundreds studies were written about regulated grammars,

and their investigation represents an exciting trend within formal language theory. This investigation

has introduced a number of new regulated grammatical concepts and achieved many remarkable

results.
From a more practical viewpoint the developers of current and future language processing tech-

nologies need a systematized body of mathematically precise knowledge upon which they can rely

and build up their methods and techniques.

3 Major Investigation Areas

There exist four crucially important topics concerning regulated grammars and automata–their

power, properties, reduction, and convertibility.

As obvious, the power of the regulated language models under consideration represents perhaps

the most important information about them. Indeed, we always want to know the family of languages

that these models define.
A special attention is paid to algorithms that arrange regulated grammars and automata so they

satisfy some prescribed properties while the generated languages remain unchanged because many

language processors strictly require their satisfaction in practice. From a theoretical viewpoint, these

properties frequently simplify proofs demonstrating results about these grammars and automata.

The reduction of regulated grammars and automata also represents an important investigation

area of this book because their reduced versions define languages in a succinct and easy-to-follow

way. As obvious, this reduction simplifies the development of language processing technologies,

which then work economically and effectively.
Of course, the same languages can be defined by different language models. We obviously tend

to define them by the most appropriate models under given circumstances. Therefore, whenever

discussing different types of equally powerful language models, we also study their mutual con-

ventibility. More specifically, given a language model of one type, we study how to convert it to a

language model of another equally powerful type so both the original model and the model produced

by this conversion define the same language.

4 A Case Study

The present section deals with regulated grammars referred to as random context grammars (see

Section 1.1 in [2]). In essence, these grammars regulate the language generation process so they
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require the presence of some prescribed symbols and, simultaneously, the absence of some others in
the rewritten sentential forms. More precisely, random context grammars are based upon context-
free rules, each of which may be extended by finitely many permitting and forbidding nonterminal
symbols. A rule like this can rewrite the current sentential form provided that all its permitting
symbols occur in the sentential form while all its forbidding words do not.

This paper concentrates its attention to one-sided random context grammars (see [7]) as slightly
modified versions of ordinary random context grammars. That is, while random context grammars
verify the presence and absence of symbols in sentential forms in their entirety, one-sided random
context grammars perform this verification only in their prefixes or suffixes. More precisely, in every
one-sided random context grammar, the set of rules is divided into the set of left random context rules
and the set of right random context rules. When applying a left random context rule, the grammar
checks the existence and absence of its permitting and forbidding symbols, respectively, only in the
prefix to the left of the rewritten nonterminal. Similarly, when applying a right random context
rule, it checks the existence and absence of its permitting and forbidding symbols, respectively, only
in the suffix to the right of the rewritten nonterminal. Otherwise, it works just like any random
context grammar.

The present section demonstrates that propagating versions of one-sided random-context gram-
mars characterize the family of context-sensitive languages, and with erasing rules, they characterize
the family of recursively enumerable languages. Fhrthermore, the section discusses the generative
power of special cases of one-sided random-context grammars. Specifically, it proves that one-sided
$pe7$mitting grammars, which have only permitting rules, are more powerful than context-free gram-
mars; on the other hand, they are no more powerful than propagating scattered context grammars.
One-sided forbidding grammars, which have only forbidding rules, are equivalent to selective sub-
stitution grammars (see [5, 14 Finally, left forbidding grammars, which have only left forbidding
rules, are only as powerful as context-free grammars.

Preliminaries

In this section, we assume that the reader is familiar with formal language theory (see [15]). For a
set $Q$ , card(Q) denotes the cardinality of $Q$ , and $2^{Q}$ denotes the power set of $Q$ . For an alphabet
(finite nonempty set) $V,$ $V^{*}$ represents the free monoid generated by $V$ under the operation of
concatenation. The unit of $y*$ is denoted by $\epsilon$ . For $x\in V^{*},$ $|x|$ denotes the length of $x$ and alph$(x)$

denotes the set of symbols occurring in $x.$

A random context grammar (see Section 1.1 in [2]) is a quadruple, $G=(N, T, P, S)$ , where
$N$ and $T$ are two disjoint alphabets of nonterminals and terminals, respectively, $S\in N$ is the
start symbol and $P\subseteq N\cross(N\cup T)^{*}\cross 2^{N}\cross 2^{N}$ is a finite relation, called the set of rules. Set
$V=N\cup T$ . Each rule $(A, x, U, W)\in P$ is written as $(Aarrow x, U, W)$ throughout this section. The
direct derivation relation over $V^{*}$ , symbolically denoted $by\Rightarrow c$ , is defined as follows: if $u,$ $v\in V^{*},$

$(Aarrow x, U, W)\in P,$ $U\subseteq alph(uAv)$ , and $W\cap alph(uAv)=\emptyset$ , then $uAv\Rightarrow_{G}uxv.$ $U$ is called the
permitting context and $W$ is called the forbidding context. $Let\Rightarrow_{G}^{*}$ denote the reflexive-transitive

closure $of\Rightarrow c$ . The language of $G$ is denoted by $L(G)$ and defined as $L(G)=\{w\in T^{*}|S\Rightarrow_{G}^{*}w\}.$

Let $G=(N, T, P, S)$ be a random context grammar. Rules of the form $(Aarrow\epsilon, U, W)$

are called erasing rules. If $(Aarrow x, U, W)\in P$ implies that $|x|\geq 1$ , then $G$ is a propagating

random context grammar. If $(Aarrow x, U, W)\in P$ implies that $W=\emptyset$ , then $G$ is a permitting
grammar. If $(Aarrow x, U, W)\in P$ implies that $U=\emptyset$ , then $G$ is a forbidding grammar. By analogy
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with propagating random context grammars, we define a propagating permitting grammar and a

propagating forbidding grammar, respectively.

Denotation of Language Families

Throughout the rest of this section, the language families under discussion are denoted in the fol-

lowing way. RC, $P$ , and $F$ denote the language families generated by random context grammars,

permitting grammars, and forbidding grammars, respectively. The notation with the upper index

$-\epsilon$ stands for the corresponding propagating family. For example, $RC^{-\epsilon}$ denotes the family of

languages generated by propagating random context grammars. CF, CS, and RE denote the fam-

ilies of context-free languages, context-sensitive languages, and recursively enumerable languages,

respectively. $SC^{-\epsilon},$ $S$ , and $S^{-\epsilon}$ denote the language families generated by propagating scattered

context languages (see [4]), selective substitution grammars (see [5, 14 and propagating selective

substitution grammars–that is, selective substitution grammars without erasing rules, see [5, 14]–,

respectively.

Definitions and Examples

Next, we formally define one-sided random context grammars and their variants. In addition, we

illustrate them by examples.

Definition 1. A one-sided random context grammar is a quintuple

$G=(N, T, P_{L}, P_{R}, S)$

where $N$ and $T$ are two disjoint alphabets, $S\in N$ , and

$P_{L}, P_{R}\subseteq N\cross(NUT)^{*}\cross 2^{N}\cross 2^{N}$

are two finite relations. Set $V=N\cup T$ . The components $V,$ $N,$ $T,$ $P_{L},$ $P_{R}$ , and $S$ are called the total

alphabet, the alphabet of nonterminals, the alphabet of terminals, the set of left random context

rules, the set of right random context rules, and the start symbol, respectively. Each $(A, x, U, W)\in$

$P_{L}\cup P_{R}$ is written as
$(Aarrow x, U, W)$

throughout this section. For $(Aarrow x, U, W)\in P_{L},$ $U$ and $W$ are called the left permitting context

and the left forbidding context, respectively. For $(Aarrow x, U, W)\in P_{R},$ $U$ and $W$ are called the

right permitting context and the right forbidding context, respectively.

When applying a left random context rule, the grammar checks the existence and absence of

its permitting and forbidding symbols, respectively, only in the prefix to the left of the rewritten

nonterminal in the current sentential form. Analogously, when applying a right random context

rule, it checks the existence and absence of its permitting and forbidding symbols, respectively, only

in the suffix to the right of the rewritten nonterminal. The following definition states this formally.

Definition 2. Let $G=(N, T, P_{L}, P_{R}, S)$ be $a$ one-sided random context grammar. The direct

derivation relation over $V^{*}$ is denoted $by\Rightarrow c$ and defined as follows. Let $u,$ $v\in y*$ and $(Aarrow x,$ $U,$

$W)\in P_{L}\cup P_{R}$ . Then,
$uAv\Rightarrow cuxv$
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if and only if
$(Aarrow x, U, W)\in P_{L},$ $U\subseteq alph(u)$ , and $W\cap alph(u)=\emptyset$

$or$

$(Aarrow x, U, W)\in P_{R},$ $U\subseteq alph(v)$ , and $W\cap alph(v)=\emptyset$

$Let\Rightarrow_{G}^{*}$ denote the reflexive-transitive closure $of\Rightarrow c.$

The language generated by a one-sided random context grammar is defined as usual–that is, it
consists of strings over the terminal alphabet that can be generated from the start symbol.

Definition 3. Let $G=(N, T, P_{L}, P_{R}, S)$ be $a$ one-sided random context grammar. The language
of $G$ is denoted by $L(G)$ and defined as

$L(G)=\{w\in T^{*}|S\Rightarrow_{G}^{*}w\}$

Next, we define several special variants of one-sided random context grammars.

Definition 4. Let $G=(N, T, P_{L}, P_{R}, S)$ be $a$ one-sided random context grammar. Rules of the
form $(Aarrow\epsilon, U, W)$ are called erasing rules. If $(Aarrow x, U, W)\in P_{L}\cup P_{R}$ implies $that|x|\geq 1$ , then
$G$ is $a$ propagating one-sided random context grammar. If $(Aarrow x, U, W)\in P_{L}\cup P_{R}$ implies that
$W=\emptyset$ , then $G$ is $a$ one-sided permitting grammar. If $(Aarrow x, U, W)\in P_{L}\cup P_{R}$ implies that $U=\emptyset,$

then $G$ is $a$ one-sided forbidding grammar. By analogy with propagating one-sided random context
grammars, we define $a$ propagating one-sided permitting grammar and $a$ propagating one-sided
forbidding grammar, respectively.

Definition 5. Let $G=(N, T, P_{L}, P_{R}, S)$ be $a$ one-sided random context grammar. If $P_{R}=\emptyset,$

then $G$ is $a$ left random context grammar. By analogy with one-sided permitting and forbidding
grammars, we define $a$ left permitting grammar (see [1]) and $a$ left forbidding grammar (see [3]).
Their propagating versions are defined analogously as well.

Next, we illustrate the above definitions by three examples.

Example 1. Consider the one-sided random context grammar

$G=(\{S, A, B,\overline{A},\overline{B}\}, \{a, b, c\}, P_{L}, P_{R}, S)$

where $P_{L}$ contains the following four rules

$(Sarrow AB, \emptyset, \emptyset)$ $(\overline{B}arrow B, \{A\}, \emptyset)$

$(Barrow b\overline{B}c, \{\overline{A}\}, \emptyset)$ $(Barrow\epsilon,$ $\emptyset,$ $\{A,$ $A$

and $P_{R}$ contains the following three rules

$(Aarrow a\overline{A}, \{B\}, \emptyset)$ $(\overline{A}arrow A, \{\overline{B}\}, \emptyset)$ $(Aarrow\epsilon, \{B\}, \emptyset)$
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It is rather easy to see that every derivation that generates a nonempty string of $L(G)$ is of the
form

$S\Rightarrow c$ AB
$\Rightarrow c^{a\overline{A}B}$

$\Rightarrow ca\overline{A}b\overline{B}c$

$\Rightarrow c^{aAb\overline{B}c}$

$\Rightarrow c^{aAbBc}$

$\Rightarrow_{G}^{*}a^{n}Ab^{n}Bc^{n}$

$\Rightarrow c^{a^{n}b^{n}Bc^{n}}$

$\Rightarrow c^{a^{n}b^{n}c^{n}}$

where $n\geq 1$ . The empty string is generated by

$S\Rightarrow_{G}AB\Rightarrow c^{B}\Rightarrow c\epsilon$

Based on the previous observations, we see that $G$ generates the non-context-free language $\{a^{n}b^{n}c^{n}|$

$n\geq 0\}.$

Example 2. Consider $K=\{a^{n}b^{m}c^{m}|1\leq m\leq n\}$ . This non-context-free language is generated by

the one-sided permitting grammar

$G=(\{S, A, B, X, Y\}, \{a, b, c\}, P_{L}, \emptyset, S)$

with $P_{L}$ containing the following seven rules

$(Sarrow AX, \emptyset, \emptyset)$ $(Aarrow a, \emptyset, \emptyset)$ $(Xarrow bc, \emptyset, \emptyset)$

$(Aarrow aB, \emptyset, \emptyset) (Xarrow bYc, \{B\}, \emptyset)$

$(Barrow A, \emptyset, \emptyset) (Yarrow X, \{A\}, \emptyset)$

Notice that $G$ is, in fact, a propagating left permitting grammar. Observe that $(Xarrow bYc,$ $\{B\},$

$\emptyset)$ is applicable if $B$ , produced by $(Aarrow aB, \emptyset, \emptyset)$ , occurs to the left of $X$ in the current sentential
form. Similarly, $(Yarrow X, \{A\}, \emptyset)$ is applicable if $A$ , produced by $(Barrow A, \emptyset, \emptyset)$ , occurs to the left
of $Y$ in the current sentential form. Consequently, it is rather easy to see that every derivation that
generates $w\in L(G)$ is of the form

$S\Rightarrow cAX$

$\Rightarrow_{G}^{*}a^{u}AX$

$\Rightarrow_{G}a^{u+1}BX$

$\Rightarrow ca^{u+1}BbYc$

$\Rightarrow_{G}a^{u+1}AbYc$

$\Rightarrow_{G}^{*}a^{u+1+v}AbYc$

$\Rightarrow ca^{u+1+v}AbXc$

:
$\Rightarrow_{G}^{*}a^{n-1}Ab^{m-1}Xc^{m-1}$

$\Rightarrow_{G}^{2}a^{n}b^{m}c^{m}=w$

where $u,$ $v\geq 0,$ $1\leq m\leq n$ . Hence, $L(G)=K.$

Example 3. Consider the one-sided forbidding grammar

$G=(\{S, A, B, A’, B’,\overline{A},\overline{B}\}, \{a, b, c\}, P_{L}, P_{R}, S)$

where $P_{L}$ contains the following five rules
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$(Sarrow AB, \emptyset, \emptyset)$ $(Barrow bB’c, \emptyset, \{A,\overline{A}\})$

$(Barrow\overline{B}, \emptyset, \{A, A’\})$

$(B’arrow B, \emptyset, \{A’\})$

$(\overline{B}arrow\epsilon, \emptyset, \{\overline{A}\})$

and $P_{R}$ contains the following four rules

$(Aarrow aA’, \emptyset, \{B’\}) (A’arrow A, \emptyset, \{B\})$

$(Aarrow\overline{A}, \emptyset, \{B’\}) (\overline{A}arrow\epsilon, \emptyset, \{B\})$

Notice that every derivation that generates a nonempty string of $L(G)$ is of the form

$S\Rightarrow c^{AB}$

$\Rightarrow caA’B$

$\Rightarrow c^{aA’bB’c}$

$\Rightarrow caAbB’c$

$\Rightarrow caAbBc$

$\Rightarrow_{G}^{*}a^{n}Ab^{n}Bc^{n}$

$\Rightarrow c^{a^{n}\overline{A}b^{n}Bc^{n}}$

$\Rightarrow c$ $a$
$Ab^{n}\overline{B}c^{n}$

$\Rightarrow ca^{n}b^{n}\overline{B}c^{n}$

$\Rightarrow ca^{n}b^{n}c^{n}$

where $n\geq 1$ . The empty string is generated by

$S\Rightarrow_{G}AB\Rightarrow c\overline{A}B\Rightarrow_{G}\overline{A}\overline{B}\Rightarrow_{G}\overline{B}\Rightarrow c\epsilon$

Based on the previous observations, we see that $G$ generates the non-context-free language $\{a^{n}b^{n}c^{n}|$

$n\geq 0\}.$

Denotation of Language Families

Throughout the rest of this section, the language families under discussion are denoted in the follow-

ing way. ORC, OP, and OF denote the language families generated by one-sided random context

grammars, one-sided permitting grammars, and one-sided forbidding grammars, respectively. LRC,

LP, and LF denote the language families generated by left random context grammars, left permit-

ting grammars, and left forbidding grammars, respectively.

The notation with the upper index $-\epsilon$ stands for the corresponding propagating family. For

example, $ORC^{-\epsilon}$ denotes the family of languages generated by propagating one-sided random

context grammars.

Results

In this section, we give an overview of the established results concerning one-sided random context

grammars. More details can be found in the cited papers and in Chapter 6 of [13].
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Generative Power

First, we investigate the generative power of one-sided random context grammars. In [7], it is
proved that one-sided random context grammars characterize the family of recursively enumerable
languages, and that their propagating versions characterize the family of context-sensitive languages.

Theorem 1 (see Theorem 2 in [7]). ORC $=RE$ $\square$

Theorem 2 (see Theorem 1 in [7]). $ORC^{-\epsilon}=CS$ $\square$

Since RC$-\epsilon\subset CS$ and RC $=RE$ (see [2]), we have that one-sided random context grammars
are equally powerful as random context grammars, while propagating one-sided random context
grammars are more powerful than propagating random context grammars.

Theorem 3 (see Corollary 3 in [7]). $RC^{-\epsilon}\subset ORC^{-\epsilon}\subset RC=ORC$ $\square$

The power of one-sided forbidding grammars is investigated in [9]. In there, it is proved that

they have the same power as selective substitution grammars (see [5, 14

Theorem 4 (see Theorem 3.7 in [9]). OF $=S$ $\square$

Theorem 5 (see Theorem 3.8 in [9]). $OF^{-\epsilon}=S^{-\epsilon}$ $\square$

It is not known whether one-sided forbidding grammars or selective substitution grammars
characterize the family of recursively enumerable languages. Also, it is not known whether these

grammars without erasing rules characterize the family of context-sensitive languages.

Moreover, [9] proves the following two results concerning the generative power of one-sided
forbidding grammar where the set of left random context rules coincide with the set of right random
context rules.

Theorem 6 (see Theorem 3.11 in [9]). A language $K$ is context-free if and only if there is a

one-sided forbidding grammar, $G=(N, T, P_{L}, P_{R}, S)$ , satisfying $K=L(G)$ and $P_{L}=P_{R}.$ $\square$

Theorem 7 (see Corollary 3.12 in [9]). Let $G=(N, T, P_{L}, P_{R}, S)$ be $a$ one-sided forbidding

grammar satisfying $P_{L}=P_{R}$ . Then, there is a propagating one-sided forbidding grammar $H$ such
that $L(H)=L(G)-\{\epsilon\}.$ $\square$

One-sided forbidding grammars are at least as powerful as forbidding grammars. This is stated

in the next two theorems.

Theorem 8 (see Theorem 5 in [7]). $F\subseteq OF$ $\square$

Theorem 9 (see Corollary 1 in [7]). $F^{-\epsilon}\subseteq OF^{-\epsilon}$ $\square$

In terms of left forbidding grammars and their power, [3] proves that they are no more powerful

than context-free grammars.

Theorem 10 (see Theorem 1 in [3]). $LF^{-\epsilon}=LF=CF$ $\square$

From Theorems 9 and 10 above and from the fact that CF $\subset F^{-\epsilon}$ (see [2]), we obtain the

following corollary, which relates the language families generated by left forbidding grammars, one-
sided forbidding grammars, and forbidding grammars.
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Corollary 1. $LF^{-\epsilon}=LF\subset F^{-\epsilon}\subseteq OF^{-\epsilon}\subseteq OF$ $\square$

Finally, the following two theorems relate the language families generated propagating one-sided
permitting grammars and propagating left permitting grammars to other families of languages.

Theorem 11 (see Theorem 7 in [7]). $CF\subset OP^{-\epsilon}\subseteq SC^{-\epsilon}\subseteq CS=ORC^{-\epsilon}$ $\square$

Theorem 12 (see Corollary 2 in [7]). $CF\subset LP^{-\epsilon}\subseteq SC^{-\epsilon}\subseteq CS=ORC^{-\epsilon}$ $\square$

Recall that it is not known whether propagating scattered context grammars characterize the

family of context-sensitive languages–that is, whether the inclusion SC$-\epsilon\subseteq CS$ above is, in fact,

an identity (see [6]).

Reduction

Recall that one-sided random context grammars characterize the family of recursively enumerable
languages (see Theorem 1). Of course, it is more than natural to ask whether the family of recur-
sively enumerable languages is characterized by one-sided random context grammars with alimited
number of nonterminals or rules. The present section gives an aflirmative answer to this question.

The next theorem states that ten nonterminals suffice to generate any recursively enumerable
language by a one-sided random context grammar.

Theorem 13 (see Theorem 1 in [8]). For every recursively enumerable language $K$ , there exists
$a$ one-sided random context grammar, $H=(N, T, P_{L}, P_{R}, S)$ , such that $L(H)=K$ and card$(N)=$

$10.$ $\square$

Other Topics of Investigation

We conclude this section by briefly mentioning other topics related to one.sided random context

grammars that have been investigated.

Leftmost Derivations By analogy with the three well-known types of leftmost derivations in

regulated grammars (see [2]), three types of leftmost derivation restrictions placed upon one-sided
random context grammars have been defined and studied in [10]. In the type-l derivation restriction,

during every derivation step, the leftmost occurrence of a nonterminal has to be rewritten. In the

type-2 derivation restriction, during every derivation step, the leftmost occurrence of a nonterminal
which can be rewritten has to be rewritten. In the type-3 derivation restriction, during every deriva-

tion step, a rule is chosen, and the leftmost occurrence of its left-hand side is rewritten. In [10], the

following three results are demonstrated.

(I) One-sided random context grammars with type-l leftmost derivations characterize the family of

context-free languages.
(II) One-sided random context grammars with type-2 and type-31eftmost derivations characterize

the family of recursively enumerable languages.

(III) Propagating one-sided random context grammars with type-2 and type-31eftmost derivations

characterize the family of context-sensitive languages.
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Generalized One-Sided Random Context Grammars We may generalize the concept of one-

sided context from symbols to strings. Obviously, as one-sided random context grammars already

characterize the family of recursively languages, such a generalization cannot increase their strength.

However, a generalization likes this makes sense in terms of variants of one-sided random context

grammars. In [11], one-sided forbidding grammars that can forbid strings instead of single symbols

are studied, and it has been proved that they are computationally complete, even if all strings are

formed by at most two symbols.

One-Sided Versions of Other Formal Models One-sided random context grammars are based

upon context-free grammars. It is only natural to consider other types of grammars and equip

them with one-sided random context. Some preliminary results in this direction have been achieved

in [12], where ETOL grammars (see [16]) and their variants enhanced with left random context are
studied.
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