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1. Introduction

Idols of Francis Bacon did not include an idol of the number. This idol entered scientific inquiry
too recently to be of any concem for the Age of Reason. The idol is hidden in the common conviction
about the superiority of quantitative methods of inquiry over those qualitative. The problem is not in
the answer to the question whether quantitative methods are superior or qualitative, but in the very
fact ofasking it, as if the question was meaningful One of the fundamental questions, which should
stimulate philosophical, methodological discussion, is: What actually do we know about some
concept whenwe descnbe it in terms of some magnitude with numerical values? [1]

It is obvious that the description of an object of study in terms of magnitudes with numerical
values plays a fundamental role in science, but only under the condition that these magnitudes have
foundation in a structuraL and therefore quabtative, analysis of the object. Not always, or even not
frequently this happens. $v_{eI}y$ often more or less ad hoc magnitude appears $fn\cdot st$, and then there are
some attempts to associate with this magnitude a concept for which it apparently is a quantitative
description.

The struggle with the concept of information gives an excellent illustration of the problem.
Information became one ofthe most fiequently used words in the contexts of all types of inqui1y, but
at the same tnne it continues to be one of the most elusive concepts. It entered the stage almost
mmoticed, so today there is a common belief that theory of information was mitiated in 1948 by the
famous article of Claude E. Shamon A Mathematical Theory of Communication which one year
later was re-published in the book format with the title “The Mathematical Theory of
Commumcation,”. [2,3]

Historically more accurate birth certificate for information should give as a date and place the ten
year earlier article“Transmission of Information”’ by Ralph Hartley. [4] Shannon quoted this article in
his work, but because Hartley’s article introduced a measure of information which is a special case of
Shannon’s entropy, a measure “of information, choice and uncertainty” [3], the article is $ffequentb^{t}$

considered premature and non-deserving attention. However, actualy it was Hartley’s article that
pushed the study of information in its direction ofdevelopment.

Hartley derived his formula $H=n\log_{m}(s)$ (where $s$ is the number of symbols available in all
selections and $n$ is a number of selections, $m$ arbitrarily chosen accordng to the preferable choice of
the unit of information) for the quantitative measure of information in a symbolic form from the
assumption of invariance. He considered the invariance with respect to the grouping of the “primary
symbols”’ (here associated with physically $disti_{I1}ct$ states of the physical system) into “secondary
symbols”’ representing psychologically determined and therefore subjective symbols canying meaning.
The choice of the formula makes values of $H$ independent from grouping but was dependent on the
assumption that all primary symbols are equally likely to be used in the formation of secondary
symbols.

Shannon did not refer in his derivation of entropy to any non-mathematical assumptions and only
one of the assumptions has a direct interpretation. He referred to the fact that “With equally likely
events there is more choice, or uncertainty, when there $aIe$ more $p^{OSS1}ble$ events [3] The argument is
convincing for uncertainty, but its relationship to information is counterintuitive. Why should the
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choice of encoding with equally likely symbols be distinguished? Why should the way we encode
information $\dot{m}\ovalbox{\tt\small REJECT} nce$ the amount of information? After all, Hartley was using as a point of departure
the independence from the way of encoding.

2. Quantitative Description

Whatever guided Shannon, his entropy became an orthodox measure of what started to be
commonly considered information:

$H(p_{1},p_{2},\ldots,p_{n})=_{-}\sum_{i=1}^{n}p_{i}\log_{2}p_{i}$ where $\sum_{j-1}^{n}p_{i}=1$ & $\forall i:p_{i}\geq 0$

The indices $i=1$ , 2 $n$ represent the elements ofthe information carrier $S$, or what Shannon would
rather call elements of the alphabet. We can see that every transformation $T$ of the set $S$ (bjective

function $T:Sarrow S$) preserves the value $ofH$, as long as $p^{s_{i}}=p^{T(S)_{T(i)}}$. Since we have no restriction on the
choice of $T$, we get suspiciously high level of symmetry. Entropy is an invariant of all transformations
of $S$, and therefore it cannot reflect any structural characteristics ofthe carrier ofinformation.

Entropy is a fUnctional which assigns a nonnegative real number to each class of equivalent
probability distrlbutions. Thus, there is nothing in entropy that cannot be directly derived from the
probability distribution. Since entropy cannot be calculated without some pre-determined probability

distribution it is simply a partial characterization of whatever the distr’bution characteriles or
descrlbes. It is only a partial characterization, because two different distributions may give rise to the
same entropy. If we believe that entropy is a measure of information, then we have to accept that
actual description of information more complete than entropy, is given by one of probability
distnbutions producing given value of this magnitude.

This brings us to unacceptable consequences. Every geometric structure definitely carries out some
information. For instance we can think about the geometric structures of the alphabet letters or
numerals. Is it possible to descnbe geometric structures in terms of probability theory? The answer is
obviously not, although of course we can define probability measures within geometric structures.
Thus, we cannot expect that probability distrbutiOns are sufficient to descnbe or characterize
information. If information cannot be characteriled exclusively in terms of probability distributions,

entropy is not suficient characteristic of information.

This can explain multiple attempts to generalize the concept of entropy in order to have a
mathematical model of information better suited to serve as characterization of in$fo-atior\iota$

First step was the transition to the continuous probability distributions for random variables. It is
already a convenient but suspicious fact that when we define entropy in terms of random variables,

the actual values of entropy depend exclusively on mass functions not on the values of the random
variable. TransformatiOns of random variables may change entropy by $changi_{Il}g$ mass functions, and
for instance entropy is not an invariant of linear transformations of random variables. But the values
of a random variable are $i_{I}\uparrow$elevant for entropy.

Transition from finite, discrete random variables to continuous ones is equally disappointing. In
the limit transition to the infimite case entropy is divergent. Thus entropy’s continuous counterpart is
an adhoc fimctional caIed differential entropy”, not derivable from any hmit process.

$H(X)=_{-}\int_{a}^{b}Ix)\log_{2}(Ix))dx$

The difficulties are oftheoretical character and they did not hibit the development of the theory
of communication based on this form of entropy. However, it is difficult to say whether the use of
entropy was successful because of its relationship to information or simply because of the
involvement in the study of powerful methods of probability theory.
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Analogy to the original form of entropy led to von Neumann’s entropy in the context of quantum
mechanics: $S=_{-}Tr(p\log p)$, where $p$ is the density operator descrlbing a mixture of quantum states.

There were many attempts to involve generalized forms of entropy gulled by the recognition that
Shannon’s entropy is a convex function. A function $f(x)$ is convex over an $i\iota$lterval (a,b) if for $allx_{1},$ $x_{2}$

in the interval $(a, b)$ and for every $\lambda$ such that $0<\lambda<1$ we have $f(\lambda x_{1}+\langle 1-\lambda)x_{2}$) $<\lambda f(x_{1})+(1-\lambda)f(x_{2})$ .
The association of entropy with convexity stimulated attempts to sea1ch for generalized forms of
entropy which have a similar property of convexity, but which involves one or more parameters, and
which for some values of the parameters or in the limit when parameters approach some value the
generalized function collapses to Shannon’s entropy.

One ofthe earliest such $aenera\mathbb{R}$tiOns was proposed by Alfred $Reny\dot{\iota}[5]$ This generalization is
twofold. First, but marginal is that the probability distribution does not have to be complete, which
means that the probabilities of elementary events do not have to add up to one. More immportant was
the $i_{I1}$volvement ofa positive parameter $\alpha$ , suchthat we have a class ofgeneralized Renyi entropies:

$H_{n}^{u}(p)=(1/(1\triangleleft))\log_{2}\underline{(}\sum_{i1}m^{a})/(\sum_{i-1}p_{i})nn$ $( a>0,a\neq 1,\sum p_{i}\leq 1)$

When the parameter $\alpha$ approachoe 1, and $\Sigma p_{i}=1$ , Renyi’s parametriaed entropies have Shannon’s
entropy as a limit. In the following years a series of generalizatiOns were proposed involving an
increasing number of parameters. [6,7] Finally, P. N. Rathie [8] introduced the generalized entropy
with $n+1$ parameters for arbitrary $n$ :

$n$ $n$

$H^{\alpha fl_{1}\beta_{2}\ldots\beta_{mn}}(p)=(1/(1\triangleleft))\log_{2}(\sum_{1-1}p_{1}^{\alpha+\beta_{k}-1})/(\sum_{i=1}p_{i})$ where $( a>0,a\neq 1,\beta_{k}>1, \sum p_{i}\leq 1)$

Constantino Tsallis went in different direction abandoning the requirement of convexity, but with
physical applications in $consideratio\iota\iota$ His parametrized by real numbers $q$ entropies

$S_{q}(p)=(k/(q-1))[1-(\sum_{i=1}n^{q}n$ $( \sum p_{i}=1)$ involved $Bol\ovalbox{\tt\small REJECT} ann$ constant $k$, as the concept was developed

in the physical context. When we eliminate the physical constant $k$, paramehized entropies of Tsallis
become Shannon’s entropy in the limit when $q$ approaches 1.

All these attempts seem lie drawing concentric circles aroumd the arrow shot by Shannon, or
actually Hartley, in ordertojustify claim thatthe arrow hit the bull’s eye.

That the arrow hit another, actually opposite part of bull’s body (when the bull is a symbol of
information) was quite clear from the veIy beginning. One of the sources of confusion was in the
famous small book “What is Life? The Physical Aspect of the Living Cell”’ published by Erwin
SchrMinger in 1944. [10] $SchrMi\iota$lger did not refer directly to the concept of information in his
“meditation on life”, but his reflection on the mechanisms ofheredity, metabolism, and life in general
made it clear that when we consider them in terms of information, we should associate information
with the negation ofentropy (he called it“negative entropy not entropy itself.

Leon Brillouin in his book“Science and Information Thory” [11] abbreviated“negative entropy”
into “negentropy” and merged Schr\"odinger’s physical explanations and models explicitly with
Shannon’s theory ofinformation. What was a marginal oversinplification in SchrOdinger’s book (that

with the sum light life on earth $ae\uparrow s$ negative entropy, instead of that the low entropy light arriving
with sunshine is entering the balance of entropy in biosphere allowing the increase of organization
without contradiction with the Second Law of Thermodynamics excluding decrease of entropy in
isolated systems) became a bizarre concept ofthe magnitude, which is a negation of the positive value
ofentropy, but itself is positive. This too would not be harmful, if it was not commonly interpreted as
an expression ofthe conformity between physics and Shannon’s measure ofinformation.
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The puzzle can be easily solved when we observe that Shannon was interested exclusively in
measuring of the transfer of information in the process ofcommunication. Thus, he was using as his
refelence frame the relationship between information source and destination. His entropy can be
easily interpreted as a measure ofthe increase of information within destination, from the original one
based on the probability distrlbution of possible messages, to the fnaL which is given by the 0-1
distribution probability, which characteriles fin information. Of course, if the destination contains
full information (one outcome has probability 1, all other O), there is no increase of information,

which corresponds to the fact that entropy is O. This means an altemative measure of information is
more appropriate, and the need for negentropy is eliminated: [12]

Inffn,$p$) $= \sum_{i=1}^{n}p_{i}\log_{2}(np_{i})$, $\sum_{i=1}^{n}p_{i}=1\forall i:p_{j}\geq 0$

Obviously $Inf(n, p)=H_{mx}-H(n, p)$ , where $p=(p_{1},p_{2},\ldots,p_{n})$ .

Then we have a cha1acteristic ofthe degree of determination of information or relative measure of
information:

$Inff(n,p_{i\Rightarrow 1})=\sum p_{i}\log_{n}(np_{i})_{i=1}n,\sum p_{i}n=1\forall i:p_{i}\geq 0$

Or simpler Inf$*$(n,p) $=Inf(n,p)/Inf_{nnx}$, giving the range $0\leq Inf^{*}(n,p)\leq 1.$

The alternative measure has many useful features ofentropy, but also is an invariant oflinear
transformations and is giving a smooth transition from the finite, discrete probability distrbutions to
the case ofinfmite, continues probability distrlbutions. [12] For our purpose the two most immportant
features are as follows. [12]

Let $S$ be a dsjoin$t$ union ofthe family of probability spaces $\{A:i=1,\ldots 0^{A_{i}}\cap A_{k}=\emptyset, if i\neq k\},$

eachwith probability distrbution $p(i)$ . Letn indicates the number of elements in $S$, and $n_{i}$ of elements
in $A_{i}$ . We can define a probability $di_{Str1}$bution p(x) on $S$ the following way.

For eve1y $x$ in $S,$ $p(x)=a_{i}p(i)(x)$ , where $i$ is selected by the factthat $x$ belongs to $A_{i}$ and $a_{1}+\ldots+$

$a_{m}=1$ . 0fcourse, $a_{i}=p(A_{i})$ andwe CanWrite p$(x)=p(A_{i})p(i)(x)$ .
Then,

$Inf(n, p)=\sum_{i=1}^{m}p(A_{i})Inf(n_{i},p(i))+\sum_{i=1}^{m}p(A_{i})\log_{2}[(n\int n_{i})p(A_{i})].$

Ifall sets $A_{i}$ have the same size $k$, then the $formu\mathfrak{b}$ for $Inf(n,p)$ becomes much simpler:

$Inf(n, p)=\sum_{I=1}^{m}p(A_{i})Inf(k,p(i))+\sum_{i=1}^{m}p(A_{j})\log_{2}[mp(A_{i})].$

We can interpret this as an assertion that the total information amount $Inf(n,p)$ can be separated
into information identifYing the element of the partition $A_{i}$ , plus the average information identifying
an element withn subsets of the partition.

Let $S=S_{1}\cross S_{2}$ with the probability distrlbution given by $(p\cross q)_{ik}=p_{i}p_{k}$ . Let $S_{1}$ consists ofn
elements, $S_{2}$ consists ofm elements. Then $Inf(nm, p^{x}q)=Inf(n, p)$ $+$ Inf(m, q).

It has to be emphasized that this approach is a purely probabilistic study of information as in the work
of Hartley or Shannon. Thus, the atternative measure can be interpreted as a measure of infonnation
provided we can define the concept of information and develop its structural theory justifying the
formula.
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3. Structural (Qualitative) Description

The attempts related to the quantitative methods initiated by Shannon in his study of
communication ignored the structural (qualitative) aspects of information. No wonder that they had to
give up the study of semantics for information, if in such perspective information is an amorphous
aggregate with the description exclusively in terms of the probability of meaningless components.
However, the attempts focusing on the qualitative aspects of information were even less successful,
since they did not go much beyond the relationship with the philosophical reflection on the concept of
form

In order to combine both aspects of information and to place this concept in the context of non-
trivial philosophical conceptual framework, the present author introduced his definition of
information in terms ofthe one-many categorical opposition with a very long and rich philosophical
$raditio\iota\iota[13]$ Thus, information is defined as a 1esolution of the one-many opposition, or in other
words as that, which makes one out of many. There are two ways in which many can be made one,
either by the selection of one out of many, or by binding the many into a whole by some structure.
The fonner is a selective mamfestation of information and the latter is a structural manifestation They
are different manifestations of the same concept of information, not different types, as one is always
accompanied by the other, although the multiplicity (many) canbe different in each case.

This dualism between coexisting manifestations was explained by the author in his earlier
presentations ofthe definition using a simple example ofthe collection ofthe keys to rooms in a hoteL
It is easy to agree that the use of keys is based on their informational content, but information is
involved in this use in two different ways, through the selection of the right key, or through the
geometric description of its shape. We can have numbers ofthe rooms attached to keys which allow a
selection ofthe appropriate key out of many other placed on the shelf. However, we can also consider
the shape of key’s feather made ofmechanically distinguishable elements or even ofmolecules. In the
latter case, $aeome\alpha\dot{r}$ structure of the key is carrying information. The two manifestations of
information make one out of veIy different multiplicities, but they are closely interrelated.

The definition of information presented above, which generalzes many earlier attempts and
which due to its veIy high level of abstraction can be applied to practically all instances of the use of
the term information can be used to develop a mathematical formalism for information. It is not a
surprise, thatthe formalism is using very general framework ofalgebra. [14]

The concept of information requires a variety (many), which can be understood as an arbitrary set
$S$ (called a carrier of information). Information system is this set $S$ equipped with the family of
subsets 5 satisfying conditions: entire $S$ is in $\mathfrak{J}$, and together with every subfamily of $s^{\sim}$, its
intersection belongs to 5, $\dot{\iota}e.$ $3$ is a Moore family. Of course, this means that we have a closure
operator defined on $S(ie$ . a function fon the power $set2^{S}$ ofa set Ssuch that:

(1) For every subset A of $S,$ $A\subseteq f(A)$ ;
(2) For all subsets $A,$ $B$ of $S,$ $A\subseteq B\supset f(A)\subseteq f(B)$ ;
(3) For every subset A of $S,$ $f(f(A))=f(A)$).

The Moore fanily 5 of subsets is simply the family f-C1 of all closed subsets, ie. subsets A of $S$

such that $A=f(A)$. The family of closed subsets $s^{arrow}=f-C1$ is equipped with the structure of a complete
lattice $I_{\dashv}$ by the set theoretical inclusion. $L_{f}$ can play a role of the generalization of logic for not
necessarily linguistic infonnation systems, although it does not have to be a Boolean algebra. In many
cases it maintains all fundamental characteristics ofa logical system. [15]

Information itself is a distinction of a subset $s_{0}^{arrow}$ of $s^{arrow}$ , such that it is closed with respect to (pair-
wise) intersection and is dually-hereditary, $\dot{L}e$ . with each subset belonging to $s_{0}^{arrow}$ , all subsets of $S$

including it belong to $s_{0}^{arrow}$ ($\dot{\iota}e.$
$\mathfrak{J}_{0}$ is a filter in $L_{f}$).

The Moore family 3 can represent a variety of structures of a particular type (e.g. geometric,
topological, algebraic, logicaL etc.) defined on the subsets of S. This corresponds to the structural
manifestation of information Fiher $s_{0}^{arrow}$ in turn, in many mathematical theories associated with
localization, can be used as a tool for identification, $ie$ . selection of an element within the family $s^{arrow},$

and under some conditions in the set S. For instance, in the context of Shannon’s selective
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information based on a probability distribution of the choice of an element in $S,$ $\mathfrak{J}_{0}$ consists of

elements in $S$ which have probability measure 1, while $s^{arrow}$ is simply the setofan subsets of S.
This approach combines both manifestations of information, but the relationship between

articulations of these manifestations within the formalism thus far was based on the intuitive
interpretation. It was not clear in what sense we can talk about dualism. What exactly do we mean by
dualism? How can we use the fornalism of information to descr’be two information systems in the
dual relationship?

The example of information carried by a key shows that the dualism of manifestations of
information can be associated with the transition from the level of elements of a set $S$ representing a
variety to the level of sets belonging to the power set representing another, higher level ofvariety. [16]

The basic idea ofthe relationship between dual information systems is that within a variety (set $S$)

an element $x$ can be selected by a specification of its properties, which can be interpreted in the terms
of the set theory as a distinction of the family of subsets whose intersection has $x$ as its element. On
the other hand, the structure built on the variety can be characterizRd by the family of substructures
defined within $S$. Inboth cases information system is associatedwith a closure operatorfon $S.$

Closed subsets for this closure operator (i.e. sets satisfying$f(A)=A$ which can be associated with
actual properties of objects) form a complete lattice $L_{f}$ which can be considered a generalization ofthe
concept of logic for information (see above). It is reducbility or irreducbility of this lattice that
shows the level of integration of information.

The point of departure in the formalization of the duality of information manifestation can be
found in the way how we are associating information understood in the linguistic way with the

relation between sets and their elements formally expressed by $x\in A$ . The formational aspect ofthe
set theory can be identified in the separation axiom schema, which alows interpretation of $x\in A$ , as a
statement of some formula $\varphi(x)$ formulated in the predicate logic which is true whenever $x\in A$. The set
A consists then of all elements which possess the property expressed by $\varphi(x)$ .

If we $a\iota e$ interested in a more general concept of information not necessarily based on any
language, we can consider more general relationship than $x\in Adescr\iota bed$ by a binary relation $R$

between the set $S$ and its power set $2^{s}:xRAifx\in f(A)$ .
If this closure operator is trivial (for every subset $A$ its closure $f(A)=A$) we get the usual set-

theoretical relation of belonging to a set $xRAfx\in A$ . In more gene1al case, only closed subsets
correspond to properties.

LetS, $T$ be sets, andR $\subseteq SxTbe$ abinary relation between sets $S$ and T. $R^{*}$ is the converse relation

of $R$, i.e. the relation $R^{*}\subseteq T\cross S$ such that $\forall x\in S\forall y\in T:xRyiffyR^{*}x$. Thenwe defme $R^{a}(A)=(y\in T$:

$\forall x\in A:x\Psi\},$ $R^{e}(A)=(y\in T.\cdot\Phi\in A:xRy\}.$

If $R$ is a binary relation between sets $S$ and $T$, the pair of functions $\varphi:2^{S}arrow 2^{T}$ and $\psi 2^{T}arrow 2^{S}$

between the power sets of $S$ and $T$ defined on subsets $A$ of $S$ by $\varphi:Aarrow R^{a}(A)$ and on subsets $B$ of $T$

by $\psi Barrow R^{*^{a}}(B)$ forms a Galois connection, and therefore their both compositions, defined on

subsets $A$ of $S$ by $f(A)=\varphi\psi(A)=R^{a}R^{*^{a}}(A)$ and on subsets $B$ of $T$ by $g(B)=\varphi\prime \mathcal{N}B$) $=R^{*^{a}}R^{a}(B)$ are
transitive closure operators. Also, the functions $\varphi,$ $\psi are$ dual isomorphisms betweenthe lattices $L_{f}$

and $L_{g}$ of closed subsets for the closure operators $f$and $g.$ $[17]$

Now, let $<Sf>be$ closure space which rep1esents an information system. Defme for $x\in S$ and $A\in 2^{s}a$

binary relation $R_{f}\subseteq Sd^{S}$ such that $xR_{f}$ $A$ iff$x\not\simeq(A)$ . Ifno confusion is likely, we will write simply $R$

instead $ofR_{f}.$

One way of the Galois connection defined by this relation and descrlt)$ed$ above will retum us back

to the originalclosure $f$, as for eve1y subset A $ofS:R_{f}^{*^{a}}\theta^{a}(A)=f(A)$ . For us, more interesting is the

other way which generates the closure operator $g$ defined on $2^{s}$ by: $\forall\beta\subseteq 2^{S}:g(\beta)=R^{a}R^{*^{a}}(\beta)=$

$(A\subseteq S.\cdot\cap ff(B):B\in\beta\}\subseteq f(A)\}.$

We know from the properties ofGalois connections that the complete lattice lattices $L_{f}offarrow$losed
subsets of $S$ is dually isomorphic to the lattice lattices $L_{g}$ of$g$-closed subsets ofthe power set $2^{S}$. Thus,
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we have that every information system on a set $S$ is associated with an information system on the set
of all subsets of $S$, in such way that their logics are dually isomorphic.

This correspondence is expressing in mathematical language the duality of information
mamfestations in hierarchically related information systems, which links the consecutive levels in
such a way that information structure is preserved in $a$ (lattice-theoretic) dual way. Since we can
repeat the reasoning for the “upper lever closure operator our construction can produce unlimited
number oflevels and we have the formal description ofmulti-level hierarchic information systems.

4. Quantitative Description ofStructural Characteristics

The most immportant characteristic of the structural manifestation of information is its level of
infonnation integration descnbing the specific type of the stncture immposed on the variety. This
structure may have different levels of integration related to its decomposability into component
structures. Decomposability of the structure can be descnbed in terms of irreducbility of the logic $L_{f}$

of information system into a direct product of component lattices. Quantum mechanics provides
examples of completely integrated information systems, but there $aIe$ many other examples, for
instance geometric formation systems. [18]

In an earlier article the author presented an analysis of complexity linking this concept to
irreducbility of information. [19] Traditional attempts to define and $ana$]$yae$ complexity put the
emphasis on the large number of components. Frequently this was combined with the qualification
“large number of closely interrelated components However, this “interrelation” was never explicitly
defined. In this approach the emphasis is on interrelation defined as the level of information
$i\iota$lteyation.

Analysis of the level of information integration can utilize extensive mathematical knowledge of
irreduclbility (or reducibility) of partially ordered sets. We will need only fundamentals whose details
canbe found in the classic monograph on lattice theory written by Garret Birkhoff.[17]

Our goal is to fmd a quantitative description ofthe structural characteristics ofin$fo-atior\iota$

In the following slides the lefrences will be made to the numbering of theorems in Chapter Ill,
Section 8 of Birkhoffs monograph:

The main tool for $reduclbI\dot{\Phi}/irreduc\iota$bility ofthe posets is the concept ofa center:

Def The center ofaposetP with $0$ and 1 is the set $C$ ofelements (called
$t$‘central elements”) which

have one component $0$ andthe other 1 undersome directfactorization $ofP.$

Thm. 10. The center CofaposetP with $0$ and 1 is a Boolean lattice in whichjoins andmeets
representjoins andmeets in $P.$

Def An elementa $ofa$ latticeL with $0$ and 1 is neutral iff$(a,\kappa y)Dforallx,yinL$ i.e. the triple, $x,$ $y$

generates a distributive sublattice $ofL$

Thm. 12. The center $ofa$ lattice with $0$ and 1 consists ofits complemented, neutral elements.

Fact. $0$ and 1 are central elements in everyposet with $0$ and 1.

It follows from Thm. 12 above that the lattices $M_{5}$ and $N_{5}$ are irreduclble and that every Boolean
lattice is identical with its center.

We can observe that ahhough the Exchange Property of Steinitz
$(wE)\forall A\subseteq S\forall x,y\in S$:x$\not\in\pi$A$)$ & $x\in \mathfrak{n}A\cup v\})\Rightarrow y\in f(Au\{x\})$ itselfdoes not in$1p\mathfrak{h}r$ complete
irreduclbMy ofthe corresponding logic $L_{f}$, but it does if every two element sethas closure with at
least three elements.

From now on, it will be assumed that the logic of information $L_{f}$ (ie. the complete lattice of $f$-closed
subsets) is finite.
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Lemma: Iflattices $L_{1}$ and $L_{2}$ have their centers $C_{1}$ and $C_{2}$ respectively, then the direct product $L_{1}xL_{2}$

has $C_{1}xC_{2}$ as its center.

It is a simple corollary ofThm. 11.

We will write $|L|$ for the number of elements in set L.

Now we can show using Thm. 10 and Thm 11 that the number of i1Teduclble components ofthe logic
$L_{f}$ is $\log_{2}(|C|)$ . This number is giving us some indication regarding reducibility ofthe logic (complete

irreducbility is for value 1, the increase indicates that the number of irreduclble components is
increasing). But as long as we do not know the size ofthe logic, the value of such measure is limited
It is better to consider flrst a measure of complexity $m(L)$ .

De $f$ Measure ofcomplexity of logic $L$

$m(L)=\log_{2}(|L|/|C|)=\log_{2}(|L|)-\log_{2}(|C|)$

Then, if $L$ is a Boolean lattice (completely reducible), then $m(L)=0$, but when $L$ is completely

irreducible, then $m(L)=\log_{2}(|L|)-1.$

Since the center is preserved by all lattice automorphisms, so is $m(L)$.
Also, $m$ is “semi-additive”’ inthe sense that: $m(L_{1}xL_{2})=m(L_{1})+m(L_{2})$.
In particular for a logic $L=L_{1}xL_{2}xL_{3}$ x $\cdots$x $L_{k}$where all $L_{i}$ are irreduclble, in agreement with the
definition we have $m(L)=\log_{2}(|L|)-k=\log_{2}(|L|)-\log_{2}(|C|)$ .
On the previous slide $m(L)$ was called a measure of complexity, not of irreducbility, as it is
increasing to infinity with the size of the logic L. We have simple irreduclble two-element logic with
$m(L)=0$, as it is a Boolean lattice. Also, for the completely irreducible logics with lattices $M_{5}$ and $N_{5}$

we have:

$m(M_{5})=m(N_{5})=klg_{2}(52)\approx 1.32$ while there are many reduclble (although not completely) logics

with higher values of $m(L)$ . So, in order to have a measure of irreducbility we can introduce a relative
measure m$*$ which is aninvariant oftransformations preserving information structure:

Def For lattices with at least two elements: $m^{\star}(L)=m(L)/(m_{\max}+1)=m(L)/\log_{2}(|L|)=$

$\log_{2}(|L|/|C|)/\log_{2}(|L|)$, where $m_{m\iota x}$ is the maximum complexity $m(L)$ fora logic ofsin $|L|.$

From the defmition $m^{*}(L)=\log_{2}(|L|\int|C|)/\log_{2}(|L|)=1-[\log_{2}(|C|)/\log_{2}(|L|)].$

Then it is easy to see that

$IfL$ is a Boolean lattice, $m^{*}(L)=0$ , but when $L$ is completely irreducible, then:
$m^{\star}(L)=1-[1/\log_{2}(|L|)].$

So $0\leq m^{\star}(L)<1$ andm$*$ is an increasing function ofthe size $ofL$ with limit 1 at fmity.

$m^{*}(M_{5})=m^{*}(N_{5})=1-1/\log_{2}(5)\approx 0.57;m^{*}(D_{10})\approx ca.$ $0.70$

It is not a surprise that $m^{*}$ is not semi-additive (in the sense in which $m$ is), because m$*$ measures
irreduclbility. When we have a product of logics, we cannot expect increase of $irreduclbn\dot{v}$ . Instead
we have a logarithmic weighted mean:

$m^{\star}(L_{1}xL_{2})=\alpha m^{*}(L_{1})+\beta m^{*}(L_{2})$, where $\alpha+P=1$ and

$\alpha=\log_{1}(|L_{1}|)/[\log_{2}(|L_{1}|)+\log_{2}(|L_{2}|)]$

$6=\log_{1}(|L_{2}|)/[\log_{2}(|L_{1}|)+\log_{2}(|L_{2}|)].$

Both measures, measure of complexity $m(L)$ and measure of information integration $m^{\star}(L)aIe$

invariants ofall transformations whichpreserve the logic of information (isomorphisms $ofL_{f}$).
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There are many cases, when there is a high level of information integration (information logic is not
Boolean), but still we can define a generalized form of probabilistic measure. For those cases, we can
consider both types of the measure of information. An example can be found in quantum mechanical
infonnation systems.

Further question is, how to measure selective manifestation for information system whose logic does
not admit orthocomplementation, and therefore the concept of probabilistic measure does not make
sense.

5. Conclusion

The $n\epsilon$asures of conrplexity and of information integration give an example of
quantitative characteristics ofstructural prope ties of information We can fmd some analogy
of the relationship between of the concepts describing in a quantitative way selective
manifestation of information in the form of author’s alternative measure of information
$Inf(n, p)$ and the degree of determination $Inf^{*}(n, p)$, and for the structural manifestation,

between the nasure of complexity $m(L)$ and measure ofinfOrmmtion integration $m^{*}(L)$ .
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