NON-REGULAR SEMIGROUPS WHICH ARE AMALGAMATION BASES *

KUNITAKA SHOJI DEPARTMENT OF MATHEMATICS SHIMANE UNIVERSITY

In this paper, we study non-regular semigroups which are amalgamation basess for finite semigroups or for all semigroups.

1 Semigroup amalgamation bases

Definition. Let \mathcal{A} be the class of finite semigroups or the class of all semigroups. Let S, T, U be semigroups in \mathcal{A} such that U is a subsemigroup of S and T in common. Then a triple [S, T; U] is called an amalgam of semigroups S, T with U as a core in \mathcal{A} . An amalgam [S, T; U] of \mathcal{A} is called to be *weakly embedable* in \mathcal{A} if there exist a semigroup K belonging to \mathcal{A} and monomorphisms $\xi_1 : S \to K, \xi_1 : T \to K$ such that the restrictions to U of ξ_1 and ξ_2 are equal to each other (that is, $\xi_1(S) \cap \xi_2(T) \supseteq \xi_1(U)$). An amalgam [S, T; U] of \mathcal{A} is called to be *strongly embeddable* in \mathcal{A} if $\xi_1(S) \cap \xi_2(T) = \xi_1(U)$. A semigroup U in \mathcal{A} is strongly embeddable [resp. weak amalgamation base] if any amalgam with a core U in \mathcal{A} is strongly embeddable [resp. weakly embeddable] in \mathcal{A} .

We have the following results which will be used later.

Result 1[[4], Theorem 12]. Any finite semigroup U is an amalgamation base for finite semigroups if and only if U is a weak amalgamation base for finite semigroups [for all semigroup].

Result 2[[6], Theorem 1]. If a finite semigroup U is an amalgamation base for finite semigroups, then all \mathcal{J} -classes of U form a chain.

^{*}This is an absrtact and the paper will appear elsewhere.

2 Non-regular amalgamation bases for all semigroups

In the several papers [1], [4], [12] and etc., the study of regular amalgamation bases for all semigroupshas been made.

From now on we discuss non-regular amalgamation bases for all semigroups.

The Kimura's counter-example was stated in the second volume of the book [2].

Example. Let $U = \{u, v, w, 0\}$ be a null semigroup in which all products are equal to 0. Let $S_1 = U \cup \{a\}$ where $a \notin U$, au = ua = v, and all the other products in S_1 are set equal to z. Let $S_2 = U \cup \{b\}$ where $b \notin U$, bv = vb = w, and all other products in S_2 are set equal to 0. Then the amalgam $[S_1, S_2; U]$ is not embeddable in the class of all semigroups.

Actually, w = bv = b(ua) = (bu)a = 0a = 0 in any oversemigroup, a contradiction.

Thus we have

Theorem 1. Any null semigroups with at least 3 elements are not amalgamation bases for all semigroups

On the other hand, it was known that

Resut 3[[4], Corollary 26]. 2-element semigroups are amalgamation bases for all semigroups.

Result 4[Theorem 4.1, [4]]. Let S be a semigroup with 0 consisting of a group G of units and a nilpotent ideal N. Then S is an amalgamation base for all semigroups if and only if there exists $a \in N$ such that $N = Ga \cup Ga^2 \cup \cdots \cup Ga^n \cup \{0\}$ and Ga = aG

Definition. Let S be a comutative semigroup with only finitely many \mathcal{J} -classes, where \mathcal{J} denotes the the Green's J-relation on S.

Define a quasi-order $\geq_{\mathcal{J}}$ on S by $s \geq_{\mathcal{J}} t$ if and only if $Ss \supseteq St$.

$$s >_{\mathcal{J}} t$$
 if $S^1 s \supset S^1 t$

Let a, b be elements of S. Then we say that the pair a and b are \mathcal{J} -comparable if $a \geq_{\mathcal{J}} b$ or $b \geq_{\mathcal{J}} a$. Otherwise, a, b are \mathcal{J} -incomparable. Also, \mathcal{J} -incomparable elements a, b of Sare called *E*-distinct if there exists an idempotent $e \in S$ such that (i) either $a\mathcal{J}ea, b >_{\mathcal{J}} eb$ or (ii) $a >_{\mathcal{J}} ea, b\mathcal{J}eb$.

A subset A of S is called *E*-distinct if any pair of \mathcal{J} -incomparable elements of A are *E*-distinct.

Result 5[The main theorem, [10]]. Let S be a commutative semigroup with only finitely many \mathcal{J} -classes. Then S is E-distinct if and only if S is an amalgamation base for all semigroups.

Result 6[Corollary, [10]]. Let S be a commutative semigroup with only finitely many \mathcal{J} -classes. Then S is an amalgamation base for all semigroups if and only if all factor semigroups of S are an amalgamation base for all semigroups.

3 Non-regular amalgamation bases for finite semigroups

Result 7[Theorem 20, [4]]. Any finite cyclic semigroup is an amalgamation base for

semigroups and for finite semigroups

Theorem 2 Let S be a semigroup with 0 consisting of a group G of units and a nilpotent ideal N. Then S is an amalgamation base for finite semigroups if and only if there exists $a \in N$ such that $N = Ga \cup Ga^2 \cup \cdots \cup Ga^n \cup \{0\}$ and Ga = aG.

References

- S. Bulman-Fleming and K. McDowell. Absolutely flat semigroups. Pacific J. Math. 107(1983), 319-333.
- [2] A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Amer. Math. Soc., Math. Survey, No.7, Providence, R.I., Vol.I(1961); Vol.II(1967).
- [3] L. M. Gluskin, Elementary Generalized Groups Mat. Sb. 41(83)(1957), 23-36.
- [4] T. E. Hall, Representation extension and amalgamation for semigroups. Quart. J. Math. Oxford (2) 29(1978), 309-334.
- [5] T. E. Hall. *Finite inverse semigroups and amalgamations*. Semigroups and their applications, Reidel, 1987, pp. 51-56.
- [6] T. E. Hall and M.S. Putcha, The potential *J*-relation and amalgamation bases for finite semigroups, Proc. Amer. Math. Soc. 95(1985), 309-334.
- T. E. Hall and K. Shoji, Finite bands and amalgamation bases for finite semigroups, Communications in Algebra 30(2) (2002), 911-933.

- [9] Amalgamation bases for semigroups, Math. Japonicae 35(1990), 473-483.
- [10] Commutative semigroups which are semigroup amalgamation bases, J. Algebra, 238(2001), 1-50.
- [11] K. Shoji, A proof of Okniński and Putcha's theorem, Proc. of the Third Inter. Colloq. on Words, Languages and Combinatorics. Ed. by M. Ito &T Imaoka World Scientific, 2003, 420-427.
- K. Shoji, Regular semigroups which are amalgamation bases for finite semigroups, Algebra Colloquium 14(2007) 245-254.
- [13] B. M. Schein, A symmetric semigroup of transformations is covered by its inverse subsemigroups, Acta Math. Acad. Sc. Hungar. 22(1971), 163-171.