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ABSTRACT. This is a report on some recent joint work with Jon F. Carlson, which
appears in [CT4]. It is an expanded version of a talk given at the RIMS workshop
Cohomology of finite groups and related topics, February 18-20, 2015.

1. INTRODUCTION

Endo-trivial modules for a finite group $G$ over a field $k$ of prime characteristic $p$

play a significant role in modular representation theory. They have been classified
in case $G$ is a $p$-group [CT2, CT3] and various results have appeared since for some
specific families of groups [CHM, CMNI, CMN2, CMN3, CMTI, CMT2, CMT3,
LM2, Ma, MT, NR]. Another line of research is concerned with the classification of
all endo-trivial modules which are simple [Ro, LMS, LM1].

The abelian group $T(G)$ is finitely generated and its torsion-free part is essentially
known (see [CMT3] for details). The question remains of describing its torsion
subgroup, written $TT(G)$ . Let $S$ be a Sylow $p$-subgroup of $G$ , which we suppose
nontrivial. The subgroup

$K(G)=Ker\{{\rm Res}_{S}^{G}:T(G)arrow T(S)\}$

is easily seen to be finite and it is known to be equal to the whole torsion subgroup
$TT(G)$ in most cases. Specifically, this happens whenever $S$ is not cyclic, generalized
quaternion, or semi-dihedral $($because, $if we$ exclude these three cases, then $T(S)$ is
torsion-free by [CT3]). The excluded cases are treated in [CMT2], [Ka] and [MT].

The problem is now to describe $K(G)$ and this uses a new approach, introduced
by Balmer in [Ba]. He shows that $K(G)$ is isomorphic to the group $A(G)$ of all weak
homomorphisms $Garrow k^{\cross}$ (defined below in Section 3). One can then use $A(G)$

instead of $K(G)$ . Let $N$ $:=N_{G}(S)$ be the normalizer of $S$ . It is not hard to show
that $A(G)$ embeds via restriction into $A(N)$ and the problem is to describe its image.
Moreover, because $N$ has a nontrivial normal $p$-subgroup, it turns out that every
weak homomorphisms $Narrow k^{\cross}$ is actually an ordinary group homomorphism, so
that $A(N)=Hom(N, k^{*})$ , the abelian group of all one-dimensional representations
of $N.$

The main difficulty is to describ $(\backslash$ the image of the injective map

${\rm Res}_{N}^{G}$ : $A(G)arrow A(N)=Hom(N, k^{*})$ .

By duality of abelian groups, this image is of the form $Hom(N/J, k^{*})$ for some normal
subgroup $J$ such that $N/J$ is abelian and of order prime to $p$ . In other words, the
image is the dual group $(N/J)^{*}$ of the abelian group $N/J$. So the problem of
describing $K(G)$ comes down to the following specific question: What is $J$ ?

数理解析研究所講究録

第 1967巻 2015年 75-81 75



JACQUES TH\’EVENAZ

A system of subgroups $\{\rho^{i}(S)\}$ was introduced in [CMN3] (for solving the problem

when $G$ is a general linear group) and was further considered in [CT4] for an arbitrary

finite group $G$ (see Section 4 for the definition). We have a nested sequence of

subgroups
$S\subseteq\rho^{1}(S)\subseteq p^{2}(S)\subseteq\ldots\subseteq N=N_{G}(S)$ ,

and we let $\rho^{\infty}(S)$ be the limit of the system, namely the union of all $\rho^{i}(S)$ .

The following theorem was proved in [CT4] :

Theorem 1.1. With the notation above, $\rho^{x}(S)\subseteq J.$

The question of equality is open and is stated as a conjecture in [CT4] :

Conjecture 1.2. $J=\rho^{\infty}(S)$ .

Finally, the main theorem of [CT4] gives a positive answer in a special case:

Theorem 1.3. If a Sylow $p$ -subgroup $S$ of $G$ is abelian, then $J=p^{2}(S)=\rho^{\infty}(S)$ .

In other words, $K(G)$ is isomorphic to the dual group $(N_{G}(S)/p^{2}(S))^{*}$ of the abelian
group $N_{G}(S)/p^{2}(S)$ .

In view of the direct description of the subgroup $\rho^{2}(S)$ , this theorem completes the
classification of all torsion endo-trivial modules when a Sylow p–subgroup is abelian.

2. RESTRICTION OF ENDO-TRIVIAL MODULES

Let $k$ denote an algebraically closed field of prime characteristic $p$ and let $G$ be a
finite group. We assume that $G$ has order divisible by $p$ and we let $S$ be a Sylow
p–subgroup of $G$ . Recall that a $kG$-module $M$ is endo-trivial if its endomorphism

algebra $End_{k}(M)$ is isomorphic (as a $kG$-module) to the direct sum of the trivial
module $k$ and a projective $kG$-module. In other words, $M$ is endo-trivial if and
only if $Hom_{k}(\Lambda\ell, \Lambda C)\cong M^{\vee}\otimes M\cong k\oplus($proj) , where $M^{\vee}$ denotes the $k$-dual
of $M$ . Any endo-trivial module $M$ splits as the direct sum $M=M_{0}\oplus($proj) for
an indecomposable endo-trivial $kG$-module $M_{0}$ , which is unique up to isomorphism.
We let $T(G)$ be the set of equivalence classes of endo-trivial $kG$-modules for the
equivalence relation

$M\sim L\doteqdot\Rightarrow M_{0}\cong L_{0}.$

The tensor product induces an abelian group structure on the set $T(G)$ . The identity
element is the class of the trivial module, while the inverse of the class of a module
$\Lambda_{i}l$ is the class of the dual module $\Lambda_{i}l^{\vee}$ . By a theorem of Puig, the group $T(G)$ is
known to be a finitely generated abelian group.

A useful fact is the following.

Lemma 2.1. Let be a $kG$ -module.

(a) $M$ is endo-trivial if and only if $M\downarrow_{E}^{G}$ is endo-trivial for every elementary
abelian $p$ -subgroup $E$ of $G.$

(b) If $M$ satisfies the condition $\Lambda_{i}f\downarrow_{S}^{G}\cong k\oplus($proj) , where $S$ is a Sylow $p$ -subgroup

of $G$ , then $M$ is endo-trivial.
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The proof of (a) uses Chouinard’s theorem. It appears in Lemma 2.9 of [CT1]
for -groups, but the proof is the same for any finite group. Statement (b) follows
immediately from (a).

We now let $K(G)$ be the kernel of the restriction map ${\rm Res}_{S}^{G}$ : $T(G)arrow T(S)$ ,

where $S$ is a Sylow $p$-subgroup of $G$ . In other words, the class of an endo-trivial
$kG$-module $M$ belongs to $K(G)$ if and only if $M$ has trivial Sylow restriction, that is,
$1\ovalbox{\tt\small REJECT} I\downarrow_{S}^{G}\cong k\oplus($proj) . This implies in particular that, if $M$ is indecomposable, then
$M$ has vertex $S$ and trivial source. Note also that if a $kG$-module $M$ satisfies the
condition $\Lambda_{i}l\downarrow_{S}^{G}\cong k\oplus($proj) , then $M$ is necessarily endo-trivial by Lemma 2.1, and
its class lies in $K(G)$ .

Lemma 2.2. Let $K(G)$ be the kernel of the restriction map ${\rm Res}_{S}^{G}$ : $T(G)arrow T(S)$ .

(a) $K(G)$ is a finite subgroup of $T(G)$ .
(b) $K(G)$ is the entire torsion subgroup $TT(G)$ of $T(G)$ , provided $S$ is not cyclic,

generalized quaternion, or semi-dihedral.

This is proved in Lemma 2.3 of [CMTI]. The first part is easy and is due to the
fact that there are finitely many indecomposable $kG$-modules with trivial source.
The second statement is much deeper and depends on the fact that, by the main
result of [CT3], $T(S)$ is torsion-free if $S$ is not cyclic, generalized quaternion, or
semi-dihedral.

We now introduce some notation. For any finite group $H$ , we let $H’$ be the
smallest normal $subg_{T}oup$ of $H$ such that $H/H’$ is an abelian $p’$-group. In other
words $H’=[H, H]S$ is the subgroup of $H$ generated by the commutator subgroup
$[H, H]$ and by a Sylow $p$-subgroup $S$ of $H$ . Clearly, $H’$ is in the kernel of any group
homomorphism $Harrow k^{\cross}$ , where $k^{\cross}$ denotes the group of nonzero elements of $k$ . Since
$k$ contains all $p’$-roots of unity (because $k$ is algebraically closed by assumption), $H’$

is actually the intersection of the kernels of all group homomorphisms $Harrow k^{\cross}$ In
other words, $Hom(H, k^{\cross})\cong(H/H’)^{*}$ , the dual group of the abelian group $H/H’.$

The next result is a straightforward application of the Mackey formula. The
details appear in Lemma 2.6 of [MT].

Lemma 2.3. Suppose that a finite group $H$ has a nontrivial normal $p$ -subgroup. If
$M$ is an indecomposable $kH$ -module with trivial Sylow intersection (so that $M$ is
endo-trivial and its class is in $K(H)$ ), then $M$ has dimension one. In other words
$K(H)\cong Hom(H, k^{\cross})\cong(H/H’)^{*}$

Our next result is an easy application of the Green correspondence. For details,

see Proposition 2.6 in [CMNI].

Lemma 2.4. Let $S$ be a Sylow $p$ -subgroup of $G$ and let $N=N_{G}(S)$ .

(a) The restriction map ${\rm Res}_{N}^{G}$ : $T(G)arrow T(N)$ is injective, induced by the Green
correspondence.

(b) In particular, the restriction map ${\rm Res}_{N}^{G}$ : $K(G)arrow K(N)$ is injective.

By Lemma 2.3, we know that $K(N)$ consists of the classes of all one-dimensional
representations of $N$ . The main problem is to know which of them are in the image
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of the restriction map from $K(G)$ . In other words, given a one-dimensional kN-

module $U$ , we need to know when its Green correspondent $M$ is endo-trivial.

Definition 2.5. We define $J$ to be the intersection of the kernels of all the one-
dimensional $kN$ -modules $U$ such that the Green correspondent of $U$ is an endo-
trivial $kG$ -module. Thus $J$ is a subgroup of $N$ , which can also be characterized as
the intersection of the kernels of all the one-dimensional $kN$ -modules $U$ whose class

lies in the image of the restriction ${\rm Res}_{N}^{G}:T(G)arrow T(N)$ .

In other words, we obtain the following.

Lemma 2.6. The image of the restriction map ${\rm Res}_{N}^{G}$ : $K(G)arrow K(N)$ is equal to
$(N/J)^{*}\cong Hom(N/J, k^{\cross})$ , as a subgroup of $Hom(N, k^{\cross})\cong K(N)$ . In other words,
$K(G)\cong(N/J)^{*}\cong Hom(N/J, k^{\cross})$ .

We see that the problem of characterizing the group $K(G)$ is equivalent to the
question of finding the subgroup $J.$

3. WEAK HOMOMORPHISMS

In [Ba], Balmer provided a new characterization of the group $K(G)$ in terms of
the group of weak homomorphisms. As above, $S$ denotes a Sylow -subgroup of $G.$

Definition 3.1. A map $\chi$ : $Garrow k^{\cross}$ is called $a$ weak homomorphism if it satisfies
the following three conditions:

(a) If $s\in S$ , then $\chi(s)=1.$

(b) If $g\in G$ and $S\cap^{g}S=\{1\}$ , then $\chi(g)=1.$

(c) If $a,$ $b\in G$ and if $S\cap^{a}S\cap^{ab}S\neq\{1\}$ , then $\chi(ab)=\chi(a)\chi(b)$ .

The set $A(G)$ of all weak homomorphisms is an abelian group under the usual
product of maps.

Theorem 3.2. (Balmer [Ba]) The groups $K(G)$ and $A(G)$ are isomorphic.

Balmer’s isomorphism is explicit and is described in [Ba]. Things become easy
for a group $H$ having a nontrivial normal p–subgroup, thanks to the third condition
in Definition 3.1.

Lemma 3.3. Suppose that a finite group $H$ has a nontrivial normal $p$ -subgroup.
Then every weak homomorphism $\chi$ : $Harrow k^{\cross}$ is a group homomorphism.

Consequently, we obtain Balmer’s isomorphism in this special case:
$A(H)\cong Hom(H, k^{\cross})\cong(H/H’)^{*}\cong K(H)$ .

In view of Balmer’s isomorphism, Lemma 2.4 and Lemma 2.6 can now be restated.

Lemma 3.4. Let $S$ be a Sylow $p-\mathcal{S}$ubgroup of $G$ and let $N=N_{G}(S)$ .

(a) The restriction map ${\rm Res}_{N}^{G}:A(G)arrow A(N)$ is injective.
(b) The image of the restriction map ${\rm Res}_{N}^{G}$ : $A(G)arrow A(N)$ is equal to $(N/J)^{*}=$

$Hom(N/J, k^{\cross})$ , as a subgroup of $Hom(N, k^{\cross})=A(N)$ .
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It would be interesting to have a direct proof of (a), using only the definition of
weak homomorphisms. Note that we still face the problem of finding what is the
subgroup $J.$

4. A SYSTEM OF LOCAL SUBGROUPS

For any nontrivial subgroup $Q$ of a Sylow $p$-subgroup $S$ , we define a sequence of
subgroups $\{\rho^{i}(Q)|i\geq 1\}$ inductively as follows :

$\rho^{1}(Q):=N_{G}(Q)’$

As before, $N_{G}(Q)’$ is the product of the commutator subgroup of $N_{G}(Q)$ and a Sylow
$p\mapsto$-subgroup of $N_{G}(Q)$ . Note that $Q\subseteq\rho^{1}(Q)\subseteq N_{G}(Q)$ . For $i\geq 2$ , we let

$\rho^{i}(Q):=<N_{G}(Q)\cap\rho^{i-1}(R) \{1\}\neq R\subseteq S>,$

the subgroup generated by all the subgroups $N_{G}(Q)\cap\rho^{i-1}(R)$ , for all nontrivial
subgroups $R$ of $S$ . This contains $\rho^{i-1}(Q)$ , so we have a nested sequence of subgroups

$Q\subseteq\rho^{1}(Q)\subseteq\rho^{2}(Q)\subseteq p^{3}(Q)\subseteq\ldots\subseteq N_{G}(Q)$ .

Since $G$ is finite, the sequence eventually stabilizes and we let $p^{\infty}(Q)$ be the limit
subgroup of the sequence $\{\rho^{i}(Q)|i\geq 1\}$ , namely their union.

The following observation was made in [CMN3].

Proposition 4.1. Let $\chi$ : $Garrow k^{\cross}$ be a weak homomorphism. If $x\in p^{i}(Q)$ for some
$i\geq 1$ and for some nontrivial $\mathcal{S}$ubgroup Q $\subseteq S$ , then $\chi(x)=1.$

In the case that $i=1$ , the statement is a trivial consequence of Lemma 3.3 applied
to $H=N_{G}(Q)$ . Then the proposition is proved by induction (see Proposition 4.1
in [CT4] for details).

Applying this to the case of the Sylow $p$-subgroup $S$ , we now obtain the following
theorem about the subgroup $J$ defined in 2.5.

Theorem 4.2. $p^{\infty}(S)\subseteq J.$

Proof Recall that $J$ is the intersection of the kernels of all the one-dimensional kN-
modules $U$ such that the Green correspondent of $U$ is an endo-trivial $kG$-module. Let
$U$ be one of them and let be its Green correspondent. Then $M$ is endo-trivial
and $M\downarrow_{N}^{G}\cong U\oplus($proj) . In order to translate this information in terms of weak
homomorphisms, we let $\chi$ : $Garrow k^{\cross}$ be the weak homomorphism corresponding to
the class of $M$ under Balmer’s isomorphism $K(G)\cong A(G)$ . Then $\chi|_{N}$ : $Narrow k^{\cross}$

is a homomorphism (by Lemma 3.3) and this corresponds to the one-dimensional
$kN$-module $U$ under Balmer’s isomorphism $K(N)\cong Hom(N, k^{\cross})=A(N)$ . By
Proposition 4.1 above, $\chi$ vanishes on $p^{\infty}(S)$ and therefore

$\rho^{\infty}(S)\subseteq Ker(\chi|_{N})=Ker(U)$ .

This holds for every $U$ as above, so $\rho^{\infty}(S)$ is contained in the intersection of the
corresponding kernels, that is, $\rho^{\infty}(S)\subseteq J.$ $\square$
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Theorem 4.2 is essentially proved in [CT4], except that the result is stated in the
following equivalent form (see Theorem 4.3 in [CT4]).

Theorem 4.3. Suppose that $M$ is a $kG$ -module with trivial Sylow restriction, $i.e.$

$M\downarrow_{S}^{G}\cong k\oplus($proj) . Then $M\downarrow_{\rho^{\infty}(S)}^{G}\cong k\oplus($proj) .

Proof. Since $M\downarrow_{S}^{G}\cong k\oplus($proj) , the module must be endo-trivial, by Lemma 2.1.

Then we have $M\downarrow_{N}^{G}\cong U\oplus($proj) for some indecomposable endo-trivial $kN$-module $U.$

By Lemma 2.3, $U$ has dimension 1. By Theorem 4.2, $\rho^{\infty}(S)\subseteq Ker(U)$ and therefore
$U\downarrow_{\rho^{\infty}(S)}^{N}\cong k$ . It follows that

$M\downarrow_{\rho^{\infty}(S)}^{G}=M\downarrow_{N}^{G}\downarrow_{\rho^{\infty}(S)}^{N}\cong(U\oplus($proj) $)\cong k\prime-\dagger^{\backslash }$ (proj),

as required. $\square$

5. A CONJECTURE

We conjecture that the inclusion in Theorem 4.2 is an equality. This is Conjecture 5.5
in [CT4].

Conjecture 5.1. $J=\rho^{\infty}(S)$ .

Evidence for this conjecture is based on numerous examples (see Section 8 in [CT4]),

as well as on the following positive answer in the special case when $G$ has an abelian
Sylow p–subgroup.

Theorem 5.2. Suppose that a Sylow $p$ -subgroup $S$ of $G$ is abelian. Let $N=N_{G}(S)$ .

(a) The image of the restriction map ${\rm Res}_{N}^{G}$ : $A(G)arrow A(N)$ consists exactly of
all group homomorphisms $N_{G}(S)arrow k^{\cross}$ having $\rho^{2}(S)$ in their kernel.

(b) $K(G)\cong A(G)\cong(N_{G}(S)/p^{2}(S))^{*}$

(c) $J=\rho^{2}(S)=()^{\infty}(S)$ .

This theorem is proved in [CT4]. Note that (b) and (c) follow immediately

from (a), using Lemma 2.6 and Lemma 3.4. Thus the important part is the proof
of (a). Starting from a group homomorphism $N_{G}(S)arrow k^{\cross}$ having $\rho^{2}(S)$ in its kernel,
one has to extend it to a weak homomorphism $Garrow k^{\cross}$ Thanks to the assumption
that $S$ is abelian, this is made possible by using an explicit form of the fact that
$N_{G}(S)$ controls fusion (Burnside’s theorem). The property that $S$ is abelian is also
used in the fact that, for any subgroup $Q$ of $S$ , the group $S$ is contained in $N_{G}(Q)$ ,

allowing for a Frattini argument. We refer to [CT4] for more details.
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