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P-groups
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Abstract

Let BP be the p-complete classifying space of a metacyclic p-group P.
By using stable homotopy splitting of BP, we study the decomposition of
Heven(P; Z) /p and CH*(BP)/p.

1 Introduction

Let P be a p-group and BP be its p-completed classifying space of P. We study
the stable splitting and splitting of cohomology

(x) BP=X;V..VX,,
(xx) H*(P)=Z H*'(X))®..® H'(X:) (forx>0)

where X; are irreducible spaces in the stable homotopy category. Using the
answer of the Segal conjecture by Carlsson, the splitting (%) is given by only
using modular representation theory by Nishida [Ni], Benson-Feshbach [Be-Fe]
and Martino-Priddy [Ma-Pr|. These theorems do not use splittings of cohomology

In particular, Dietz and Dietz-Priddy [Di], [Di-Pr] gave the stable splitting (*)
for groups P with rank,(P) = 2 for p > 5. However it was not used splittings ()
of the cohomology H*(P), and the cohomologies H*(X;) were not given there.

In [Hi-Ya 1,2], we gives the cohomology of H*(X;) (and hence (xx)) for P =
(Z/p)? and P = p\*? the extraspecial p group of order p® and exponent p. Their
cohomology H*(X;) have very complicated but rich structures, in fact p}*? is a
p-Sylow subgroup of many interesting groups, e.g., GL3(Fp) and many simple
groups e.g. Jy for p = 3.

In this paper, we give the decomposition of

H*(P) = H*(P;Z)/(p,Y0)  (and H*(P)=H®*(P;Z)/p)

for metacyclic p-groups for odd primes p, while in most cases, H*(X;) are easily

got and seemed not to have so rich structure as p}*?, because they are not p-

Sylow subgroups of so interesting groups. Indeed, metacyclic p-groups P are



Swan groups, i.e. for all groups G which have a Sylow p-subgroup isomorphic to
P, we have the isomorphism

H*(G) = H*(P)Y for some W C Out(P).

However, we believe that it becomes quite clear the relations among splittings
of different types of metacyclic p-groups. (We compute the coarse splitting
of H*(X;) at first, and next more fine splitting H*(X}), in the case H*(P) =
H*(P")).

In the last section, we note the relation to the Chow ring CH*(BP)/p and
Heve™(P;Z)/p, and note that the Chow group of the direct summand X; is rep-
resented by some motive.

2 The double Burnside algebra and stable split-
ting

Let us fix an odd prime p and k = F,. For finite groups Gi, Gs, let Az(G1,G2)
be the double Burnside group defined by the Grothendieck group generated by
(G1, Go)-bisets. Each element @ in Az(G1,G2) is generated by elements [@, ¢] =
(G1 X(@,¢) G2) for some subgroup @ < G; and a homomorphism ¢ :  — Ga. In
this paper, we use the notation

Q,4]=9:G1>Q5G,.

For each element @ = [Q, ¢] € Az(G1, G2), we can define a map from H*(Ga; k)
to H*(Gl; k) by

z-d=z-[Q,¢9] = Tr81¢*(x) for x € H*(Gs; k).

When G; = Gs, the group Az(G1, G2) has the natural ring structure, and call
it the (integral) double Burnside algebra. In particular, for a finite group G, we
have an Az(G, G)-module structure on H*(G; k) (and H*(G;Z)/p.)

The following lemma is an easy consequence of Quillen’s theorem such that

the restriction map
H*(G;Z/p) — lim H*(V; Z/p)

is an F-isomorphism (i.e. the kernel and cokernel are nilpotent) where V' ranges
elementary abelian p-subgroups of G.

Lemma 2.1. Let VO be the nilpotent ideal in H*(G;k) (or H*(G;Z)/p). Then
VO itself is an Az(G, G)-module.

In this paper we consider, at first, the cohomology modulo nilpotents elements,
since it is not so complicated from the above Quillen’s theorem. Hence we write
it simply

H*(G) = H*(G;Z)/(p, V0).
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However we also compute H®"**(G;Z)/p in §4 below.

By the preceding lemma, we see that H*(G) has the Az(G, G)-module struc-
ture. (Here note that Az(G,G) acts on unstable cohomology.) Throughout this
paper, we assume that degree * > 0 (or we consider H*(—) as the reduced theory
H*(-)). (We consider H*(G) as an element in Ko(Mod(Az(G,G))).)

Let BG = BG, be the p-completion of the classifying space of G. Recall
that {BG, BG}, is the (p-completed) group generated by stable homotopy self
maps. It is well known from the Segal conjecture (Carlsson’s theorem) that this
group is isomorphic to the double Burnside group Az(G1, G2)" completed by the

augmentation ideal.
Since the transfer is represented as a stable homotopy map T'r, an element
® = [Q, ¢] € A(G1,G») is represented as a map ® € {BG;, BGz},

&:BG, 5 BQ 2 BG,.
(Of course, the action for z € H*(G2) is given by Trg1 ¢*(z) as stated.)
Let us write
A(G1,G2) = Az(G1,Go) ® k  (k=12Z/p).
Hereafter we consider the cases G; = P ; p-groups. Given a primitive idempotents
decomposition of the unity of A(P, P)
l=e +..4+¢€,,
we have an indecomposable stable splitting
BP= X;V..VX, witheBP=X,.

In this paper, an isomorphism X = Y for spaces means that it is a stable homo-
topy equivalence.
Recall that
M; = A(P, P)e;/(rad(A(P, P)e;)

is a simple A(P, P)-module where rad(—) is the Jacobson ideal. By Wedderburn’s
theorem, the above decomposition is also written as

BP = Vj(Vkak) = ijijl where m; = dzm(MJ)

for A(P, P)e;x/rad(A(P, P)ej;) = M;. Therefore the stable splitting of BP is
completely determined by the idempotent decomposition of the unity in the dou-
ble Burnside algebra A(P, P).

For a simple A(P, P)-module M, define a stable summand X (M) by

ey = Z €, X(M) = VMjkEMXjk =eyBP.
M;=M

Here X (M) is only defined in the stable homotopy category. (So strictly, the
cohomology ring H*(X(M)) is not defined.) However we define H*(X (M)) by

H*(X(M))=H*(P)-eyn (=e3H*(P) stabely)
where we think eps € A(P, P) (rather than ey € {BP, BP}).



Lemma 2.2. Given a simple A(P, P)-module M, there is a filtration of H*(X (M))
such that the associated graded ring gr H*(X(M)) is isomorphic to a sum of M,
i.e., (for x> 0)

grH*(X(M)) = & M(k), 0<ki<..<k, <.
where [ks] is the operation ascending degree k,.

From Benson-Feshbach [Be-Fe|] and Martino-Priddy [Ma-Pr], it is known that
each simple A(P, P)-module is written as

S(P,Q,V) for @< P, and V : simple k[Out(Q)] — module.

(In fact S(P,Q,V) is simple or zero. ) Thus we have the main theorem of stable
splitting of BP.

Theorem 2.3. (Benson-Feshbach [Be-Fe], Martino-Priddy [Ma-Pr]) There are
indecomposable stable spaces Xgpg,vy for S(P,Q,V) # 0 such that

BP = \/X(S(P, Q, V)) = V(dzmS(P, Q, V))Xs(p,Q,V).

3 Metacyclic groups for p > 3
In this section, we consider metacyclic p groups P for p > 3
0>Z/p™—>P—>Z/p" —0.
These groups are represented as
(x) P={(abla"" =1,0" =" [a,b] =a™) r#0mod(p).

It is known by Thomas [Th|, Huebuschmann [Hu] that H¢*"(P;Z) is generated
by Chern classes of complex representations. Let us write

{y =c(p), p:P— P/{a) — C*
v= Cpm—e(ﬂ), n= Indﬁ(ﬁ), §: H={a, bpm—£> — (a) = C

where p, £ are nonzero linear representations. Then H*"(P;Z) is generated by
Y, 1(m),Cal€), - cpmee(n) = v,
(Lemma 3.5 and the explanation just before this lemma in [Yal).) We can see
c1(n) =0,...,m2_1(7) =0 in H*(P) = H*(P;Z)/(p, V).

By using Quillen’s theorem and the fact that P has just one conjugacy class of
maximal abeian p-subgroups, we can prove
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Theorem 3.1. (Theorem 5.45 in [Yal]) For any metacyclic p-group P in ()
with p > 3, we have a ring isomorphism

H*(P) = k[y’ ’U], lvl = pm-—e.

We now consider the stable splitting.

(I) Non split cases. For a nonsplit metacyclic groups, it is proved that BP
itself is irreducible [Di].

(IT) Split cases with (¢, m,n) # (1,2,1). We consider a split metacyclic group.
it is written as

P=M{mn)=(abla =" =1,[a b =)
for m > £ > max(m —n, 1).
The outer automorphism is the semidirect product
Out(P) = (p — group) : Z/(p — 1).

The p-group acts trivially on H*(P), and j € Z/(p — 1) acts on a — &’ and
so acts on H*(P) as j* : v — jv. There are p — 1 simple Z/(p — 1)-modules
S; = k{v'}. We consider the decomposition by idempotens for Out(P). Let us
write Y; = eg, BP and

H;(P) = H*(S:) & (dim(5:))H*(Y;) C H*(P).
Hence we have the decomposition for Out(P)-idempotents
H*(Y;) = Hy(P) 2 k[y, V[{v*}, V =L

Here we used the notation such that A{a,b,...} means the A-free module gener-
ated by a,b, ....
We assume P # M(1,2,1). By Dietz, we have splitting

(x+) BP = VP2X, v VPIZL(1,i).

Here we write X; = eg(p p5,)BP identifying S; as the A(P, P) simple module (but
not the simple Out(P)-module).

The summand L(1, ) is defined as follows. Recall that H*({(b)) = k[y]. The
outer automorphism group is Out({b)) = (Z/p™)* and its simple k¥ modules are
S! = k{y‘} for 0 < i < p — 2. Hence we can decompose

B(b) = VEGL(L,3), H*(L(1,9) 2 k[Y|{y'} withY =y"".
Next we consider L(1.7) as a split summand in BP as follows. (Consider the
A(P, P)-simple module S(P, (b), S;).) Let ® € A(P, P) be the element defined by
the map ® : P — (b) C P which induced the isomorphism
H*(P)® = H* (VI L(1,%)) & kly].
Thus we can show (since k[y] is invariant under elements in Qut(P))

X i#0

*x %) Y; =
(k> %) {Xovv’;;gL(l,j) i=0.
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Theorem 3.2. Let P be a split metacyclic group with (£,m,n) # (1,2,1). Then

we have
iy o ) Rl VI{V' i#0
H (%) = {k[y,V]{V} i=0.

Proof. For i # 0, we have H}(P) = H*(Y;) ® H*(X;). Let us use the notation
that A© B = C means A = B® C. Then we see

H*(Xo) = H*(Yo) © H*(VPZ2L(L,5))

kly, V]okly] = kly, VI{V'}.
O
(I1I) Split metacycle group with (¢,m,n) = (1,2,1).
This case P = p'*? and its cohomology is the same as (II). But the splitting
is given
BP = VP2 X,V VE2L(2,4) V VEZEL(L,4).

Detailed explanation for L(2,%) see [M-P],[Hi-Yal]. Let H = (b,a”) the maximal
elementary abelian subgroup. The space L(2,1) is the transfer (T'r : BH — BG)
image of the same named summand of BH. By using the double coset formula

p—1
Trg(W e =Y (u+ig)P™' = -
=0

taking the generator w in H*((b, a?)) = k[y, u].
The group P has just one conjugacy class H of the maximal abelian p-groups.
Hence by Quillen’s theorem, we have

Tri@) = -~ in H*(P) = H*(P;Z)/(p, V0).
We consider an element ® € A(P, P) defined by ®: P> H C P. Then we see
Im(TrEH*(H)) D H*(P)® = H* (VP2 L(2,1)).
Thus we have the isomorphism

_[xivLed  i#0
l/i = ) . .
XoVL(2,0)VVPEL(1,5)  i=0.

To compute cohomology of irreducible components X; and L(2, j), we recall
the Dickson algebra

DA = kly,u]?"*®?) >~ k[Dy, D;] with Dy =Y?+V, Dy =YV.

We also write
CA =k[Y, V] =2 DA{l1,Y,..., Y7},
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CB = k[Y, D;) @ DA{1,Y, ..., Y71},
Hence CA = DA @ CB{Y'}. Then it is known (see [Hi-Yal] for details)

{CB{ng} i#0

IR

H(L(2,9) CB{YD,} i=0.

Theorem 3.3. Let P = M(1,2,1) = p'*2. Then we have

H*(X) ~ CA{I, . :l)i, ...,yp_z}{’vi} fav) ]D)A{d%} i>0
Y CA{y,, P H{V}ODA i=0.

Proof. Let i # 0. We see
H*(Y) = Ky, VI{v'} & CA{Ly, .., ;" 2H{v').
The cohomology of the summand X; is
H*(X;) = H*(Y;) © H*(L(2,7))

~ (DA @ CB{Y }){v*}{1, ...,47"2} © CB{Y d:}.

Here v'y* = d} we have the isomorphism in the theorem for i # 0.
Next we consider in the case i = 0. We have

H*(Xo) = H*(Yo) © H*(V;L(1, 7)) © H*(L(2,0))
~ CA{1,y,...y" 2 H{V} © CB{Y D,} = CA{y,...y* *}{V} & B

where
B =CA{V}oCB{YD,} = CA¢c H*(L(1,0)) © H*(L(2,0)).
We can see B = DA by Lemma 3.4 below. O

Lemma 3.4. Let M(2) = L(2,0)V L(1,0) (as the usual notation of the homotopy
theory). Then we have

H*(M(2))=CB{Y}, CA=DA @H*(M(2)).
Proof. We can compute
H*(M(2)) = k[Y] © CB{Y D;} = k[Y] @ k[Y, Do]{Y Dy}

= (k[Y] @ kY, DoJ{D:}){Y} = CB{Y} (assumed * > 0).
Since CA = DA @ CB{Y}, we have the last isomorphism in this lemma. O
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4 Nilpotent elements
Let us write H***(X;Z)/p by simply H®(X) so that
H®(G) = H*(G) ® N(G)

where N(G) is the nilpotent ideal in H**(G).
Since BP is irreducible in nonsplit cases, we only consider in split cases,

P =M(,m,n)=(a,bla”" =t =1,[a,b] = a*)

for m > ¢ > maz(m — n,1).
(I) Split metacyclic groups with £ > m — n.
By Diethelm [Di], its mod p-cohomology is

H*(P;Z[p) = kly,ul @ A(z,2) |yl =lul=2, |z|=|z| =1

Of course all elements in H*(P;Z) are (higher) p-torsion. The additive struc-
ture of H*(P;Z)/p is decided by that of H*(P;Z/p) by the universal coefficient
theorem. Hence we have additively (but not as rings)

H*(P;Z)/p= H*(Z/p x Z/p; Z) = kly, u){1, B(z2) = yz — uz}.

Since H*(P) is multiplicatively generated by y and v with |v| > 2p from
Theorem 4.1, the element v is not integral class (i.e. u & Im(p) for p : H*(P;Z) —
H*(P;Z/p)). Therefore zz is an integral class since

H*"(P; Z[p) = kly, ul{1, zz}.

In H*(P;Z/p), the elements y?, yzz are integral but u? is not. Note that

dim(H*(P;Z)/p) = 3 and so zzu must be integral. Inductively, we see that
T1 =Tz, Ty = T2U, ..., Tym-t-1 = zzuP" 2

are integral classes.
The element u € H?(P;Z/p) is defined [Dim] using the spectral sequence

Ey* = H*(P/{a); H*((a); Z/p)) => H*(P; Z/p).

In fact u = [u/] € E%? identifying H%((a);Z/2) = k{u'}. Hence u|(a) = «’. On
the other hand v|(a) = (v/)""" because v = cym—¢(1) and the total Chern class is

Y amlie) = (L +u)" =14 @)

Therefore we see v = w*" " mod(y,xz) in H*(P;Z/p). Thus we get

Theorem 4.1. Let P be a split metacylic group M (€, m,n) with
£ > m —n. Then we have

H®(P) = kly,v{1,21, ..., Tym-e_1} with z;x; =0,
that is N(P) = kly, v|{z1, ..., xym-t_1 }.
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These z; are also defined by Chern classes (from the arguments just before
Theorem 4.1), and as Out(P) modules, z; = S; when ¢ = j mod(p—1). Therefore
we have

Corollary 4.2. Let P be a split metacylic group M (€, m,n)
with £ > m — n. Then

H®(X;) = H*(X;) @ kly, VI{v"zs|r + s =1 mod(p — 1)}
where 1 < s < p™t — 1.

(IT) Split metacyclic groups P = M (¢, m,n) with £ =m — n.
By also Diethelm, its mod p-cohomology is

H*(P; Z/p) = k[y) UI] ® A(al? "-7ap—1)b>w)/(a’iaj =04y = W = 0)
where |a;| =2i — 1, |b| = 1, |y| = 2,|w| =2p — 1, |v'| = 2p. So we see
H*(P;Z/p)/V0 = k[y,v'].

Note that additively H*(P;Z)/p & H*(p**? Z)/p, which is well known. In par-
ticular, we get additively

H®(P) = (k[y] ® k{z1, ..., zp-1})  k[v] (with z; = a;b)

> (kly] ® k{z1, .., Tp-1}) ® k[}]{1, 7/, ..., @)P" "1},
Therefore H*’(P) is additively isomorphic to
H*(P) 2 &;k[v}{a:b(v')'} & @;klv, y{ (v}

where 1 <i<p-1and 0 < j < p™ %1 —1. Here a;b(v')’ is nilpotent and hence
integral class and let z;,.; = a;b(v')?. The element (v') is not nilpotent and we
can take as the integral class wb of dimension 2p. Let us write z,; = wb(v')’~!.
Thus we have

Theorem 4.3. Let P be a split metacylic group M(¢,m,n) with
£=m—n. Then

H®(P) # kly, v] ® kly, vl{z:|¢ = 0 mod(p)} ® kfv]{z:|é # 0 mod(p)}

where 1 ranges 1 <1 < p™~% — 1. Here the multiplications are given by z;z; =0,
yzx = 0 for k # 0 mod(p).

Hence we have

Corollary 4.4. Let P = M(¢,m,n) for { =m —n. Then
H®(X;) = H*(X;) ® kly, Vl{v"z;5|s = 0 mod(p), r + s =i mod(p — 1)}
®k[V]{v z4|s # 0 mod(p), T+ s =1 mod(p — 1)}.



Let CH*(BG) be the Chow ring of the classifying space BG (see §5 below for
the definition). The following theorem is proved by Totaro, with the assumption
p > 5 but without the assumption of transferred Euler classes (since it holds
when p > 5).

Theorem 4.5. (Theorem 14.8 in [To2]) Suppose rank,P < 2 and P has a faithful
complex representation of the form W @& X where dim(W) < p and X is a sum
of 1 dimensional representation. Moreover H®(P) is genertated by transferred
Euler classes. Then we have CH*(P)/p & H®(P).

Proof. (See page 179-180 in [To2].) First note the cycle map is surjective, since
H®(P) is generated by transfferd Euler classes. Using the Riemann-Roch theo-
rem without denominators, we can show

CH*(BP)/p= H*(P;Z)/p for * < p.

By the dimensional conditions of representations W & X and Theorem 12.7 in
[To2], we see the following map

CH*(BP)/p = [[ CH*(BV) ®2,, CHS*"(BCp(V'))

- H H*(V;Z/p) ®z/, H**D(C(V); Z/p)
v

is also injective. Here V ranges elementary abelian p-subgroups of P and Cp(V) is
the centralizer group of V' in P. So we see that the cycle map is also injective. [

Therefore we have

Corollary 4.6. Let P be the metacycle group M (¢, m,n) with m — £ = 1. Then
CH*(BP)/p = H*(BG).

Totaro computed CH*(BP)/p for split metacyclic groups with m — £ =1 in
13.12 in [To]. When P is the extraspecial p-groups of order p3, the above result
is first proved in [Ya2].

For a cohomology theory h*(—), define the A*(—)-theory toplogical nilpotence
degree do(h*(BG)) to be the least nonnegative integer d such that the map

W(BG)/p — [ ] h*(BG) ® h<4(BCa(V))/p

is injective. Note that do(H*(BG;Z)) < do(H*(BG;Z/p)).

‘Totarto computed in the many cases of groups P with rank,P = 2. In
particular, if P is a split metacyclic p-group for p > 3, then do(H*(BP;Z/p)) = 2
and do(CH*(BP)) = 1 when m — £ = 1. Hence do(H*(P;Z)) = 2 for these split
metacyclic groups P (for p > 3).

This fact also show easily from Theorem 8.1 and 8.2. Consider the restriction
map

H®(P) —» H®(V) ® H*(P) (whereV = (a*" ') C Z(P) : center)

91
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induced the product map V x P — P. Then the element defined in Theorem 8.1,
8.3

c; =zzu’t — Za:zui QU Tl =w @z, #£0 € HY(V) ® HX(P)

for £ > m—n. For £ = m—n and n = 1, we also see that the nilpotent element z;
maps to ab® w~! (or wb® /P! for j = 0 mod(p)) in H*(V) ® H*(P). (From
the proof of Theorem 2 in [Dim], we see w|V = zuf™1.)

5 Motives and stable splitting

For a smooth projective algebraic variety X over C, let CH*(X) be the Chow
ring generated by algebraic cycles of codimension * modulo rational equivalence.
There is a natural (cycle) map

cl: CH*(X) = H*(X(C); Z).

where X (C) is the complex manifold of C-rational points of X.

Let V;, be a G — C—vector space such that G acts freely on V,, — S,, with
codimy, S, = n. Then it is known that (V, — S,,)/G is a smooth quasi-projective
algebraic variety. Then Totaro define the Chow ring of BG ([Tol}) by

CH*(BG) = limnseoCH* (Vs — S1)/G).

(Note that H*(G,Z) = limy oo H*((Va — Sn)/G) also.) Moreover we can approx-
imate P>® x BG by smooth projective varieties from Godeaux-Serre arguments
([To1)).

Let P be a p— group. By the Segal conjecture, the p-complete automorphism
{BP, BP} of stable homotopy groups is isomoprphic to A(P, P)z,, which is gen-
erated by transfers and map induced from homomorphisms. Since CH*(BP)
also has the transfer map, we see CH*(BP) is an A(P, P)-module. For an
A(P, P)-simple module S, recall eg is the corresponding idempotent element and
X5 = esBP the irreducible stable homotopy summand. Let us define

CH*(Xs) = esCH*(BP)
so that the following diagram commutes.

CH*(BP)y —2— H¥(BP;Zy,)

! l

CH*(Xs)p —— H>(Xs;Zp)-

For smooth schemes X.Y over a field K, let Cor(X,Y) be the group of fi-
nite correspondences from X to Y (which is a Z,-module on the set of closed



subvarieties of X x x Y which are finite and surjective over some connected com-
ponent of X. Let Cor(K,Z,) be the category of smooth schemes whose groups
of morphisms Hom(X,Y) = Cor(X,Y). Voevodsky constructs the triangurated
categiry DM = DM (K, Z,) which contains the category Cor(K,Z,) (and limit
of objects in Cor(K,Z,)).

Theorem 5.1. Let S be a simple A(P, P)-module. Then there is a motive Mg €
DM(C,Z,) such that

CH*(Ms) = CH*(Xs) = esCH*(BP).
Remark. Of course M is (in general) not irreducible, while X is irreducible.

The category Chow®’/ (K, Z,) of (effective) pure Chow motives is defined fol-
lows. An object is a pair (X,p) where X is a projective smooth variety over
K and p is a projector, i.e. p € Mor(X,X) with p> = p. Here a morphism
f € Mor(X,Y) is defined as an element f € CH4™Y)(X x Y), . We say
that each M = (X, p) is a (pure) motive and define the Chow ring CH*(M) =
p*CH*(X), which is a direct summand of CH*(X). We we identify that the mo-
tive M(X) of X means (X, id.). (The category DM (K, Z,) contains the category
Chow* (K, Z,).)

It is known that we can approximate P> x BP by smooth projective varieties
from Godeaux-Serre arguments ([Tol]). Hence we can get the following lemma

since
CH*(X xP*°) =2 CH*(X)[y] ly|=1

Lemma 5.2. Let S be a simple A(P, P)-module. There are pure motives Mg(i) €
Chow®!!(C,Z,) such that

limp e CH*(Ms(3)) = CH*(Xs)[y], deg(y) =1.

Corollary 5.3. Let P be a split metacycle p-group M (¢, m,n) with m — £ = 1.
Then for each simple A(P, P)-module S, there is a motive Mg € DM(C, Z,) with

CH*(Ms)/p = H®(Xs) = H"(X; Z) /p.
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