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1. INTRODUCTION

Let $p$ be a prime number, $G$ a finite group, and $k$ an algebraically closed field of
characteristic $p$ . For a finite dimensional $kG$-module $M$ and a p–subgroup $Q$ of $G$ , we
denote by $M(Q)$ the Brauer quotient of $M$ with respect to $Q$ . The Brauer quotient $M(Q)$

is naturally a $kN_{G}(Q)$ -module. A $kG$-module $M$ is said to be Brauer indecomposable if
$M(Q)$ is indecomposable or zero as a $kQC_{G}(Q)$-module for any $p$-subgroup $Q$ of $G$ ([1]).
Brauer indecomposability of p–permutation modules is important for constructing stable
equivalences of Morita type between blocks of finite groups (see [2]).

In [1], a relationship between Brauer indecomposability of $p$-permutation modules and
saturated fusion systems was given. For a p–subgroup $P$ of $G$ , we denote by $\mathcal{F}_{P}(G)$ the
fusion system of $G$ over $P$ . One of the main result in [1] is the following.

Theorem 1 ([1, Theorem 1.1]). Let $P$ be a $p$-subgroup of $G$ and $M$ an indecomposable
$p$ -permutation $kG$ -module with vertex P. If $M$ is Brauer indecomposable, then $\mathcal{F}_{P}(G)$ is
a saturated fusion system.

In the special case that $P$ is abelian and $M$ is the Scott $kG$-module $S(G, P)$ , the
converse of the above theorem holds.

Theorem 2 ([1, Theorem 1.2]). Let $P$ be an abelian $p$ -subgroup of G. If $\mathcal{F}_{P}(G)$ is
saturated, then $S(G, P)$ is Brauer indecomposable.

In general, the above theorem does not hold for non-abelian $P$ . However, there are
some cases in which the Scott $kG$-module $S(G, P)$ is Brauer indecomposable, even if $P$ is
not necessarily abelian.

We study the condition that $S(G, P)$ to be Brauer indecomposable where $P$ is not
necessarily abelian. The following result gives an equivalent condition for Scott kG-
module with vertex $P$ to be Brauer indecomposable.

Theorem 3. Let $G$ be a finite group and $P$ a $p$ -subgroup ofG. Suppose that $M=S(G, P)$
and that $\mathcal{F}_{P}(G)$ is saturated. Then the following are equivalent.

(i) $M$ is Brauer indecomposable.

(ii) For each fully normalized subgroup $Q$ of $P$ , the module ${\rm Res}_{QC_{G}(Q)}^{N_{G}(Q)}S(N_{G}(Q), N_{P}(Q))$

is indecomposable.

If these conditions are satisfied, then $M(Q)\cong S(N_{G}(Q), N_{P}(Q))$ for each fully normalized
subgroup $Q\leq P.$
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The following theorem shows that ${\rm Res}_{QC_{G}(Q)}^{N_{G}(Q)}S(N_{G}(Q), N_{P}(Q))$ is indecomposable if $Q$

satisfies some conditions.

Theorem 4. Let $G$ be a finite group, $P$ a $p$-subgroup of $G$ and $Q$ a fully normalized

subgroup of P. Suppose that $\mathcal{F}_{P}(G)$ is saturated. Moreover, we assume that there is a

subgroup $H_{Q}$ of $N_{G}(Q)$ satisfying following two conditions:

(i) $N_{P}(Q)\in Sy_{Y}l(H_{Q})$

(ii) $|N_{G}(Q):H_{Q}|=p^{a}(a\geq 0)$

Then ${\rm Res}_{QC_{G}(Q)}^{N_{G}(Q)}S(N_{G}(Q), N_{P}(Q))$ is indecomposable.

The following is a consequence of above two theorems.

Corollary 5. Let $G$ be a finite group and $P$ a $p$ -subgroup of G. Suppose that $\mathcal{F}_{P}(G)$ is

saturated. If for every fully normalized subgroup $Q$ of $P$ there is a subgroup $H_{Q}$ of $N_{G}(Q)$

satisfies the conditions of 4, then $S(G, P)$ is Brauer indecomposable.

Throughout this article, we denote by $L \bigcap_{G}H$ the set $\{^{g}L\cap H|g\in G$} for subgroups
$L$ and $K$ of $G.$

2. PRELIMINARIES

2.1. Scott modules. First, We recall the definition of Scott modules and some of its
properties:

Definition 6. For a subgroup $H$ of $G$ , the Scott $kG$-module $S(G, H)$ with respect to $H$

is the unique indecomposable summand of $Ind_{H}^{G}k_{H}$ that contains the trivial $kG$-module.

If $P$ is a Sylow p–subgroup of $H$ , then $S(G, H)$ is isomorphic to $S(G, P)$ . By definition,

the Scott $kG$-module $S(G, P)$ is a $p$-permutation $kG$-module.
By Green’s indecomposability criterion, the following result holds.

Lemma 7. Let $H$ be a subgroup of $G$ such that $|G$ : $H|=p^{a}$ (for some $a\geq 0$). Then
$Ind_{H}^{G}k_{H}$ is indecomposable. In particular, we have that

$S(G, H)\cong Ind_{H}^{G}.$

Hence, for $p\overline{-}$subgroup P of $G$ , if there is a subgroup $H$ of $G$ such that $P$ is a Sylow
p–subgroup of $H$ and $|G:H|=p^{a}$ , then we have that

$S(G, P)\cong Ind_{H}^{G}k_{H}.$

The following theorem gives us information of restrictions of Scott modules.

Theorem 8 ([3, Theorem 1.7]). Let $H$ be a $\mathcal{S}$ubgroup of $G$ and $P$ a $p$ -subgroup of G. If
$Q$ is a maximal element of $P \bigcap_{G}H$ , then $S(H, Q)$ is a direct summand of ${\rm Res}_{H}^{G}S(G, P)$ .

2.2. Brauer quotients. Let $M$ be a $kG$-module and $H$ a subgroup of $G$ . Let $M^{H}$ be
the set of H-fixed elements in $M$ . For subgroups $L$ of $H$ , we denote by $Tr_{H}^{G}$ the trace map
$Tr_{L}^{H}:M^{L}arrow M^{H}$ . Brauer quotients are defined as follows.
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Definition 9. Let $M$ be a $kG$-module. For a -subgroup $Q$ of $G$ , the Brauer quotient of
$M$ with respect to $Q$ is the $k$-vector space

$M(Q):=M^{Q}/( \sum_{R<Q}R_{R}^{Q}(M^{R}))$
.

This $k$-vector space has a natural structure of $kN_{G}(Q)$-module.

Proposition 10. Let $P$ be a $p$ -subgroup of $G$ and $M=S(G, P)$ . Then $M(P)\cong$

$S(N_{G}(P), P)$ .

Proposition 11. Let $M$ be an indecomposable $p$ -permutation $kG$ -module with vertex $P.$

Let $Q$ be a $p$ -subgroup of G. Then $Q\leq c^{P}$ if and only if $M(Q)\neq 0.$

2.3. Fusion systems. For a p–subgroup $P$ of $G$ , the fusion system $\mathcal{F}_{P}(G)$ of $G$ over $P$ is
the category whose objects are the subgroups of $P$ , and whose morphisms are the group
homomorphisms induced by conjugation in $G.$

Definition 12. Let $P$ be a p–subgroup of $G$

(i) A subgroup $Q$ of $P$ is said to be fully normalized in $\mathcal{F}_{P}(G)$ if $|N_{P}(^{x}Q$ ) $|\leq|N_{P}(Q)|$

for all $x\in G$ such that $xQ\leq P.$

(ii) A subgroup $Q$ of $P$ is said to be fully automized in $\mathcal{F}_{P}(G)$ if $p(|N_{G}(Q)$ :
$N_{P}(Q)C_{G}(Q)|.$

(iii) A subgroup $Q$ of $P$ is said to be receptive in $\mathcal{F}_{P}(G)$ if it has the following property:
for each $R\leq P$ and $\varphi\in Iso_{\mathcal{F}_{P}(G)}(R, Q)$ , if we set

$N_{\varphi}:=\{9\in N_{P}(Q)|\exists h\in N_{P}(R), c_{g}o\varphi=\varphi\circ c_{h}\},$

then there is $\overline{\varphi}\in Hom_{\mathcal{F}_{P}(G)}(N_{\varphi}, P)$ such that $\overline{\varphi}|_{R}=\varphi.$

Saturated fusion systems are defined as follows.

Definition 13. Let $P$ be a $prightarrow$-subgroup of $G$ . The fusion system $\prime_{P}-(G)$ is saturated if
the following two conditions are satisfied:

(i) $P$ is fully normalized in $\mathcal{F}_{P}(G)$ .
(ii) For each subgroup $Q$ of $P$ , if $Q$ is fully normalized in $\mathcal{F}_{P}(G)$ , then $Q$ is receptive

in $\mathcal{F}_{P}(G)$ .

For example, if $P$ is a Sylow p–subgroup of $G$ , then $\mathcal{F}_{P}(G)$ is saturated.

3. SKETCH OF PROOF

In this section, let $P$ be a p–subgroup of $G$ and $M$ the Scott module $S(G, P)$ .

Lemma 14. If $Q\leq P$ is fully normalized in $\mathcal{F}_{P}(G)$ , then $N_{P}(Q)$ is a maximal element
of $P \bigcap_{G}N_{G}(Q)$ .

By above lemma, we can show that $S(N_{G}(Q), N_{P}(Q))$ is a direct summand of $M(Q)$

for each fully normalized subgroup $Q$ of $P$ . Therefore, we have that Theorem 3 (i) implies
3 (ii).

Assume that Theorem 3 (ii) holds. We prove that ${\rm Res}_{QC_{G}(Q)}^{N_{G}(Q)}(M(Q))$ is indecomposable
for each $Q\leq P$ by induction on $|P$ : $Q|$ . Without loss of generality, we can assume that
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$Q$ is fully normalized. If $M(Q)$ is decomposable, then by the following lemma, we can

show that there is a subgroup $R$ such that $Q<R\leq P$ and ${\rm Res}_{RC_{G}(R)}^{N_{G}(R)}$ is decomposable,

this contradicts the induction hypothesis.

Lemma 15. Suppose that a subgroup $Q$ of $P$ is fully automized and receptive. Then for
any $g\in G$ such that $Q\leq gP$ , we have that $N_{gp}(Q)\leq N(Q)$ .

Hence, $M(Q)$ is indecomposable, and isomorphic to $S(N_{G}(Q), N_{P}(Q))$ . Consequently,

Theorem 3 (ii) implies 3 (i).
Theorem 4 is proved by using properties of Scott modules and the following lemma.

Lemma 16. If $Q$ is fully automized subgroup of $P$ , and there is a subgroup $H_{Q}\leq N_{G}(Q)$

containing $N_{P}(Q)$ such that $|N_{G}(Q):H_{Q}|=p^{a}$ , then $C_{G}(Q)H_{Q}=N_{G}(Q)$ .

4. EXAMPLE

We set $p=2$ and

$G :=\langle a, x, y|a^{4}=x^{2}=e, a^{2}=y^{2},$

$xax=a^{-1}, ay=ya, xy=yx\rangle,$

$P:=\langle a, xy\rangle.$

Then $G$ is a finite group of order 16, and $P$ is isomorphic to the quaternion group of order
8. Hence, $P$ is a non-abelian p–subgroup of $G$ . One can easily show that $G$ and $P$ satisfy
the hypothesis of the Corollary 5. Therefore, $S(G, P)$ is Brauer indecomposable.

In particular, if $G$ is a p–group and $\mathcal{F}_{P}(G)$ is saturated for a p–subgroup $P$ of $G,$

then $G$ and $P$ satisfy the hypothesis of the Corollary 5, and hence $S(G, P)$ is Brauer
indecomposable.
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