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Throughout of this report we let

$\bullet$
$k$ be an algebraically closed field of characteristic $p>0$

$\bullet$ $G$ a finite group of order divisible by $p$

$\bullet$ $B$ a block ideal of $kG$ with defect group $D.$

1 Source algebras of block algebras

Let $X$ be a source module of $B:X$ is an indecomposable $k[G\cross D^{op}]$ -direct summand of $B$ with

vertex $\Delta(D)$ .

Let $A=X^{*}\otimes_{B}X$ , which is called a source algebra of $B.$

Theorem 1.1 (Puig [7]). $A$ and $B$ are Morita equivalent.

Problem 1. To know module structure of $A=X^{*}\otimes_{B}X.$

Because $A$ is a direct summand of $kG$ as $(kD, kD)$-bimodules, we have

$kDAkD=kDX^{*}\otimes_{B}X_{kD}\simeq$ direct sum of some $k[DgD]s.$

$\bullet$ Which $k[DgD]$ appears in the decomposition above?
$\bullet$ How many times does $k[DgD]$ occur?

Let $b_{D}$ is a unique block of $kDC_{G}(D)$ with $b_{D}X(D)\neq 0$ , where X (D) is the Brauer construction.

Puig [7] showed that the direct summands generated by elements in the inertia group $N_{G}(D, b_{D})$

are well understood.

Theorem 1.2 (Puig [7]).
$\mathfrak{g})_{\simeq}(\bigoplus_{gDC_{G}(D)\in N_{G}(D,b_{D})/DC_{G}(D)}k[Dg])\oplus N,$

where $N$ is a direct sum of$k[DxD]s$ with $x\in G\backslash N_{G}(D)$ .
(2) No two of$k[Dg]s,$ $gDC_{G}(D)\in N_{G}(D, b_{D})/DC_{G}(D)$ , are isomorphic.

However we have had few knowledge on the direct summand $N$ above, which is generated by

elements outside the $N_{G}(D, b_{D})$ ; among the the following two facts are important.
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Proposition 1.3 (Linckelmann, [4]). Let $Q,$ $R\leq D$ be isomorphic by $\varphi$ : $Rarrow Q.$ $If_{\varphi}(kQ)$ is

isomorphic to a direct summand of $A$, where $\varphi(kQ)$ is considered as $a(kR, kQ)$ -bimodule via $\varphi,$

then $\varphi$ induces a morphism $(R, b_{R})arrow(Q, b_{R})$ in $\mathscr{F}_{(D,b_{D})}(B)$ . The converse holds ifmoreover

$C_{D}(Q)$ is a defect group of $b_{Q}.$

Proposition 1.4 (Kulshammer Okuyama Watanabe [3]). If $k[DgD]$ is isomorphic to a direct

summand of $A$ , then, being $P=D^{g}\cap D$ and $Q=D\cap gD$ , we have

$(Q, b_{Q})\subseteq g(D, b_{D})$ .

In particular

$g(P, b_{P})=(Q, b_{Q})\subseteq(D, b_{D})$ .

Here we add two theorems.

Theorem 1.5 (Okuyama-Sasaki [6]). Let $(Q, b_{Q})\leq(D, b_{D})$ . Assume that $(Q, b_{Q})$ is an essential
$B$ -subpair. Then $N_{G}(Q, b_{Q})$ has a proper subgroup $M\geq N_{D}(Q)C_{G}(Q)$ such that $M/QC_{G}(Q)$

is a strongly $p$ -embedded subgroup of $N_{G}(Q, b_{Q})/QC_{G}(Q)$ .

Let $x\in N_{G}(Q, b_{Q})\backslash M$ . Then

(1) $D^{x}\cap D=Q,$

(2) the $(kD, kD)$ -bimodule $k[DxD]$ appears in a direct sum decomposition of $A$ into indecom-

posable $(kD, kD)$ -bimodules with multiplicity congruent to 1 modulo $p.$

We incIude here the very first step of the proof of the theorem. Since $x\in N_{G}(Q, b_{Q})\backslash$

$M$ and $M/QC_{G}(Q)$ is strongly $p$ -embedded, we see $(N_{D}(Q)\cap^{X}N_{D}(Q))C_{G}(Q)/QC_{G}(Q)\leq$

$(M\cap^{X}M)/QC_{G}(Q)$ , which is a $p’$ -group; namely $N_{D}(Q)\cap^{X}N_{D}(Q)\leq C_{D}(Q)\leq Q$ . This

implies that $N_{D\cap^{K}D}(Q)=N_{D}(Q)\cap^{X}N_{D}(Q)=Q$ , meaning that $D\cap^{X}D=Q.$

Note that the set $\{(D, b_{D})\}\cup$ { $(Q, b_{Q})\subseteq(D, b_{D})|(Q, b_{Q})$ is essential} is a conjugation

family for the fusion of subpairs contained in $(D, b_{D})$ . See for example [1].

Example 1.1. Let $D=\langle x,$ $y|x^{2^{n-I}}=y^{o}\sim=1,$ $yxy=x^{-1+^{\underline{\circ}n-\underline{?}}}\rangle,$ $n\geq 4$ , be a semidihedral

2-group. Let

$E=\langle x^{2^{n-2}},$ $y\rangle\simeq four$-group, $Q=\langle x^{2^{n-3}},$
$xy\rangle\simeq$ quatemion group.

Let $(E, b_{E})$ , $(Q, b_{Q})\subseteq(D, b_{D})$ . Assume that

$N_{G}(E, b_{E})/C_{G}(E)\simeq AutE, N_{G}(Q, b_{Q})/QC_{G}(Q)\simeq OutQ.$

Then the set $\{(E, b_{E}), (Q, b_{Q})\}$ is the set of essential subpairs in $(D, b_{D})$ so that there exist

elements $g_{0}\in N_{G}(E, b_{E})$ and $g_{1}\in N_{G}(Q, b_{Q})$ with $D\cap^{g0}D=E$ and $D\cap^{g_{1}}D=R$ for which

we have

$A\simeq kD\oplus m_{E}k[Dg_{0}D\rfloor\oplus m_{Q}k[Dg_{1}D\rfloor\oplus($others) ,
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where $m_{E}$ and $m_{Q}$ are odd numbers. Similar things hold for other blocks of tame representation
type.

Example 1.2. Let $D=\langle a,$ $b,$ $t|a^{2^{n}}=b^{2^{n}}=t^{2}=1,$ $ab=ba,$ $tat=b\rangle,$ $n\geq 2$ , be a wreathed
2-group; let $c=ab$ and $d=ab^{-1}$ . Then $Z(D)=\langle c\rangle$ and $D’=\langle d\rangle$ . We let moreover

$x=a^{2^{n-\prime}}, y=b^{2^{n-1}}, z=c^{2^{n-1}}=xy,$

$e=xt, f=d^{2^{n-2}}(=(ab^{-1})^{2^{n-2}})$ ,

$U=\langle a, b\rangle, Q=(e, f\rangle(\simeq Q_{8}), V=(e, f, c \langle x, t, c\rangle=Q*Z(D))$ .

Let $(U, b_{U})$ , $(V, b_{V})\subseteq(D, b_{D})$ ; assume, concerning these inertia quotients, that

$N_{G}(U, b_{U})/C_{G}(U)\simeq GL(2,2) , N_{G}(V, b_{V})/VC_{G}(V)\simeq GL(2,2)$ .

Then the set $\{(D, b_{D}), (V, b_{V})\}$ is the set of essential subpairs in $(D, b_{D})$ so that there exist
elements $g_{0}\in N_{G}(U, b_{U})$ and $g_{1}\in N_{G}(V, b_{V})$ with $D\cap^{g_{0}}D=U,$ $D\cap^{g_{1}}D=V$ for which we
have

$A\simeq kD\oplus m_{E}k[Dg_{0}D\rfloor\oplus m_{Q}k[Dg_{1}D]\oplus($others) ,

where $m_{U}$ and $m_{V}$ are odd numbers.

In this case there exist direct summands interesting from the point of view of cohomology theory
of block ideals.

The following theorem explains such direct summands.

Theorem 1.6 (Sasaki [9]). Let $(P, b_{P})$ , $(Q, b_{Q})\subseteq(D, b_{D})$ ; assume that $PC_{D}(P)$ is a defect
group of $b_{P}$ or $QC_{D}(Q)$ is a defect group of $b_{Q}$ . For $g\in G$ with $g(P, b_{P})=(Q, b_{Q})$ , if the map

$t$ : $H^{*}(D, k)arrow H^{*}(D, k);\zeta\mapsto tr^{D}res_{Q^{g}}\zeta$

does not vanish, then thefollowing hold:

(1) $Q=D\cap^{g}D,$

(2) the $(kD, kD)$ -bimodule $k[DgD]$ is isomorphic to a direct summand of the source algebra $A,$

Unfortunately Theorem above says nothing about the multiplicity.

The reason why the map $t_{g}$ above appears will be explained in the next section.

2 Trace maps for cohomology rings of blocks

Definition 2.1 (Linckelmann [5]). The cohomology ring of $B$ w.r.t $D$ and $X$ is defined to be

the $\mathscr{F}_{(D,b_{D})}(B, X)$ -stable subring of $H^{*}(D, k)$ , where $\mathscr{F}_{(D,b_{D})}(B, X)$ is the Brauer category (the

fusion system):

$H^{*}(G, B;X)=\{\zeta\in H^{*}(D, k)|res_{Q}\zeta=gres_{Q}\zeta\forall Q\leq D\forall g\in N_{G}(Q, b_{Q})\}$
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Theorem 2.1 (Linckelmann [5]). We have

$\delta_{D}$ $T_{X}$

$H^{*}(D, k)arrow HH^{*}(kD)arrow HH^{*}(B)$

$] C_{\grave{I}} ] \mathcal{O} 1$

$H^{*}(G, B;X)arrow\{_{kD}A_{kD}$ -stables}$-$ { $X$ -stables}

where $T_{X}$ is the normalized transfer map defined by $X.$

Conversely

Theorem 2.2 (Sasaki [8]). For $\zeta\in H^{*}(D, k)$

$\delta_{D}\zeta\in HH^{*}(kD)$ is $kDA_{kD^{-}}$stable $\Rightarrow\zeta\in H^{*}(G, B;X)$ .

Example 2.1 (Kawai-Sasaki [2]). In [2] we calculated cohomology rings of some 2-blocks of

rank 2. Here let $D$ be isomorphic to a wreathed 2-group again. Keeping the notation and the

assumption on the inertia quotients $N_{G}(U, b_{U})/C_{G}(U)$ and $N_{G}(V, b_{V})/VC_{G}(V)$ in Example 1.2,

we can define a map $Tr_{D}^{B}$ : $H^{*}(D, k)arrow H^{*}(D, k)$ such that

${\rm Im} Tr_{D}^{B}=H^{*}(G, B;X)$

of the following form

$Tr_{D}^{B}$ : $\zeta\mapsto\zeta+tr^{D}res_{U^{g_{0}}}\zeta+tt^{D}res_{V^{g_{1}}}\zeta+tr^{D}res_{\tau^{gl90}}\zeta+tr^{D}res_{w^{g09\iota}}\zeta+tr^{D}res_{F}^{g1g_{0}g\iota}\zeta,$

where $g_{0}\in N_{G}(U, b_{U})$ , $g_{1}\in N_{G}(V, b_{V})$ and $T=U\cap^{g_{0}}V,$ $W=V\cap^{g_{1}}U$ , and $F=V\cap^{g_{1}}U\cap^{g_{1}g0}V.$

We know that $k[Dg_{1}g_{0}D]$ and $k[Dg_{0}g_{1}D]$ are isomorphic to direct summands of the source
algebra $A$ by applying Theorem 1.6 to the fourth and fifth term of $Tr_{D}^{B}.$

As a matter of fact, Theorem 1.6 was found to see the meaning of this formula.

The $(kD, kD)$-bimodule $A$ induces a transfer map $t$ on $H^{*}(D, k)$ :

$\delta_{D}$

$H^{*}(D, k)arrow HH^{*}(kD)$

$t\downarrow c_{\sim}) \downarrow t_{A}$

$H^{*}(D, k)arrow^{\delta_{D}}HH^{*}(kD)$

The following would be so natural.

Conjecture.

$H^{*}(G, B;X)=t(H^{*}(D, k$
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Example 2.2. If $N_{G}(D, b_{D})$ controls the fusion of subpairs in $(D, b_{D})$ , then the above does hold.

For example

$\bullet$ $D$ is abelian,

$\bullet$ $D$ is normal in $G$ , and so on.

The transfer map $t$ is described as follows:

$t:H^{*}(D, k) arrow H^{*}(D, k);\zeta\mapsto\sum_{A\simeq\oplus_{DgD}k[DgD\rfloor}tr^{D}res_{D\cap sD^{g}}\zeta.$

Example 2.3. Let $D$ be semidihedral again. Keeping the notation and assumption in Example 1.1

we can describe the trace map induced by the source algebra $A$ :

$t$ : $\zeta\mapsto\zeta+tr^{D}resE^{g0}\zeta+tr^{D}res_{Q^{g_{1}}}\zeta.$

Moreover it holds that $tH^{*}(D, k)=H^{*}(G, B;X)$ , namely the conjecture holds.

The same thing hold for another blocks of tame representation type.

Example 2.4. Let $D$ be wreathed again. Keeping the notation and assumption in Examples 1.2

and 2.1 we can describe the trace map induced by the source algebra $A$ :

$t$ : $\zeta\mapsto\zeta+tr^{D}res_{u^{g_{0}}}\zeta+tr^{D}res_{v^{gl}}\zeta+m_{T}tr^{D}res_{\tau^{g_{1}g0}}\zeta+m_{W}$ tr$D_{res_{w^{g_{0}g_{1}}}\zeta+m_{F}tx^{D}res_{F^{glg_{0}g_{1}}}\zeta},$

where $m_{T},$ $m_{W}\geq 1$ and $m_{F}\geq$ O. Note, however, that we do not know whether $m_{T}$ and $m_{W}$ are

odd or even; we know nothing about the integer $m_{F}.$

On the other hand, analysis of the fusions of subpairs using the conjugation family reveals that

the transfer map $t$ is of the following form

$t$ : $\zeta\mapsto\zeta+tr^{D}res_{u^{g0}}\zeta+tr^{D}res_{v^{g\iota}}\zeta$

$+m_{1}tr^{D}res_{T^{g_{1}g_{0}}}\zeta+m_{2}tr^{D}res_{W^{g_{0}g_{1}}}\zeta+m_{3}tr^{o}res_{F^{g_{1}g_{0}g_{1}}}\zeta,$

where $m_{1},$ $m_{2},$ $m_{3}$ are integers with $m_{1},$ $m_{2}\geq 1$ and $m_{3}\geq 0.$
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