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Remarks on the cuspidal simple module of GL(p, q)
over a field of characteristic p withp | ¢ — 1
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1 Introduction and Results

Let p be an odd prime and k be an algebraically closed field of characteritic p. Let g be a prime power
with p | ¢ — 1 and set G = GL(p,q), G = G/Z(G) PGL(p, g). The principal block algebra Bo(kG)
has a unique cuspidal simple module (of dimension [?2; (¢ — 1)) and it is known to be periodic as a
kG-module. OQur purpose in this talk is to describe the support variety of the cuspidal simple module.
For this, we apply the so called a cohomological pushout method of constructing endotrivial modules
developed by Carlson and Thévenaz who classified such modules for p-groups. For the method refer the
articles by Carlson [8], by Carlson, Mazza and Thévenaz [10] and see the refferences in the article on
classification theorem.

1.1 p-Local subgroups of GL(p,q)

Let p™ be the exact power of p dividing ¢ — 1. Then a Sylow p-subgroup P of G is isomorphic to
Zpn 1 Lp. Write P=Qx ( @) where @ is a Sylow p-subgroup of the group of diagonal matrices in G
and @ is a permutation matrix corresponding to a suitable cyclic permutation of length p. We know that
Zy(P) 22 (b) x Z(P) for some element b € Q of order p and E ;= ( &, b) = py">. We have

Nz(Q)=DxW (1.1)

where D is the group of dlagonal matrices in G and W = Xy is the group of permutatlon matrices of
degree p, the Weyl group of G. Set A = {a). Then AcC W and N~(A) H x A for some subgroup
H C £, such that H~Z, ;. And we have

Ng(P) = Z(G)(@ x (A x H)) € Ng(@Q) (1.2)
Né(E) has a subgroup L such that L = SL(2,p) and
N5(E) = Z(G) » (E x L) (1.3)

Let P, @ and E be the images in the factor group G = G /Z (G) PGL(p,q) of P, Q and E, respectively.
Pi 1s a Sylow p-subgroup of G.

=(a, b)isan (maximal) elementary abelian p-subgroup of G of rank 2 where a and b are images
in G of @ and b, respectively. Note that Q is of index p in P. Ng(Q) and Ng(E) (and Ng(P) ) controll
the p-fusion in G. For these facts, see the paper by Alperin and Fong [2]. We shall give the elements a

and b concretely, below.
As we denote by P the image of P in G, in the following we shall denote the images of various

subgroups KofGinG by K.
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1.2 The cuspidal simple module

The Weyl group W is isomorphic to X, which is a Coxeter group of type A,_:. For~a subset J of the
generating set for W, let G J be the corresponding standard parabolic subgroup of G. And the set of
parbolic subgroups defines so called the Tits Building for G = GL(p,q). Associated with the building,
we have a complex of kG-modules (actually, of kG-modules) of the following form ;

im0 xP 2L xP 3 5 X0 ka0 (1.4)

where X' =@ 3 ;1,5 i kg, 4G, In particular, XP~2 = k 5, 1G where By is a Borel subgroup of G.

In our setting that ¢ — 1 =0 (mod p), we have the following situation.

The sequence is exact except at XP~2. Each term X? is a Q-projective permutation kG-module and
the sequence is @-split. In particular, the sequence is the first p — 1 terms of a Q-projective resolution
of k¢ (although, terms are not minimal ). This fact is shown by , for example, by an investigation
by Cabanes and Rickard [7]. The Brauer character of Ker f is a modular reduction of the Steinberg
character. By results of James (Lemma 3.4 [13]) and Geck, Hiss and Malle (Theorem 4.2 [12]), Top Ker f
is a cuspidal simple kG-module whose Brauer character is the modular reduction of an ordinary cuspidal
irreducible character (of degree []?=; (¢ — 1).) and projective when restricted to Q. For these facts, see
also a study by Geck [11].

Set S = Topker f , the cuspidal simple kG-module.

1.3 A @-projective resolution of kg

The principal block By(kG) has a close relation with the group algeba k¥, (and with the Hecke algebra
Endkg(kB, TG)). A minimal Q-projective resolution of k¢ is described as follws.

By studies of Dipper, James and others (see [11]), we can label the set of the projective indecomposable
module of the Hecke algebra Endxg(kp, 1€) by the set of p-regular partitions of the number p. The set
bijectively corresponds to the set of indecomposable direct summand of kg, 1¢. And in our setting of
the present note, each such summand has a simple top (and simple socle).

For each integer 0 < ¢ < p—2, let Pg(%) be an indecomposable direct summand of kg, 1 corresponding
to the partition (17=%,1,--- ,1). Then Pg(i) has the following Lewy (and socle) structure;

So Sl
PQ(0)= S, PQ(1)= So®S , -,
So Sl
(1.5)
S,; Sp_z
Po(t)= Sic1®Siy1, -, Polp—-2)= S_388
i Sp—2
where Sy = kg, 51, -, Sp—2 are simple kG-modules (which have P as vertex and belong to the principal

block algebra By(kG)). The cuspidal simple module S appears in the composition factors of Py(p — 2).
The complex (1.4) is isomorphic to the following complex of kG-modules;

30 Po(p—2) 5 Po(p—3) =25 - I3 Po(1) ™5 Po(0) =% Sp 0 —> - -+ (1.6)

where the maps 7;’s are uniquely determined map (up to scalar) by the shapes of modules Py(i)’s.
Thus the complex (1.6) (and (1.4)) is the first p — 1 terms of a Q-projective resolution of kg = Sy and
05 kg = Q%' So = Kerm,_». Thus
S
Sp—2
Here we denote a Q-projective sygyzy of a kG-module V by QgoV. I learned from Kunugi and Miyachi
that the situation above mentioned occurs.

One of our main results is the following theorem. Set N = Ng(P). Then N = P x H and H 2
Zyp—1 = GF(p)*. Remember that we set A= { a ).

% kg = (1.7)
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Theorem 1.1 Q2Q(p -1 k¢ is an endotrivial kG-module and its Green correspondent is Q'Z(P‘I)Qi(p “Dien.
Furthermore, there ezxists a kG-module M such that we have ezact sequences of kG-modules of the fol-
lowing forms ;

0—>kG——>Q2Q<”"1)kG—>M——>O, 0P 2853 M@ proj - QP18 50 (1.8)

Remark 1.2 The Green correspondent of Qg‘l ke is Q~@-DQE e and is endotriial, where ey 15 a
one dimensional kN-module with €%, = kn. However, Q’é‘lkg is not endotrivial.

1.4 A vertex of S

§ is periodic because S |q is projective and @ is of index p in P. If we set Gy ;= PSL(p,q) C G,
then G/Gy is of order p and we see that S |, is a direct sum of p nonisomorphic simple kGo-modules,
that is, S is induced from a kGo-module. And then we can see that E is a minimal elementary abelian
p-subgroup of G such that S | g is not projective. By a result of Benson [5] and the fact that Cq(F) = E,
we have the following proposition. Let K C L = SL(2,p) be a cyclic subgroup of L of order p+ 1 (which
is uniquely determined up to L-conjugate ) and set Nog = E x K C Ng(E).

Proposition 1.3 E is a vertez of S. And there exists an indecomposable kNg-module T such that
T 16= S @ proj.

1.5 The support variety V;(S) of S

We have Qkg = ( (a—1), (b—1) )xg = J(KE). Let X, uo € H?(E, k) be the Bocksteins of the following
elements in H(E, k) = Homg(Qkg, k),

(a—1) =1 (a-1) —0 .
(b-1) =0’ (b-1) o1’ respectively
so that H*(E, k) = k[Xo, po] + v0. And set
— _ 2p(p—1)
Po HzecF(pﬂ)—GF(p)(“O zho) € H (E, k)
Theorem 1.4 The support variety Vg (S) of S is given by

V(S) = resk(Ve(po))
, where resy; is the map from Vg(k) — Vg (k) induced by the restriction map resg : H*(G, k) — H*(E, k).
The first half of Section 2 is devoted to describe p-local structures of G. In the latter half of the

section, we construct some cohomology elements in H*(G, k) and some endotrivial kG-module making
use of the cohomological pushout method. Proofs of Theorem 1.1 and 1.4 will be given in Section 3.

2 Subgroups of G and H*(G, k)

We shall define various subgroups of G = G /Z ((~¥) and construct some cohomology elements in H*(G, k)
which we need for our investigation below.
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2.1 Subgroups of G

We first define subgroups of G= GL(p,q). Rows and columns are indexed by the set GF(p) = Zp =
{0, 1, ---, p—1}. Let Ko C GF(q)* be the multiplicative subgroup of order p”. Let fix an element

¢o € Kp of order p™ and set ¢ = C(’)’n—l so that ¢ is of order p.
For a; € GF(g)*, 0 £ i < p— 1, let d(eo, 1,2, - ,ap—1) be the diagonal matrix with (Z, i)-entry
o;. And set c(a) =d(a,q, - ,a) for « € GF(gq)*. Set

Q={d(aoyal,"',%-1);OtiEKo } Z={c(a);aeKO}

and
D = { d(Bo, b1, s Bp-1) ; Bi € GF(9)*, (|B:],p) =1}
Let ¥, be the symmetric group on {0,1,---,p — 1} = Z,. We identify each permutation with the

correponding permutation matrix in G.
Let @ € G be the permutation matrix corresponding to the cyclic permutation (01 --- p—1). Then

a——l : d(a()valv Q2, - 7ap—1) a= d(ap~1a Qo, 1, - 7ap—2)

2.1
@ d(ag,a1,az, -+ ,a,_1)}F =c(a) where a=apa; - -ap-1 (2.1)
P P

Set
d=d(Go,1,-- 1), Bi=d(L,¢, ¢ ¢Y), Ei=cQ), @i=d(LG,ch ¢ ¢
where (1 = (3P 5o that ¢? = ¢. Then we have the following equalities ;
(@d)? = c(¢o), [a,b)=¢  wlam=abc® V2 T lbu=b (2.2)

Set P = ( Q, a y = Q x (@ ). Then P is a Sylow p-subgroup of G.
For each 0 # s € Z, = GF(p), consider the permutation p(s) on Z, defined by

(01 2 - i - p-1
p(s)—<0 s 28 .- Qs - (p—l)s)
And denote by k(s) the corresponding permutation matrix to p(s). Then the following equalities hold.

B(S)d(001aly Oyt ,ap—l)ﬁ(s)—l = d(a()vasa Ty Oyt ,a(p—l)s)

~ ~ ~ ~ ~o-1 ~ ~ -2 (2-3)
h(s)lah(s) =a°,  h(s)"'Bh(s)=b"",  h(s)"lah(s) ="

2.2 Subgroups of G

Now we shall work in the group G = 6/2 (é) = PGL(p,q). We denote the images in G of elements and
subgroups of G defined above by deleting ~ attached to them. Thus, for example, P = Q% ( a ) is a Sylow
p-subgroup of G. We also denote by W the image in G of the subgroup ¥, of G. Let Wy ¥,-1 be the
subgroup of W corresponding to the stabilzer of the point 0 € {0,1,--- ,p — 1} and W; be the subgroup
of W corresponding to the pointwise stabilzer of the set {0,1}. Thus if weset H = { h(s); 0 £ s € Z, },
then H C W.

The results we shall describe are all due to the study by Alperin and Fong [2],

2.2.1 p-Local subgroups of G

By the equality (2.1), we see that Z(P) = ( b ). Again by the equality (2.1), we see that any element in
aQ is of order p and is P-conjugate to ad® for some k with 0 < k < p— 1. Set

Er=(ad*, b), Ar=(ad*), 05k<p-1, B=(b), U=(u)



E, = the subgroup generated by elements of order p in Q

If p=3, then E, = (u, b).
By the equality (2.3), (ad)*® = a*"d and (a* "' d)* is P-conjugate to ad® by the equality (2.1). Thus
the p — 1 subgroups Ag, 1 £ k < p—1 are P x H-conjugate.

Lemma 2.1 The following statements hold.

1. Theset { E;; 0S¢ < p} is a representatives set for the P-conjugacy classes of mazimal elementary
abelian p-subgroups of P.

2. E;, 1514 S p—1 are Ng(P)-conjuagte and the set { Ey, Ey, E, } is a representatives set for the
G-conjugacy classes of mazimal elementary abelian p-subgroups of G.

3. Eg and Ey are of rank 2. E, is of rank p — 1.

4. Let Go C G with Go = PSL(p,q) C PGL(p,q). Then Gy is a normal subgroup of G of indez p and
E, g G().

We are mainly concerned with the subgroup Ey = ( a, b ) so that we set E = Ey. We can write
Ng(E) = E x L with L = SL(2,p). We may assume that U x H C L where the corresponding matrices
in SL(2,p) = L of the elements u, h{s) are given as follows (see (2.2), 2.3));

uH((l) i) h(s)H(S 591) (2.4)

Lemma 2.2 The followig statements hold.
1. Op(Ng(Q)) = D and Ng(Q) = D x (@ x W).
2. AxHCW. AndW =Wi(Ax H), Win(AxH)=1.
3. Ng(P)=Q x(Ax H).
4. N¢(E)=Ex L.
5. The fusion in P is controlled by No(Q) and Ng(E) (and Ng(P) ).
We end this subsection with the following lemma.
Lemma 2.3 Set Qp = { Ng(P)N9Q ; g € G }. Then any subgroup R € Qqy is Ng(P)-conjugate to a

subgroup @ or is conjugate to A.

2.3 Some elements in H*(G, k)

In this section, we shall construct some cohomology elements in H*(G, k), especially, the element p €
H2(®-1)(G, k) such that resg p = py where py € H**P~1)(E, k) is the element given in Section 1.5. The
results we shall see may be known. However, we can not find appropriate literature and for the sake of
completeness, we do. The study by Sasaki [14] is useful for our investigation.

2.3.1 H*(Na(Q),k)

We first consider H*(Ng(Q), k). As Ng(Q) = Op (Na(Q)) » (@ x W) by Lemma 2.2, we may work in
N@Q);=Q xW. Set

Qr={dl,Laz - ,ep1); s, €Ko}CQC G, & =4d(1,¢,1,---,1)€Q

and Q1 C G and z; € G be the images in G of Q; and #;, respectively. Then Q = (z1) x Q1.

109
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We can write Qkg = ( (z1 — 1), J(kQ1) )rg = J(kQ) and consider the element in HY(Q,k) =
Homgg (Qkq, k) satisfying
(z1—-1)—1, JkQ,)—0

Let p € H*(Q, k) be the Bockstein of the element. W7 C W normalizes ; and centralizes z; because

we defined W) 2 T,_; to be the pointwise stablilizer of {0,1}. Thus if we set Ny =@ x W1 C N (@),

then p is canoniacally extended to the element in H%(Ny, k) which we denote by the same symbol p.
Let Ao, po € H?(E, k) be the elements given in Section 1.5. And recall that we set B= (b ) C E.

Lemma 2.4 The following equalities hold.

p—1
resg normxl(Q)(p) = — (b — pop Pl = - {HVEGF(p)(#O - 3/)\0)}

Proof. Set py = resg u. We have b@Q; = zﬁ’n_lQl and we see that u; € H2(B, k) is the Bockstein of the

-1

element in H!(B, k) = Homyp (%3, k) satisfying (b—1) — 1. By the equality (2.3), we have b"®) =",

Thus x*®) = 5. 4;. Then by the Mackey formula, we have

R -
resg normxl(Q) = normf;(no#sez ul(s)) = normE((p— 1)!- u¥™') = — norm% (u;)
t4

Thus the first equality holds by Proposition 4.1.4 [3]. The second equality is easy to see.

The trivial kX,-module is periodic of period 2(p — 1) and we have a 2(p — 1)-fold self extension of
kn(q) of the form
0—- kN(Q) - U2(p—1) =2 U; > kN(Q) —0

which is the first 2(p — 1) terms of a projective resolution of kn(g) as kN(Q)/Q-module. Let x €
H?*®-1)(N(Q), k) be the cohomolgy element corresponding to the sequence. Then we may assume that

resg x = A5} (2.5)
Lemma 2.5 Set
p1 = X — normy.® (u) € H®*~V(Ng(Q),k) and o1 = x - normy. > (u) € H*®*~D(Ng(Q), k)

Then

z€GF(p?)-GF(p) YyEGF(p)

p—1
resg p1 = H (o — xAo), resSpoy = {/\0 H (o — y/\o)}
Proof. A proof of Lemma 4.2 [14] works well by the equlaity (2.5) and Lemma 2.4.

2.3.2 pe H¥@-1)(G, k) with resgp = po

By Lemma 2.5, resg p; € H2P®~1(E, k) and resg o, € H2® ~1)(E, k) are invariant under the action of
GL(E) = AutE. They are the so called Dickson invariants (see Section 8.1, 8.2 [4]). In particular, they
are Ng(E)-invariant. Thus by Lemma 2.2.5, we have elements p € H?*®~1)(G, k) and o € H2®*~1)(G, k)
such that

resg p = resg p1, TeSg 0 = TesSg 0y (2.6)

Thus resg p = pg.
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2.4 Some endotrivial kG-module

Let L, be the Carlson module of p. We see that resg p € H*?(P~1)(B k) = H?®P-D(Z(P), k) is not
nilpotent and we can apply the method of constructing endotrivial modules (see [8], [10]). All the results
below are due to Carlson [8].

We are concerned with the group E. The variety Vg (Lp) decomposes as

Va(Ly) =VoUVy with VonVy ={0} where V; = resy(Ve(L,)) = res(Ve(Lp,))
Here L,, is the Carlson module of pg. Then L, decomposes as
L, =Lo® Ly where Vg(Lo)=Vo, Ve(Ly) =Vy

Now set Y = QP(P—1kq/ Lp. Y is an endotrivial kG-module which appears as a pushout in the following
diagram ;

0 0
| |
L L)

! !

0 ——> L, —— QPP Vg, — 5 kg —— 0

l ! |

0 - Lg > Y — kg —— 0
| |
0 0

For our discussion, the dual X = Y™ of Y is convenient to use. Set My = Lj so that we have an exact
sequence of the form

0—=kc—=X—>My—0 and Vg(Mp) =resp(Ve(Ly,)) (2.7
The endotrivial module X satisfies the following ;
X lp=Q %" Dkp @ proj, X |p=kg, @ proj, for 1Si<p (2.8)

By the construction of Y, if we set Ny =Bx H, thenY In,= kn, ® proj. N, and Ng = A x H are
conjugate in Ng(E) (see (2.4)). Thus we have

X INo= kn, @ proj (2.9)

3 Proofs of Theorem 1.1 and 1.4

In this section, we shall give proofs of theorems in Section 1.

3.1 A proof of Theorem 1.1
3.1.1 05" Vke

First we shall construct the first p — 1 terms of a Q-projective resolutions of Q%_lkc = SS . Simple
p—2

kG-modules S;’s and S are all self-dual. Taking the dual of the Q-projective resolution (1.8) of kg, we
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have a Q-injective resolution

0 ke S5 Py(0) T Po(1) » -+ % Po(p—3) 25 Bolp-2) & 72 50 (31)
which is a Q-projective resolution of (Q’é’lkc)* = S’:S;' 2 AsS lg is projective, we see that the exact

sequence 0 — S — S’g 25 Sp-2 — 0 is Q-split and a @-projective resolution of S is a usual projective

resolution. Thus by the sequence (3.1) the first p — 1 terms of a Q-projective resolution of S, has the
form

0= 057182 =5 P,(0) %2 PL(1) = -+ = Po(p—3) £ Po(p - 2) & Sp—2 = 0 (3.2)
where Py (i) = Po(i) @ proj. Furthermore, we have an exact sequence of the following form ;
0— 0P~15 — kg @ proj = 0% 'S, 2 = 0 (3.3)

We also have the @-split exact sequence 0 = S,_o — Q”Q'lkg — § — 0 and by the same argument as
above, we have the followings. By the sequence (3.2), the first p— 1 terms of a Q-projective resolution of
0P ke has the form
Q
0 - Q2P Vi 24 pr(o) 224 A1) - o P -3) D5 P -2) B 0 ke 0 (34)
where Pg(z) = Pg(4) ® proj. Furthermore, we have an exact sequence of the following form ;

0 = 0571 5p_y = Q5P Vke @ proj - QP71 5 0 (3.5)

By (3.3), we have an exact sequence of the form 0 — kg — Qg‘ls,,_z — QP25 — 0. And there exists a
kG-module M such that we have exact sequences of the form ;

0 ke =+ Q5" kg + M =0, 0025+ Ma proj —» Q715 -0

Thus the second statement in Theorem 1.1 follows.

3.1.2 90X Vke Ing(p)

In this section, we investigate the restriction of Q2Q(p “Dkg to the subgroup Ng(P). We refer the aricle
by Bouc [6] for general results of relative syzygies.

Set N = Ng(P)and Qo = { NN9Q ; g € G }. And set Q5 = {Q, A}. By Lemma 2.3, for
kN-modules, Qp-projective covers coincide with Qf-projective covers.

N =PxHand N/Q= Ax H. Le¢t N - N/P = H be the canonical group surjection. The map
H — GF(p)*, h(s) — sis a group homomophism (actually, isomorphism). Let o5 : N = GF(p)* be the
composite of these tow maps and we denote by the same symbol ¢n the corresponding one dimensional
kN-module. Then by the equality (2.3), we can see that

QDkn = oN (3:6)
Taking relative sygyzies is compatible with the restriction to subgroups and the followings hold ;
QQkG .LNE QonN = QQ{)kN (mod QQ)

By the fact that QN A = 1, and by a result of Thévenaz and Bouc (Lemma 5.2.1 [6], see also an argument
by Alperin [1]), we have
QQQékN = QQQAICN



Thus by the commutativity of taking relative syzygies,
Ok In=07'000Uky  (mod Qp),  Odke In= 072040y  (mod Qq)
where we used the equality (3.6).

Thus for any even integer 2m, a Green correspondent of 0Z kg is Q7202 and is an endotrivial
kN-module (Proposition 4.2 [10]). For m = 3(p — 1), the dimension of Q¥"ke = QF kg is ¢2?@-1),
the degree of the Steinbeg character. We see that 3PP~ — 1 is divisible by p"*! but is not divisible by
p™*2. Thus Qg—lkc’ itself is not endotrivial and Remark 1.2 follows.

A Green correspondent of Qé(p Vg is 9‘2(”"1)9?4(” -1 ot = Q‘r"(”‘l)in “Dky. The sequences
(1.6) and (3.4) are @-split and therefore we have

-2 . —2 .
ko + YL (—1)P PR (i) = O ke = ke + 3 (<12 Ry(i) (3.7)

in the Green ring (the representation ring) of kQ-modules. As the sequences are sequences of kG-modules,
the equality (3.7) holds in the Green ring of kR-modules for any R € Qp. Thus Qé(p -1 ke {r= kr®proj.
We can write as

3P Vkg ly= 0720020 Dy o v
where V' is a Qp-projective kN-module. And then we can conclude that V is projective and a proof of
Theorem 1.1 is completed.

3.2 A proof of Theorem 1.4
8.21 QP ke =x

We shall show that Qz(p "l)kG = X where X is the endotrivial kG-module given in Section 2.4.

We saw that Qé(p _l)kc is endotrivial. In the group N = Ng(P), any conjugate of A intersects trivially
with E;, i # 0. Thus as endotrivial kN-modules, Q2 —l)kg and the module X have the same "type” by
the equality (2.8). We can see that the equality (3.7) holds in the Green ring of kNy where Ny = A x H
because A € Qy. Thus Q2Q(p _1)kG IN,= kn, @ proj. Then by the equality (2.9), we see that Green

correspondents of Qé(p _l)kc and X are isomorphic and the result follows.

3.2.2 Vg(S)

We refer to Benson’s book [3] for the support variety of modules.

Let 0 = kg ER QzQ(p_l)kG — M — 0 be the first exact sequence given in (1.8). By the second exact
sequence in (1.8), M is a periodic module. Thus f |5 is a not projective map because if it were, then
M | g would have a direct summand isomorphic to Q~'kg, a contradiction.

Consider the restriction of the sequence to E. We saw that Qé(p -1 ke = X and therefore we have

Qgp _l)kc = 2P~y Thus the exact sequence which we consider has the form ;

0= kg 2% Q~22-Vgp M7 50 (3.8)

where M’ is a direct summand of M |z.

We have an isomorphism Homy g (kg, Q~2P(P~V k) = H2(e~1(E, k) = k[)o, uo] ++v/0, where Ag, po €
H?(E, k) is the cohomology elements given in Section 1.5. The corresponding elements v € H*?(P~1)(E k)
to fo under the isomorphism is Ng(F)-invariant. We see that H*(E, k)Ne(B) = k[Xo, uo]NG(E)-f-\/ﬁNG(E).
By that fact that Ng(E)/E = SL(2,p), k[Xo, uo]V¢® is generated by py € H*?®-1(E, k) and o}, =
Mpo — doph € H*PHD(E, k) (see Section 8.2 [4]). Thus v = po (mod v0). M’ = L* where L, is the
Carlson module of v. Thus Vg(M') = Vg(v) = Vg(po).

Again by the second exact sequence in (1.8), Vg(po) = Vg(M') C Ve(S). As S is E-projective and
periodic, we can conclude that V(S) = res}(VEe(po)) and a proof of Theorem 1.4 is completed.

113



114

References
[1] J.L.Alperin, A construction of endo-permutation modules, J. Group Theory, 4, 3-10, 2001

[2] J.L.Alperin and P.Fong, Weights for symmetric and general linear groups, Journal of Algebra, 131,
2-22, 1990

[3] D.J. Benson, Representation and Cohomology, II : Cohomology of groups and modules, Cambridge
University Press, 1991

[4] D.J. Benson, Polynomial Invariants of Finite Groups, Cambridge University Press, 1993

[5] D.J. Benson, Cohomology of modules in the principal blocks of a finite group, New York J. Math.,
1, 196-205, 1995

[6] S. Bouc, Tensor induction of relative syzygies, J. Reine Angew. Math., 523, 113-171, 2000

[7] M. Cabanes and J. Rickard, Alvis-Curtis duality as an equivalence of derived categories, in Modular
Representation Theory of Finite Groups (eds. M.J.Collins, B.J. Parshall and L.L.Scott), de Gruyter,
2001

[8] J.F. Carlson, Constructing endotrivial modules, J. Pure Appl. Alg.,206, 83-110, 2006

[9] J.F. Carlson, N. Mazza and D. Nakano, Endotrivial modules for finite groups of Lie type, J. Reine
Angew. Math., 595, 93-120, 2006

[10] J.F. Carlson, N. Mazza and J. Thévenaz, Torsion-free endotrivial modules, J. Alg.,398,413-433,
2014

[11] M. Geck, Modular Harish-Chandra series, Hecke algebras and (generalized) q-Schur algebras, in
Modular Representation Theory of Finite Groups (eds. M.J.Collins, B.J. Parshall and L.L.Scott),
de Gruyter, 2001

[12] M. Geck, G. Hiss and G. Malle, Cuspidal unipotent Brauer characters, J. Alg., 168, 182-220, 1994

[13] G.D. James, The irreducible representations of the finite general linear groups, Proc. London Math.
Soc., 52, 236-268, 1986

[14] H. Sasaki, Mod p cohomology of finite groups with extraspecial Sylow p-subgroups, Hokkaido Math.
J, 29, 263-302, 2000



