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Abstract The concept of $p-$-radical groups was introduced by Motose-Ninomiya
[MN]. Later Tsushima [Ts] investigated $p$-radical blocks, a block-wise version of
p–radical groups. Here we consider more general blocks and introduce module-
theoretical viewpoint.

Introduction

Let $p$ be a prime. Let $k$ be an algebraically closed field of characteristic $p.$

Tsushima [Ts] has defined $p$-radical blocks. In this paper we consider a more
general concept and give a nlodule theoretical consideration. We need to in-
troduce some terminology. Let $G$ be a group and $P$ a $p$-subgroup of $G$ . An
indecomposable (right) $kG$-module $S$ is said to be weakly $P$-radical if it is P-
projective and the number of indecomposable summands (counting multiplicity)

of $S_{P}$ equals $\frac{\dim S|vx(S)|}{|P|}$ (for notation, see below). A simple $kG$-module $S$ is said

to be $P$-radical if $(1_{P})^{G}\simeq mS\ominus V$ , where $m$ is an integer and $V$ is a $kG$-module
not involving $S$ , in which case $m$ is positive, since $Hom_{kG}(S, (1_{P})^{G})\neq 0$ . We
call a $p$-block $B$ of $G$ weakly $P$-radical if any simple $kG$-module in $B$ is weakly
$P$-radical. We call $BP$-radical if any simple $kG$-module in $B$ is $P$-radical.
Clearly $B$ is $P$-radical if and only if $(1_{P})^{G}e_{B}$ is semi-simple, where $e_{B}$ is a block
idempotent of $kG$ corresponding to $B$ . So when $P$ is a Sylow $p$-subgroup of $G,$

a $P$-radical block is a $p$-radical block in the sense of Tsushima [Ts].
In Section 1 we show for any $p$-subgroup $P$ of $G,$ $B$ is $P$-radical if and only

if $B$ is weakly $P$-radical. In Section 2 we consider relationship between weakly
$P$-radical simple modules and subgroups of $G$ for a Sylow p–subgroup $P$ of $G.$

We obtain an alternative proof of a theorem of Laradji [La]. In Section 3 we
consider $D$-radical blocks $B$ for a defect group $D$ of $B$ and strengthen a theorem
of Hida-Koshitani [HK].

For a $k$-module $X\dim X$ denotes the $k$-dimension of $X$ . For an indecompos-
able $kG$-module $S$ , let $vx(S)$ be a vertex of $S$ . For a group $H$ and $kH$-modules
$X,$ $Y,$ $Hom(X, Y)$ denotes $Hom_{kH}(X, Y)$ and let $P(X)$ be the projective cover
of $X$ . For subgroups $H,$ $K$ of $G,$ $H\backslash G/K$ denotes a complete set of representa-
tives of $(H, K)$-double cosets in $G.$
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1. Weakly $P$-radical and $P$-radical modules
Let $P$ be a $J\succ$subgroup of the group $G$ . For an indecomposable $kG$-module

$S$ , let $n_{S,P}$ be the number of indecomposable summands of $S_{P}$ (counting multi-
plicity), let $n_{S,P}’$ be the number of indecomposable summands of $S_{P}$ (counting
multiplicity) whose vertices are $G$-conjugate to $vx(S)$ . Note that $n_{SP}’$ is pos-
itive, if $S$ is $P$-projective, cf.[Fe,III 4.6]. Let $m_{S,P}$ be the multiplicity of $S$ in
$(1_{P})^{G}$ as direct summands. If $S$ is simple, let $k_{S,P}$ be the multiplicity of $S$ in
$(1_{P})^{G}$ as irreducible constituents.

Lemma 1. Let $S$ be a $P$-projctive indecomposable $kG$-module. Then $n_{S,P}\leq$

$\frac{\dim S|vx(S)|}{|P|}$ and the following are equivalent.

(i) $n_{S,P}= \frac{\dim S|vx(S)|}{|P|}.$

(ii) $S_{P}$ is a direct sum of modules of the form $(1_{A})^{P}$ where $A$ is a vertex of
$S$ contained in $P.$

(iii) $S_{P}\simeq\oplus_{i}(1_{Q_{i}})^{P}$ , where $Q_{i}$ are subgroups of $P$ of the same order.
If these conditions hold, then $S$ has a trivial source.

Proof. We have $S_{P}=\oplus_{i=i^{P}W_{i}^{P}}^{n_{S}}$ , where $W_{i}$ are indecomposable $kQ_{i^{-}}$

modules for $Q_{i}\leq P$ with $Q_{i}\leq cvx(S)$ . So din $S= \sum_{i}|P$ : $Q_{i}|\dim W_{i}\geq$

$( \sum_{i}\dim W_{i})|P|/|vx(S)|\geq n_{S,P}|P|/|vx(S)|$ . Thus $n_{S,P} \leq\frac{\dim S|vx(S)|}{|P|}$ . The rest
follows from [Fe, III 4.6]. $\square$

As stated in Introduction, for a -subgroup $P$ of $G$ , we say an indeccompos-
able $kG$-module $S$ weakly $P$-radical if $S$ is $P$-projective and $n_{S,P}= \frac{\dim S|vx(S)|}{|P|}.$

For this definition we have the following, which is straightforward to see.

Lemma 2. Let $P$ be a $p$-subgroup of $G$ and let $S$ be an indecomposable kG-
module. Let $x$ be any element of G. Then $n_{S,P}=n_{S,P^{x}},$ $n_{S,P}’=n_{SP^{x}}’,$ $m_{S,P}=$

$m_{S,P^{x}}$ and if $S$ is simple $k_{S,P}=k_{S,P^{x}}$ . In particular, if $S$ is weakly $P$-radical,
then $S$ is weakly $P^{x}$ -radical.

Recall that a weight $U$ for $G$ is a projective simple $k[N_{G}(Q)/Q]$-module for
a $p$-subgroup $Q$ of $G$ ([A1]). So as a $kN_{G}(Q)$-module $U$ is indecomposable with
trivial source and has $Q$ as a vertex. The Green correspondent of $U$ with respect
to $(G, Q, N_{G}(Q))$ is said to be an Alperin $(kG-)$module.

The folowing strengthens Lemma 1 of [A1].

Theorem 3. Let $P$ be a $p$-subgroup of G. Let $S$ be a $P$-projective indecom-
posable $kG$-module with trivial source. Then $m_{S,P}\leq 7l_{SP}’$ and the equality holds
if and only if $S$ is an Alperin module.

Proof We compute $n_{S,P}’$ . Let $Q$ be a vertex of $S$ . Let $U$ be the Green corre-
spondent of $S$ with respect to $(G, Q, N_{G}(Q))$ . By Green’s theorem, $U^{G}=S\ominus V,$

where $V$ is $\mathcal{X}$-projective for $\mathcal{X}=\{Q\cap Q^{x};x\not\in N_{G}(Q)\}$ . Since $V_{P}$ has no
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direct summands whose vertex is $G$-conjugate to $Q$ , it suffices to consider
$(U^{G})_{P}$ . By Mackey decomposition, $(U^{G})_{P}\simeq\oplus_{x\in N_{G}(Q)\backslash c/P}((U^{x})_{N_{G}(Q)^{x}\capP})^{P}.$

Assume that $((U^{x})_{N_{G}(Q)^{x}\cap P})^{P}$ has an indecomposable summand with vertex
$G$-conjugate to $Q$ . Then for a vertex $R$ of some indecomposable summand of
$(U^{x})_{N_{G}(Q)^{x}\cap P}$ , we have $R^{u}\geq Q^{g}$ for some $u\in P$ and $g\in G$ . Since $U^{x}$ has a
vertex $Q^{x}$ , which is normal in $N_{G}(Q)^{x}$ , we have $R\leq Q^{x}$ . Therefore $R=Q^{x}.$

Hence $P\geq Q^{x}$ . Conversely assume $P\geq Q^{x}$ . Then $N_{G}(Q)^{x}\cap P\geq Q^{x}$ . There-
fore $(U^{x})_{N_{G}(Q)^{x}\cap P}=\overline{U^{x_{\overline{N_{G}(Q)^{x}\cap P}}}}$ , where $N_{G}(Q)^{x}\cap P=N_{G}(Q)^{x}\cap P/Q^{x}$ and

$\overline{U^{x}}$ is the $N_{G}(Q^{x})/Q^{x}$-module corresponding to $U^{x}.$

Since $\overline{U^{x}}$ is projective, we obtain $\overline{U^{x_{\overline{N_{G}(Q)^{x}\cap P}}}}\simeq\frac{\dim U}{|\overline{N_{G}(Q)^{x}\cap P}|}k[\overline{N_{G}(Q)^{x}\cap P}].$

Since $k[\overline{N_{G}(Q)^{x}\cap P}]=(1_{Q^{a}},)^{N_{G}(Q)^{x}\cap P}$ , we have $((U^{x})_{N_{G}(Q)^{x}\cap P})^{P} \simeq\frac{\dim U}{|\overline{N_{G}(Q)^{x}\cap P}|}(1_{Q^{x}})^{P}.$

Therefore $n_{S,P}’= \sum_{x\in N_{G}(Q)\backslash G/P,P\geq Q^{J}}|N_{G}(Q)^{x}\cap P|\dim U.$

Now we consider $m_{S,P}$ . By the Burry-Carlson-Puig theorem, $m_{S,P}$ equals
the multiplicity of $U$ in $((1_{P})^{G})_{N_{G}(Q)}$ as direct summands. By Mackey decom-
position, we have

$((1_{P})^{G})_{N_{G}(Q)}\simeq\oplus_{x\in P\backslash G/N_{G}(Q)}(1_{P^{x}\capN_{G}(Q)})^{N_{G}(Q)}.$

Since $U$ has vertex $Q$ it suffices to consider those $x\in P\backslash G/N_{G}(Q)$ for which $Q\leq$

$P^{x}$ . Then, $(1_{P^{x}\cap N_{G}(Q)})^{N_{G}(Q)}=(1_{\overline{P^{x}\cap N_{G}(Q)}})^{\overline{N_{G}(Q)}}$ , where $N_{G}(Q)=N_{G}(Q)/Q.$

Put $(1_{\overline{P^{x}\cap N_{G}(Q)}})^{\overline{N_{G}(Q)}}\simeq n_{x}\overline{U}\oplus V_{x}$ , where $\overline{U}$ is the $N_{G}(Q)$ -module correspoding

to $U$ and
$V_{x}$ has no summands isomorphic to $\overline{U}$ . Then $m_{S,P}= \sum_{x\in P\backslash G/N_{G}(Q),Q\leq P^{X}}n_{x}.$

Now

$\dim Hom((1_{\overline{P^{x}\cap N_{G}(Q)}})^{\overline{N_{G}(Q)}}, U)-=n_{x}\dim Hom(U, U)--+\dim Hom(V_{x},\overline{U})\geq n_{x}.$

On the other hand,

$\dim Hom((1_{\overline{P^{x}\cap N_{G}(Q)}})^{\overline{N_{G}(Q)}}, U)-$ $=$ $\dim Hom((1_{\overline{P^{x}\cap N_{G}(Q)}},\overline{U}_{\overline{P^{x}\cap N_{G}(Q)}})$

$= \frac{\dim U}{|\overline{P^{x}\cap N_{G}(Q)}|},$

since $\overline{U}$ is projective. Therefore

$\sum_{x\in P\backslash G/N_{G}(Q),Q\leq P^{x}}\dim Hom(1_{\overline{P^{x}\cap N_{G}(Q)}})^{\overline{N_{G}(Q)}},$ $\overline{U})=\sum_{x\in P\backslash G/N_{G}(Q),Q\leq P^{x}}\frac{\dim U}{|\overline{P^{x}\cap N_{G}(Q)}|}=n_{S,P}’.$

Here the last equality follows by considering the correspondence $x\mapsto x^{-1}$ . Hence
$n_{S,P}’ \geq\sum_{x}n_{x}=m_{S,P}$ . If the equality holds then $m_{S,P}=n_{S,P}’\neq 0$ , since $S$ is
$P$-projective,cf, [Fe,III 4.6]. So $n_{x}\neq 0$ for some $x$ . Thus dimHom $(U, U)–=1.$

Since $\overline{U}$ is projective we see $\overline{U}$ is simple and $S$ is Alperin. Conversely assume
$U$ is simple. Then equality holds throughout. Hence $m_{S,P}=n_{S,P}’$ . The proof
is complete. $\square$
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Corollary 4. Let $S$ be a $P$-projective simple module with trivial source.
Then

$m_{S,P} \leq n_{S,P}’\leq n_{S,P}\leq k_{S,P}=\frac{\dim P(S)}{|P|}.$

Proof. The first inequality follows from Theorem 3. The second is trivial.

To prove the third, put $S_{P}\simeq\oplus_{i=1}^{ns,P}(1_{Q_{i}})^{P}$ for suitable $Q_{i}$ . Then $n_{S.P}=\dim$

$Hom(S_{P}, 1_{P})=\dim Hom(S, (1_{P})^{G})\leq k_{S,P}$ . Further $k_{S,P}=\dim Hom(P(S), (1_{P})^{G})=$

$\dim Hom(P(S)_{P}, 1_{P})=\frac{\dim P(S)}{|P|}$ , since $P(S)_{P}$ is projective. $\square$

Proposition 5. Let $S$ be a simple module. If $S$ is $P$-radical, then $S$ is weakly
$P$-radical.

Proof. Since $S$ is $P$-projective and has trivial source, by Corollary 4 we have

$m_{S,P}\leq n_{S,P}’\leq n_{S,P}\leq k_{S,P}$ . By assumption $m_{S,P}=k_{S,P}$ , so that $n_{S,P}’=n_{S,P}.$

Thus $S$ is weakly $P$-radical. $\square$

When $P$ is a Sylow $p$-subgroup of $G$ , a weakly $P$-radical module is said to

be just a weakly radical module. The same is true for other terminology. Also

$n_{S,P}$ is denoted by $n_{S}$ etc. Such convention is justified by Lemma 2. Note that

then radical blocks are -radical blocks as defined by Tsushima [Ts].

Corollary 6. ([Ok2, Lemma 1]) A radical (simple) module is weakly radical.

The following is fundamental.

Proposition 7. ([Okl, Lemma 2.2]). A simple $kG$ -module with trivial
source is an Alpern module.

Lemma 8. If $S$ is an Alperin module, then $(\dim S)_{p}=|P:vx(S)|$ , where $P$

is a Sylow $p$-subgroup of $G$ with $vx(S)\leq P.$

Proof. See the proof of Lemma 2.2 of [Okl]. $\square$

Proposition 9. Let $S$ be a simple $kG$-module. Let $P$ be a Sylow $p$-subgroup

of $G.$

(i) If $S$ is weakly radical, $\dim P(S)\geq|vx(S)|\dim S\geq|P|(\dim S)_{p’}.$

Furthermore the following conditions are equivalent.

(ii) $S$ is radical.
(iii) $S$ is weakly radical and $\dim P(S)=|P|(\dim S)_{p’}.$

(iv) $S$ is weakly radical and $\dim P(S)=|vxS|\dim S.$

(v) $n_{S}= \frac{\dim P(S)}{|P|}.$

Proof. We may assume $P\geq vx(S)$ .

(i) By Corollary 4 we have $\frac{\dim P(S)}{|P|}=k_{S}\geq n_{S}=\frac{\dim S}{|P:vx(S)|}$ , from which the

156



first inequality follows. The second inequality follows from Green’s theorem.
$(ii)\Rightarrow(iii)$ : By Corollary 6, $S$ is weakly radical. Also by Corollary 4 $n_{S}=k_{S}.$

We have $n_{S}= \frac{\dim S}{|P:vx(S)|}=(\dim S)_{p’}$ by Proposition 7 and Lemma 8. And

$k_{S}= \frac{\dim P(S)}{|P|}$ . Thus the equality holds.
$(iii)\Rightarrow(iv)$ : This follows from (i).
$(iv)\Rightarrow(v)$ : Since $S$ is weakly radical, $n_{S}= \frac{\dim S}{|P:vx(S)|}$ . The result follows.
$(v)\underline{\wedge}$ (ii): Write $S_{P}=\oplus_{i=1}^{n_{S}}(W_{i})^{P}$ , where each $W_{i}$ is an indecomposable

$kQ_{i}$-module for some $Q_{i}\leq P$ . Then $\dim Hom(1_{P}, S_{P})=\sum_{i}\dim Hom$

$(1_{P}, (W_{i})^{P})= \sum_{i}\dim Hom(1_{Q_{t}}, W_{i})\geq n_{S}$ . So we have

$n_{S} \leq\dim Hom(1_{P}, S_{P})=\dim Hom((1_{P})^{G}, S)\leq k_{S}=\frac{\dim P(S)}{|P|}.$

Hence equality holds throughout. Likewise we have $\dim Hom(S, (1_{P})^{G})=ks.$

Hence there exist submodules $U$ and $V$ of $(1_{P})^{G}$ with the following properties:
$U\simeq k_{S}S,$ $(1_{P})^{G}/V\simeq k_{S}S$ and $V$ does not involve $S$ . Then $U\cap V=0$ and
hence $(1_{P})^{G}=U\oplus V$ . Thus $S$ is radical. The proof is complete. $\square$

Corollary 10. Let $S$ be a simple $kG$-module for a $p$ -solvable group G. Then
$S$ is radical if and only if $S$ is weakly radical.

Proof. “only if‘ part: This follows from Corollary 6.
“if‘ part: Let $P$ be a Sylow p–subgroup of $G$ . Since $G$ is p–solvable $\dim P(S)=$

$|P|(\dim S)_{p’}$ by Fong’s theorem [Na, CorollarylO.14]. Thus Proposition 9 yields
the result. $\square$

Remark. There does exist a simple $kG$-module which is weakly radical
but not radical. Indeed, clearly $1_{G}$ is always weakly radical. Let $G$ be the
alternating group of degree 5 and $p=3$ . Then diln $P(1_{G})=6([HB, p.222])$ . So
by Proposition 9, $1_{G}$ is not radical.

Corollary 11. If $B$ is radical, then $(1_{P})^{G}e_{B}\simeq\oplus_{S}(\dim S)_{p’}S$ , where $S$ runs
through simple modules in $B$ up to isomorphism.

Theorem 12. Let $P$ be a $p$-subgroup of G. Then $B$ is $P$-radical if and only

if $B$ is weakly $P$-radical.

Proof. “if‘ part: Let $(1_{P})^{G}e_{B}\simeq\oplus_{S}m_{S},{}_{P}S\oplus X$ , where $S$ runs through
simple modules in $B$ up to isomorphism. Assume $X\neq 0$ and let $T$ be a simple
submodule of $X$ . Then $\dim Hom(T, (1_{P})^{G})>m_{T,P}$ . But $\dim Hom(T, (1_{P})^{G})=$

$\dim Hom(T_{P}, 1_{P})=n_{T,P}=n_{T,P}’=m_{T,P}$ by Proposition 7 and Theorem 3, $a$

contradiction. Hence $X=0$ and $B$ is $P$-radical.
“‘only $i$ part: This follows from Proposition 5. $\square$

The gToup G is said to be $p$-radical, if $(1_{P})^{G}$ is semi-simple for a Sylow
$p$-subgroup $P$ of $G$ ([Ts,p.80]),
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Corollary 13. $G$ is $p$-radical if and only if any simple $kG$-module is weakly

radical.

Lemma 14. If an Alperin module $S$ is weakly radical then $S$ is simple.

Proof. By Theorem 3 $m_{S}=n_{S}$ . FYom $(1_{P})^{G}=m_{S}S\oplus V$ , we have

$n_{S}=\dim Hom(S_{P}, 1_{P})=\dim Hom(S, (1_{P})^{G})=m_{S}\dim Hom(S, S)+\dim Hom(S, V)$

Thus $Hom(S, S)=k$ and $Hom(S, V)=$ O. Let $T$ be a simple module in the

head of S. Since $Hom(T, (1_{P})^{G})=Hom(T_{P}, 1_{P})\neq 0,$ $T$ is a submodule of $V$ or
$S$ . The former is impossible, since $Hom(S, V)=0$ . Thus the latter holds. Then

there is a non-zero homomorphism $\varphi$ : $Sarrow Soc(S)$ . Of course $\varphi(J(S))=$ O.

Since $Hom(S, S)=k,$ $\varphi$ must be a monomorphism. Therefore $J(S)=0$ . Thus
$S$ is simple.

Proposition 15. Let $B$ be a block of G. Assume that Alperin’s weight con-
jecture $[Al]$ is true for B. Then the following are equivalent.

(i) $B$ is radical.
(ii) $(1_{P})^{G}e_{B}$ is a direct sum of weakly radical indecomposable modules.
(iii) All Alperin modules in $B$ are weakly radical.

Proof. $(i)\Rightarrow(ii)$ : Any simple module $S$ in $B$ is radical. Hence $S$ is weakly

radical by Corollary 6.
$(ii)\Rightarrow(iii):LetS$ be an Alperin module in $B$ . Then $m_{S}=n_{S}’>0$ by Theorem

3 and [Fe,III 4.6]. Hence $S$ is weakly radical.
$(iii)\Rightarrow(i)$ : Let $S$ be an Alperin module in $B$ . Then $S$ is weakly radical.

Hence $S$ is simple by Lemma 14. Thus, by Alperin’s weight conjecture, any

simple module $T$ in $B$ is an Alperin module. Hence $T$ is weakly radical. So $B$

is weakly radical and radical by Theorem 12.

Proposition 16. Let $S$ be an indecomposable $kG$-module. If $\dim S$ is prime

to $p$ , then $S$ is weakly radical if and only if $G_{/}$KerS is a $p’$ -group.

Proof. (i) “only if‘ part: Let $P$ be a Sylow $p \frac{-}{}$subgroup of $G$ . By Lemma 1,

we have $S_{P}\simeq\oplus_{i}(1_{Q_{i}})^{P}$ , where $Q_{i}$ are vertices of $S$ . Thus $Q_{i}=P$ for all $i$ and
$P\leq$KerS.

“if’ part: Since $P\leq$ KerS, the result follows by Lemma 1.

2. Weakly radical simple modules and subgroups

In this section we consider relationship between weakly radical simple mod-

ules and subgroups.

Proposition 17. Let $S$ be a simple $kG$-module with trivial source. Let $H$ be

a subgroup of $G$ and let $U$ be a simple $kH$-module such that $S\simeq U^{G}.$
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(i) If $S$ is weakly radical, then $U$ is weakly radical.
(ii) Let $P$ be a Sylow $p$-subgroup of G. The following are equivalent.
(iia) $S$ is radical and $P(S)\simeq P(U)^{G}.$

(iib) $\dim Inv_{P^{\lambda}\cap H}(U)=\frac{\dim P(U)}{|P^{x}\cap H|}$ for any $x\in G.$

(iic) $U$ is radical and $S$ is weakly radical.

Proo (i) Choose a Sylow p–subgroup $P$ of $G$ such that $Q=P\cap H$ is a Sylow
$p$-subgroup of $H$ . We have $(U_{Q})^{P}|S_{P}$ by Mackey decomposition. Since $S$ has a
trivial source, so does $U$ . So we can put $U_{Q}\simeq\oplus_{i}(1_{R},$ $)^{Q}$ for some subgroups $R_{i}$

of $Q$ . Then $(U_{Q})^{P}\simeq\oplus_{i}(1_{R_{t}})^{P}$ . Since $S$ is weakly radical, all $R_{\eta}$ have the same
order. Thus $U$ is weakly radical by Lemma 1.

$(iia)\Rightarrow(iib)$ : We have $n_{S}=\dim Hom(1_{P}, S_{P})=\dim Hom((1_{P})^{G}, S)=\dim Hom(((1_{P})^{G})_{H}, U)=$

$\sum_{x\in P\backslash C/H}\dim Hom((1_{P^{x}\cap H})^{H}, U)$ . Here

$\dim Hom((1_{P\cap H})^{H}, U)=\dim Hom(1_{P^{x}\cap H}, U_{P^{x}\cap H})=\dim InvP^{\lambda}\cap H(U)$ .

And
$\dim Hom((1_{P^{\lambda}\cap H})^{H}, U)\leq\dim Hom(P(U), (1_{P^{x}\cap H})^{H})$

$= \dim Hom(P(U)_{P^{x}\cap H}, 1_{P^{x}\cap H})=\frac{\dim P(U)}{|P^{x}\cap H|}.$

Further, $\sum_{x}\frac{|H|_{p}}{|P^{x}\cap H|}=|G$ : $H|_{p’}$ . Therefore $n_{S} \leq\frac{\dim P(U)|G:H|_{p’}}{|H|_{p}}=\frac{\dim P(S)}{|G|_{p}}=$

$k_{S}$ . Since $S$ is radical, equality holds throughout by Proposition 9, and the re-
sult follows.

$(iib)\Rightarrow(iia)$ : FYom the above proof we obtain $n_{S}= \frac{\dim P(U)|G:H|}{|G|_{p}}.$

Since $P(S)|P(U)^{G},$ $\frac{\dim P(U)|G:H|}{|G|_{p}}\geq\frac{\dim P(S)}{|G|_{p}}=k_{S}$ . Therefore $n_{S}=k_{S}$ by Corol-
lary 4, and $S$ is radical by Proposition 9. Further, $P(S)\simeq P(U)^{G}.$

$(iia)\Rightarrow(iic)$ : Since $S$ is weakly radical by Corollary 6, $U$ is weakly radical
by (i). So by Proposition 9 it suffices to show $\dim P(U)=|vx(U)|\dim U$ . We
have $\dim P(S)=|G$ : $H|\dim P(U)$ . Since $S$ is radical, by Proposition 9 $\dim$

$P(S)=|vx(S)|\dim S=|vx(S)||G:H|\dim U$ . Since $vx(S)=Gvx(U)$ , the result
follows.

$( iic)\frac{\wedge}{}$ (iia):Since $U$ is radical, $\dim P(U)^{G}=|G:H||vx(U)|\dim U$ . Since $S$

is weakly radical, by Proposition 9 $\dim P(S)\geq|vx(S)|\dim(S)=|vx(S)||G$ :
$H|\dim U$ . Hence $\dim P(S)\geq\dim P(U)^{G}$ . But $P(S)|P(U)^{G}$ . So the equality
holds throughout. Therefore $P(S)\simeq P(U)^{G}$ and $S$ is radical by Proposition 9.
$\square$

Theorem 18([La,Theorem]) Let $P$ be a Sylow $p$-subgroup of G. The follow-
ing are equivalent.

(i) $G$ is $p$-radical.
(ii) For any simple $kG$-module $S$, there are a subgroup $H$ of $G$ and a simple

$kH$-module $U$ with the following properties: $S=U^{G},$ $vx(U)\leq$ KerU, $P^{x}\cap H$ is
a Sylow $p$-subgroup of $H$ for any $x\in G.$

(iii) For any simple $kG$-module $S$, there are a subgroup $H$ of $G$ and a simple
$kH$-module $U$ with the following properties: $S=U^{G},$ $vx(S)\leq$ KerU, $P^{x}\cap H$ is
a Sylow $p$-subgroup of $H$ for any $x\in G.$
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Proof. $(i)\Rightarrow(ii)G$ is $p$-solvable by [Ok2]. So there are $H$ and $U$ as above
such that $S=U^{G}$ and that $\dim U$ is a $p’$ -number by [Na,Theorem 10.11].

Since $G$ is $p$-solvable, $P(S)\simeq P(U)^{G}$ by Fong’s theorem [Na,Corollary 10.14].

Hence $U$ is radical by Proposition 17. Therefore $vx(U)\leq KerU$ by Corollary

6 and Proposition 16. Further, for any $x\in G,$ $\dim U=\dim Inv_{P^{x}\cap H}(U)=$

$\frac{\dim P(U)}{|P^{x}\cap H|}=\frac{|H|_{p}\dim U}{|P^{x}\cap H|}$ by Proposition 16, Proposition 17 (iib) and Fong’s theorem

[Na,Corollary 10.14]. So $P^{x}\cap H$ is a Sylow p–subgroup of $H$ for any $x\in G.$

$(ii)\Rightarrow(i)$ By Corollary 13, it suffices to show $S$ is weakly radical. From the
condition that $vx(U)\leq Ker(U)$ , we see $U|(1_{Kcr(U)})^{H}$ . This implies $U$ is weakly

radical. We have $S_{P} \simeq\sum_{x\in H\backslash G/P}(U_{H^{x}\cap P}^{x})^{P}$ . Since $U^{x}$ is a weakly radical
$kH^{x}$-module and $H^{x}\cap P$ is a Sylow $p$-subgroup of $H^{x}$ , we have $U_{H^{x}\cap P}^{x}\simeq$

$\oplus_{i}(1_{Q_{x}},:)^{H^{x}\cap P}$ and $|Q_{x.i}|=|vxU|$ . Therefore $S_{P}\simeq\oplus_{x,i}(1_{Q_{xi}})^{P}$ . So $S$ is
weakly radical by Lemma 1.

$(ii)\Rightarrow(iii)$ . Since $vx(U)$ is a vertex of $S$ , the result follows.
$(iii)\Rightarrow(ii)$ . Since $vx(S)\leq$ KerU, $vx(S)\leq vx(U)$ for a vertex of $U$ ([NT,Theorem

4.7.8 $(i)])$ . But $vx(S)=cvx(U)$ . So $vx(U)=vx(S)\leq$ KerU. The proof is com-
plete. $\square$

In case of normal subgroups we have the following

Proposition 19. Let $N$ be a normal subgroup of G. Let $S$ (resp. $X$) be a
simple kG-(resp. $kN-$)module.
(i) If $S|X^{G}$ and $X$ is weakly radical then $S$ is weakly radical.
(ii) If $X|S_{N}$ and $S$ is weakly radical then $X$ is weakly radical.

Proof Let $P$ be a Sylow p–subgroup of $G.$

(i) We have $S_{P}|(X^{G})_{P}$ . By Mackey decomposition,

$(X^{G})_{P}\simeq\oplus_{x,\in N\backslash G/P}((X^{x\prime})_{P\cap N})^{P}.$

It is straightforward to check that for each $x_{i},$
$X^{x_{i}}$ is also weakly radical. So

by Lemma 1, for each $i,$ $(X^{x_{i}})_{P\cap N}\simeq\oplus_{j}(1_{Q_{ij}})^{P\cap N}$ , where $Q_{ij}$ are subgroups of
$P\cap N$ such that $|Q_{ij}|=|vx(X)|$ . Hence $S$ is weakly radical by Lemma 1.

(ii) We have $X_{P\cap N}|S_{P\cap N}$ . Put $S_{P}\simeq\oplus_{i}(1_{Q},$ $)^{P}$ for suitable $Q_{i}\leq P$ . Then
for each $i,$

$((1_{Q_{i}})^{P})_{P\cap N}\simeq\oplus_{u\in Q_{i}\backslash P/P\cap N(1_{N\cap(Q_{i})^{u}})^{P\cap N}},$

Since $Q_{i}$ are $G$-conjugate, $|N\cap(Q_{i})^{u}|$ are the same for all $i$ and $u$ . Thus $X$ is
weakly radical by Lemma 1. The proof is complete. $\square$

3. $D$-radical blocks

Let $B$ be a block of $G$ with defect group D. $D$-radical blocks have been
investigated in [Hida-Koshitani]

Lemma 20. Let $P$ and $Q$ be $p$-subgroups of $G.$
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(i) If $S$ is a weakly $P$-radical module and $P\leq Q$ , then $S$ is weakly $Q$-radical.
(ii) If $S$ is a $P$-radical module and $P\leq Q$ , then $S$ is $Q$-radical. In particular,

if $B$ is $D$-radical, then $B$ is radical.
(iii) If $B$ is $P$-radical, $P$ contains a defect group of $B.$

Proof (i) Let $X$ be an indecomposable summand of $S_{Q}$ . Then, since $S$ is
weakly $P$-radical, $(1_{Q_{i}})^{P}|X_{P}$ for some $Q_{i}\leq P$ with $Q_{i}=Gvx(S)$ . Then there
is a vertex vx(X) of $X$ with vx(X) $\geq Q_{i}$ . But vx(X) $\leq cvx(S)$ , so vx(X) $=Q_{i}.$

Since $X$ has trivial source, we obtain $X=(1_{Q_{7}},$ $)^{Q}$ . Thus $S$ is weakly $Q$-radical.
(ii) Since there is an epi $(1_{P})^{Q}arrow 1_{Q}$ , there is an epi $\varphi$ : $(1_{P})^{G}arrow(1_{Q})^{G}.$

We have $(1_{P})^{G}=U\oplus V$ , where $U\simeq mS$ for some integer $m$ and $V$ does not
involve $S$ . Then $(1_{Q})^{G}=\varphi(U)+\varphi(V)$ . Here $\varphi(U)\simeq m’S$ for some integer $m’$

and $\varphi(V)$ does not involve $S$ . Hence $(1_{Q})^{G}=\varphi(U)\oplus\varphi(V)$ , and $S$ is $Q$-radical.
(iii) Let $S$ be a simple module in $B$ with vertex $D$ . Then $S$ is $P$-radical, and

$S$ is weakly $P$-radical. Thus $P$ contains a vertex of $S$ , and the result follows.
The proof is complete. $\square$

Lemma 21. Let $S$ be an indecomposable $kG$-module. Let $vx(S)=Q\leq P$

for a $p$ -subgroup $P$ of G. The following are equivalent.
(i) $S$ is weakly $P$-radical and $Q$ is strongly closed in $Pu$)$ith$ respect to $G.$

(ii) $S$ is weakly $P$-radical and $Q$ is weakly closed in $P$ with respect to $G.$

(iii) $S_{P}\simeq n(1_{Q})^{P}$ for some integer $n$ and $Q\triangleleft P.$

(iv) $Q\leq$ KerS.

Proof. $(i)\Rightarrow(ii)$ : This is trivial.
$(ii)\Rightarrow(iii)$ : We have $S_{P}\simeq\oplus_{i}(1_{Q_{t}})^{P}$ , where $Q_{i}=cQ$ for each $i$ . Since

$Q,$ $Q_{i}\leq P$ , we obtain $Q_{i}=Q$ . Therefore $S_{P}\simeq n(1_{Q})^{P}$ for some integer $n.$

Clearly $Q\triangleleft P.$

$(iii)\Rightarrow(iv)$ : Clearly $S_{Q}\simeq m1_{Q}$ for some integer $m.$

$(iv)\Rightarrow(i)$ : We have $S_{Q}\simeq m1_{Q}$ for some integer $m$ , so that $S$ is weakly
$Q$-radical. Thus $S$ is weakly $P$-radical by Lemma 20. Put $N=$ KerS. Then
$S_{N}\simeq m1_{N}$ and $S$ is $N$-projective. Hence $S$ and $1_{N}$ have a common vertex. Thus
$Q$ is a Sylow $p$-subgroup of $N$ . Since $Q\leq P\cap N\leq N$ , we obtain $Q=N\cap P.$

Then for any $g\in G,$ $Q^{g}\cap P\leq N\cap P=Q$ . Thus $Q$ is strongly closed in $P$ with
respect to $G$ . The proof is complete. $\square$

Let $B_{0}(G)$ be the principal block of $G.$

Theorem 22 (Okuyama). If $B_{0}(G)$ is radical, $G$ is $p$ -solvable.

Proof. See the proof of Theorem 1 of [Ok2]. $\square$

Let $R_{p}(G)$ be the maximal normal $p$-solvable subgroup of $G.$

The following strengthens Theorem 1.1 of [HK].
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Theorem 23. Let $P$ be a Sylow $p$-subgroup of $G$ with $P\geq D$ . The following
are equivalent.

(i) $B$ is $D$-radical.
(ii) $B$ is weakly $D$-radical.
(iii) There $\dot{u}$ a $p$-solvable normal subgroup $N$ of $G$ such that:

$B$ covers $B_{0}(N)$ , $D$ is a Sylow $p$-subgroup of $N$, and $B_{0}(N)$ is radical.
(iv) For a block $b$ of $R_{x}(G)$ covered by $B$, it holds that:

$D$ is a defect group of $b,$ $b$ is $D$-radical and $G=N_{G}(D)R_{p}(G)$ .
(v) $B$ is radical and $D$ is strongly closed in $P$ with respect to $G.$

(vi) $B$ is radical and $D$ is weakly closed in $P$ with respect to $G.$

(vii) $B$ is radical and there is a simple $kG$-module $S$ in $B$ with KerS $\geq D.$

(viii) $B$ is radical and there \’is a normal subgroup $N$ of $G$ such that $D$ is a
Sylow $p$-subgroup of $N.$

Proof. $(i)\Leftrightarrow(ii)$ This follows from Theorem 12.
$(ii)\Rightarrow(iii)$ : Let $S_{1}$ be a simple $kG$-module in $B$ with vertex $D$ . Put $N=KerS_{1}.$

Since $S_{1}$ is weakly $D$-radical, $(S_{1})_{D}\simeq n1_{D}$ for some integer $n$ . So $D\leq N$ . Since
$B$ covers $B_{0}(N)$ , $D$ is a defect group of $B_{0}(N)$ . Thus $D$ is a Sylow X subgroup
of $N$ . For any simple $kN$-module $X$ in $B_{0}(N)$ , choose a simple $kG$-module $S$ in
$B$ lying over $X$ . Then, since $S$ is weakly $D$-radical, we see $X$ is weakly radical
by Proposition 19 and Lemma 20. So $B_{0}(N)$ is radical by Theorem 12 and $N$

is p–solvable by Theorem 22.
(iii) (iv): Let $b$ be a block of $R_{p}(G)$ covered by $B$ . Since $N\leq R_{p}(G)$ and

$b$ covers $B_{0}(N)$ , we may assume $D$ is a defect group of $b$ . By the Frattini argu-
ment $G=N_{G}(D)N=N_{G}(D)R_{x}(G)$ . Let $S$ be a simple module in $b$ . For any
irreducible constituent $X$ of $S_{N},$ $X$ lies in $B_{0}(N)$ and $X$ is weakly $D$-radical.
Thus $S$ is weakly $D$-radical. So $b$ is weakly $D$-radical and hence $D$-radical by
Theorem 12.

$(iv)\Rightarrow(ii)$ : For any simple $kG$-module $S$ in $B$ , let $X$ be an irreducible con-
stituent in $b$ of $S_{R_{p}(G)}$ . Then, since $b$ is $D$-radical and hence weakly $D$-radical,
$X_{D}\simeq\oplus_{i}(1_{Q}.)^{D}$ , where $Q_{i}=R_{p}(G)vx(X)$ . $S_{D}$ is a direct sum of of the modules
of the form $(X^{g})_{D},$ $g\in G$ . Now there is $n\in N_{G}(D)$ such that $X^{9}\simeq X^{n}$ . Then

$(X^{q})_{D}\simeq(X^{n})_{D}\simeq(X_{D})^{n}\simeq\oplus_{i}(1_{Q^{n}},)^{D}.$

Since $|Q_{i}^{n}|=|vx(X)|,$ $S$ is weakly $D$-radical. Hence (ii) follows.
(v) $\Rightarrow(vi)$ : This is trivial.
$(vi)\Rightarrow(v)$ : Let $S$ be a simple module in $B$ with vertex $D$ . Since $S$ is weakly

radical and $D$ is weakly closed in $P$ with respect to $G,$ $D$ is strongly closed in
$P$ with respect to $G$ by Lemma 21.

$(v)\Rightarrow(ii)$ : Let $S$ be a simple module in $B$ . We have $S_{P}\simeq\oplus_{i}(1_{Q}:)^{P},$

where $Q$ is a vertex of $S$ and $Q_{i}=Q^{x}:,$ $x_{i}\in G$ . We may assulne $Q\leq D.$

$((1_{Q_{i}})^{P})_{D}\simeq\oplus_{u\in Q_{i}\backslash P/D}(1_{Q_{t}^{u}\cap D})^{D}$ . We see $Q_{i}^{u}=Q^{x_{i}u}\leq D^{x.u}\cap P\leq D$ by (v).
Therefore $((1_{Q_{i}})^{P})_{D}\simeq\oplus_{u}(1_{Q^{u}}.)^{D}$ . Hence $S$ is weakly $D$-radical.

(i) and $(iii)\Rightarrow(vii)$ : By Lemma 20, $B$ is radical. Let $S$ be a simple module
in $B$ lying over $1_{N}$ . Then $D\leq N\leq$ KerS.
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$(vii)\Rightarrow($viii) : Let $N=$ KerS. Then $B$ covers $B_{0}(N)$ . Therefore $D=D\cap N$

is a defect group of $B_{0}(N)$ .
$($viii) $\Rightarrow(v)$ : This follows from the fact that $D=P\cap N$ . The proof is

complete. $\square$

Remark. The implication $(i)\Rightarrow(ii)$ has been proved in Lemma 7 of [Ko] in
a different way.

Corollary 24 ([HK], Corollary 1.3). If vx(S) $–<$ KerS for any simple module
$S$ in $B$, then $B$ is $D$-radical.

Proof. Let $S$ be a simple module in $B$ . By Lemma 21 $S$ is weakly $D$-radical.
Hence $B$ is weakly $D$-radical, and $B$ is $D$-radical by Theorem 23. $\square$

The following extends Theorem 22.

Corollary 25. Let $B$ be a radical block of $G$ with defect group D. If $D$ is a
Sylow $p$-subgroup of $G$, then $G$ is $p$-solvable.

Proof. We see $B$ is $D$-radical. If $N$ is as in (iii) of Theorem 23, then $N$ is
$p$-solvable and $G/N$ is a $p’$-group. Hence $G$ is $p$-solvable. $\square$
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