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On a class of indecomposable modules with
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Abstract The concept of p-radical groups was introduced by Motose-Ninomiya
[MN]. Later Tsushima [Ts] investigated p-radical blocks, a block-wise version of
p-radical groups. Here we consider more general blocks and introduce module-
theoretical viewpoint.

Introduction

Let p be a prime. Let k be an algebraically closed field of characteristic p.
Tsushima [Ts] has defined p-radical blocks. In this paper we consider a more
general concept and give a module theoretical consideration. We need to in-
troduce some terminology. Let G be a group and P a p-subgroup of G. An
indecomposable (right) kG-module S is said to be weakly P-radical if it is P-
projective and the number of indecomposable summands (counting multiplicity)
of Sp equals @T‘—S’J}%ﬂ (for notation, see below). A simple kG-module S is said

to be P-radical if (1p)¢ ~ mS&V, where m is an integer and V is a kG-module
not involving S, in which case m is positive, since Homyg(S, (1p)%) # 0. We
call a p-block B of G weakly P-radical if any simple kG-module in B is weakly
P-radical. We call B P-radical if any simple kG-module in B is P-radical.
Clearly B is P-radical if and only if (1p)%ep is semi-simple, where ep is a block
idempotent of kG corresponding to B. So when P is a Sylow p-subgroup of G,
a P-radical block is a p-radical block in the sense of Tsushima [Ts].

In Section 1 we show for any p-subgroup P of G, B is P-radical if and only
if B is weakly P-radical. In Section 2 we consider relationship between weakly
P-radical simple modules and subgroups of G for a Sylow p-subgroup P of G.
We obtain an alternative proof of a theorem of Laradji [La]. In Section 3 we
consider D-radical blocks B for a defect group D of B and strengthen a theorem
of Hida-Koshitani [HK].

For a k-module X dim X denotes the k-dimension of X. For an indecompos-
able kG-module S, let vx(S) be a vertex of S. For a group H and kH-modules
X,Y, Hom (X,Y’) denotes Homy g (X,Y") and let P(X) be the projective cover
of X. For subgroups H, K of G, H\G/K denotes a complete set of representa-
tives of (H, K')-double cosets in G.



1. Weakly P-radical and P-radical modules

Let P be a p-subgroup of the group G. For an indecomposable kG-module
S, let ng p be the number of indecomposable summands of Sp (counting multi-
plicity), let ng p be the number of indecomposable summands of Sp (counting
multiplicity) whose vertices are G-conjugate to vx(S). Note that ng p is pos-
itive, if S is P-projective, cf.[Fe,III 4.6]. Let mg p be the multiplicity of S in
(1p)C as direct summands. If S is simple, let ks p be the multiplicity of S in
(1p)€ as irreducible constituents.

Lemma 1. Let S be a P-projctive indecomposable kG-module. Then ng,p <

—H—Lﬂdi“"sl XN and the following are equivalent.
(l) ng p= dimS|vx(S)

[P]
(ii) Sp is a direct sum of modules of the form (14)” where A is a vertez of
S contained in P.
(iil) Sp ~ @;(1g,)F, where Q; are subgroups of P of the same order-
If these conditions hold, then S has a trivial source.

Proof. We have Sp = @,°"W,P, where W; are indecomposable kQ;:-
modules for @; < P with Q; <¢ vx(S). So dim S = ¥, |P : Q;|dimW; >
(3 dimW;) | PI/vx(S)| > ns,p|P|/|vx(S)|. Thus ng,p < 9RO The rest
follows from [Fe, III 4.6]. 0

As stated in Introduction, for a p-subgroup P of G, we say an indeccompos-
able kG-module S weakly P-radical if § is P-projective and ng p = %’,ﬂﬂt.
For this definition we have the following, which is straightforward to see.

Lemma 2. Let P be a p-subgroup of G and let § be an indecomposable kG-
module. Let z be any element of G. Then ng p = ns.pr,Ngp = ng ps,Ms,p =
mg,p= and if S is simple ks p = kg p-. In particular, if S is weakly P-radical,
then S is weakly P®-radical.

Recall that a weight U for G is a projective simple k[Ng(Q)/Q]-module for
a p-subgroup @ of G ([Al]). So as a kNg(Q)-module U is indecomposable with
trivial source and has @ as a vertex. The Green correspondent of U with respect
to (G,Q, Ng(Q)) is said to be an Alperin (kG-)module.

The folowing strengthens Lemma 1 of [Al].

Theorem 3. Let P be a p-subgroup of G. Let S be a P-projective indecom-
posable kG-module with trivial source. Then mgp < ng, p and the equality holds
if and only if S is an Alperin module.

Proof. We compute ns p. Let Q be a vertex of S. Let U be the Green corre-
spondent of S with respect to (G, Q, Ng(Q)). By Green’s theorem, US = SeV,
where V' is A-projective for X = {Q N Q%;2 ¢ Ng(Q)}. Since Vp has no
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direct summands whose vertex is G-conjugate to @, il suffices to consider
(U®)p. By Mackey decomposition, (U®)p ~ Szeng@na/p(U%)ne(@)=np)F-

Assume that ((U*)ng()=np)¥ has an indecomposable summand with vertex
G-conjugate to Q. Then for a vertex R of some indecomposable summand of
(U®)Ng(Q)=np, we have R* > Q9 for some u € P and g € G. Since U” has a
vertex Q°, which is normal in Ng{(Q)®, we have R < @Q*. Therefore R = Q*.
Hence P > Q®. Conversely assume P > Q®. Then Ng(Q)* N P > Q*. There-

fore (U™)ng(@)=np = Utygrgrmp Where No(Q)2 N P = Ne(Q)* N P/Q” and

U® is the Ng(Q%)/@Q*-module corresponding to UZ.
; 77z ; iocts bain TTT. ~ dimU INA(O)E P
Since U= is projective, we obtain UxNG(Q)mP o INc(ggmplk[NG(Q)f’ NPl

; ANA(O)ZE N Pl = e ~ dimU
Since k[Ng(Q)? N P] = (1g=)Ne(@™"F we have (U%)ng(gyznp) = rﬁ—jc%ﬁ(lom)”-

Therefore s p = Y-, e ne (@N\6/P.P20" TRetGmFl"

Now we consider mg p. By the Burry-Carlson-Puig theorem, mg p equals
the multiplicity of U in ((1p)%) Ne(@) as direct summands. By Mackey decom-
position, we have

(1P)%)No(@) = Brer\a/Na (@) (1penns@) ¢ @.

Since U has vertex @ it suffices to consider those z € P\G/N¢(Q) for which @ <
P=. Then, (Lpennos(@)"*'? = (Igmrmggy) (¥, where No(Q) = No(Q)/Q.

Put ( lm)N (@ ~ n,U&V,, where U is the Ng(Q)-module correspoding
to U and B

Vz has no summands isomorphic to U. Thenmsp =3 . P\G/N&(Q),Q<pP= -
Now B

dim Hom((lm)N"(Q), U) = npdim Hom(U, U) + dim Hom(V,, U) > n,.

On the other hand,

dim Hom((lm)NG(Q), U) = dimHom((leNG(Q), UPmNc(Q))
_ dimU
[P*ANc(@Q)
since U is projective. Therefore
_ di
dimHom(lm)Nc(Q)’ U) = T_L‘“‘—lj—“* - nlsyp.
z€P\G/Na(Q).Q<P" zeP\G/Na(Q),Q< P~ |P* N Ne(Q)]

Here the last equality follows by considering the correspondence z — z~!. Hence
nsp 2 2., Nz = mg,p. If the equality holds then mgs p = n p # 0, since S is
P-projective,cf, [Fe,III 4.6]. So n, # 0 for some . Thus dim Hom (U,U) = 1.
Since U is projective we see U is simple and S is Alperin. Conversely assume
U is simple. Then equality holds throughout. Hence mg p = n’s p- The proof
is complete. o
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Corollary 4. Let S be a P-projective simple module with trivial source.
Then
dimP(S)

msp <ngp <nsp<ksp= P

Proof. The first inequality follows from Theorem 3. The second is trivial.

To prove the third, put Sp ~ &,~;" (1o, )P for suitable @Q;. Then ng p =dim
Hom(Sp, 1p) =dim Hom (S, (lp) ) < kg p. Further kg p = dim Hom (P(S), (1p)%) =
dim Hom (P(S)p,1p) = d;mvﬁ‘gﬁ), since P(S)p is projective. m]

Proposition 5. Let S be a simple module. If S is P-radical, then S is weakly
P-radical.

Proof. Since S is P-projective and has trivial source, by Corollary 4 we have
mg,p < g p < ns p < ks p. By assumption ms p = ks p, 50 that nlg p = ns,p.
Thus S is weakly P-radical.

When P is a Sylow p-subgroup of G, a weakly P-radical module is said to
be just a weakly radical module. The same is true for other terminology. Also
ng,p is denoted by ng etc. Such convention is justified by Lemma 2. Note that
then radical blocks are p-radical blocks as defined by Tsushima [Ts]. .

Corollary 6. ([Ok2, Lemma 1]) A radical (simple) module is weakly radical.
The following is fundamental.

Proposition 7. (|Okl, Lemma 2.2]). A simple kG-module with trivial
source 18 an Alperin module.

Lemma 8. If S is an Alperin module, then (dimS), = |P : vx(S)|, where P
is a Sylow p-subgroup of G with vx(S) < P.

Proof. See the proof of Lemma 2.2 of [Ok1]. |

Proposition 9. Let S be a simple kG-module. Let P be a Sylow p-subgroup
of G.

(i) If S is weakly radical, dimP(S) > |vx(S)|dimS > |P|(dimS),
Furthermore the following conditions are equivalent.

(ii) S is radical.

(iii) S is weakly radical and dimP(S) = |P|(dimS),.

(1v) S 1is weakly radical and dlmP( ) = |[vxS|dimS.

(V) — dimP(S) .

[P

Proof. We may assume P > vx(S).
(i) By Corollary 4 we have @{_}%ﬁs_) =ks > ng = ﬁ%ﬂ, from which the



first inequality follows. The second inequality follows from Green's theoremmn.
(ii)=>(iii): By Corollary 6, S is weakly radical. Also by Corollary 4 ng = ks.
We have ng = ]?%%%ﬂ = (dimS), by Proposition 7 and Lemma 8. And

ks = d’mﬁ %), Thus the equality holds.

(iii)=>(iv): This follows from (i).

(iv)=>(v): Since S is weakly radical, ng = IT;%(‘(SS,—)T. The result follows.

(v)=>(ii): Write Sp = &05,(W;)¥, where each W, is an indecomposable
kQ;-module for some @Q; < P. Then dim Hom (1p,Sp) = >, dim Hom
(1p, (W;)F) = ¥",dim Hom (1g,, W;) > ng. So we have

dimP(S)

ng < dim Hom(1p, Sp) = dimHom((1p)%, S) < kg = P

Hence equality holds throughout. Likewise we have dim Hom(S, (1p)%) = ks.
Hence there exist submodules U and V of (1p)% with the following properties:
U ~ ksS, (1p)¢/V =~ ksS and V does not involve S. Then U NV = 0 and
hence (1p)¢ = U @ V. Thus S is radical. The proof is complete. ]

Corollary 10. Let S be a simple kG-module for a p-solvable group G. Then
S is radical if and only if S is weakly radical.

Proof. "only if” part: This follows from Corollary 6.
"if” part: Let P be a Sylow p-subgroup of G. Since G is p-solvable dim P(S) =
|P|(dim S), by Fong’s theorem [Na, Corollary10.14]. Thus Proposition 9 yields
the result. i

Remark. There does exist a simple kG-module which is weakly radical
but not radical. Indeed, clearly 1¢ is always weakly radical. Let G be the
alternating group of degree 5 and p = 3. Then dim P(lg) = 6([HB, p.222]). So
by Proposition 9, 14 is not radical.

Corollary 11. If B is radical, then (1p)%ep ~ ®5(dimS), S, where S runs
through simple modules in B up to isomorphism.

Theorem 12. Let P be a p-subgroup of G. Then B is P-radical if and only
if B is weakly P-radical.

Proof. if’ part: Let (1p)%ep ~ @®gsms pS @ X, where S runs through
simple modules in B up to isomorphism. Assume X # 0 and let T be a simple
submodule of X. Then dim Hom(7, (1p)¢) > mr p. But dim Hom(7, (1p)¢)=
dimHom(Tp,1p) = nyp = ny p = mr,p by Proposition 7 and Theorem 3, a
contradiction. Hence X = 0 and B is P-radical.

“only if” part: This follows from Proposition 5. O

The group G is said to be p-radical, if (1 p)G is semi-simple for a Sylow
p-subgroup P of G ([Ts,p.80]),
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Corollary 13. G is p-radical if and only if any simple kG-module is weakly
radical.

Lemma 14. If an Alperin module S is weakly radical, then S is simple.

Proof. By Theorem 3 mg = ng. From (1p)¢ = mgS @V, we have
ng = dim Hom(Sp, 1p) = dim Hom(S, (1p)%) = mgdim Hom(S, S)+dim Hom(S, V)

Thus Hom (S,S) = k and Hom (S,V) = 0. Let T be a simple module in the
head of S. Since Hom (T, (1p)¢)= Hom (Tp, 1p) # 0, T is a submodule of V or
S. The former is impossible, since Hom (S, V) = 0. Thus the latter holds. Then
there is a non-zero homomorphism ¢ : § — Soc(S). Of course p(J(S)) = 0.
Since Hom (S, S) = k, ¢ must be a monomorphism. Therefore J(S) = 0. Thus
S is simple.

Proposition 15. Let B be a block of G. Assume that Alperin’s weight con-
jecture [Al] is true for B. Then the following are equivalent.

(i) B is radical.

(ii) (1p)Cep is a direct sum of weakly radical indecomposable modules.

(iii) All Alperin modules in B are weakly radical.

Proof. (i)=>(ii): Any simple module S in B is radical. Hence S is weakly
radical by Corollary 6.

(ii)=(iii):Let S be an Alperin module in B. Then mg = ns > 0 by Theorem
3 and [Fe,III 4.6]. Hence S is weakly radical.

(iii)=(1): Let S be an Alperin module in B. Then S is weakly radical.
Hence S is simple by Lemma 14. Thus, by Alperin’s weight conjecture, any
simple module T in B is an Alperin module. Hence T is weakly radical. So B
is weakly radical and radical by Theorem 12.

Proposition 16. Let S be an indecomposable kG-module. If dim S is prime
to p, then S is weakly radical if and only if G/KerS§ is a p'-group.

Proof. (i) "only if” part: Let P be a Sylow p-subgroup of G. By Lemma 1,
we have Sp ~ @:(1g,)¥, where Q; are vertices of S. Thus Q; = P for all ¢ and
P <KerS.

"if” part: Since P < KerS, the result follows by Lemma 1.

2. Weakly radical simple modules and subgroups

In this section we consider relationship between weakly radical simple mod-
ules and subgroups.

Proposition 17. Let S be a simple kG-module with trivial source. Let H be
a subgroup of G and let U be a simple kH-module such that S ~U G,
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(i) If S is weakly radical, then U is weakly radical.

(ii) Let P be a Sylow p-subgroup of G. The following are equivalent.
(iia) S is radical and P(S) ~ P(U)C.

(iib) dimInvpeng(U) = ‘—?%’}%-g—,l forany x € G.

(iic) U is radical and S is weakly radical.

Proof. (i) Choose a Sylow p-subgroup P of G such that Q = PNH is a Sylow
p-subgroup of H. We have (Ug)¥'|Sp by Mackey decomposition. Since S has a
trivial source, so does U. So we can put Ug ~ &;(1g,;)¥ for some subgroups R;
of Q. Then (Ug)¥ ~ @;(1g,)P. Since S is weakly radical, all R; have the same
order. Thus U is weakly radical by Lemma 1.

(iia)=(iib): We have ng = dim Hom(1p, Sp) =dim Hom((1p)%, §) = dim Hom(((1p)%) g, U) =

> eep\gyrdim Hom((1peng)?,U). Here
dim Hom((1p=ne)®,U) = dim Hom(1p=np, Upsng) = dimInvpsrg (U).

And
dim Hom((1p=ng)¥,U) < dim Hom(P(U), (1penp)¥) |
= dimHom(P(U) peng, lpeng) = d;}g;?(gg.

Further, Ex -I?IgFL-Pﬁ[ = |G : Hlp" Therefore ng < dimP(|[2||G:Hlp, _ dh]nGI‘DEES) _

ks. Since S is radical, equality holds throughout by Proposiption 9, and the re-
sult follows. _

(iib)=-(iia): From the above proof we obtain ng = d—"lpi'%—%@ﬂ-l.
Since P(S)|P(U)C, dimp,(g])plc:m > di‘,rgiss) = kg. Therefore ng = kg by Corol-
lary 4, and S is radical by Proposition 9. Further, P(S) ~ P(U)S.

(iia)=>(iic): Since S is weakly radical by Corollary 6, U is weakly radical
by (i). So by Proposition 9 it suffices to show dim P(U) = |vx(U)|dimU. We
have dimP(S) = |G : H|dimP(U). Since S is radical, by Proposition 9 dim
P(8S) = [vx(8)|dimS = |vx(9)||G : H|dim U. Since vx(S) =g vx(U), the result
follows.

(lic)=-(iia):Since U is radical, dim P(U)¢ = |G : H||vx(U)|dimU. Since S
is weakly radical, by Proposition 9 dim P(S) > |vx(S)|dim(S) = |vx(9)||G :
Hl|dim U. Hence dim P(S) >dimP(U)¢. But P(S)|P(U)¢. So the equality
holds throughout. Therefore P(S) ~ P(U)® and S is radical by Proposition 9.

L

Theorem 18({La,Theorem]) Let P be a Sylow p-subgroup of G. The follow-
ing are equivalent.

(i) G is p-radical.

(ii) For any simple kG-module S, there are a subgroup H of G and a simple
kH-module U with the following properties: S = U%,vx(U) < KerU, P* N H is
a Sylow p-subgroup of H for any = € G.

(iii) For any simple kG-module S, there are a subgroup H of G and a simple
kH-module U with the following properties: S = U%,vx(S) < KerU, P* N H is
a Sylow p-subgroup of H for any x € G.
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Proof. (i) = (ii) G is p-solvable by [Ok2]. So there are H and U as above
such that § = U® and that dim U is a p’-number by [Na,Theorem 10.11].
Since G is p-solvable, P(S) ~ P(U)® by Fong’s theorem [Na,Corollary 10.14].
Hence U is radical by Proposition 17. Therefore vx(U) <Ker U by Corollary
6 and Proposition 16. Further, for any z € G, dim U = dim Invp:ng(U) =

‘?}"Lﬁ%) = Iﬂ’;‘::;‘;ll] by Proposition 16, Proposition 17 (iib) and Fong’s theorem
[Na,Corollary 10.14]. So P* N H is a Sylow p-subgroup of H for any x € G.

(ii)=> (i) By Corollary 13, it suffices to show S is weakly radical. From the
condition that vx(U) < Ker(U), we see U|(1ker(r))™. This implies U is weakly
radical. We have Sp ~ ZzeH\G/P(U%mp)P. Since U® is a weakly radical
kH*-module and H* N P is a Sylow p-subgroup of H®, we have U¥4.~p =~
®i(1g, )7 "F and |Qss| = |vxU|. Therefore Sp =~ Dz,i(1g,,)F. So S is
weakly radical by Lemma 1.

(i))=-(iii). Since vx(U) is a vertex of S, the result follows.

(iii)=-(ii). Since vx(S) < KerU, vx(S) < vx(U) for a vertex of U([NT,Theorem
4.7.8 (i)]). But vx(S) =gvx(U). So vx(U) = vx(S) < KerU. The proof is com-
plete. O

In case of normal subgroups we have the following

Proposition 19. Let N be a normal subgroup of G. Let S (resp. X) be a
simple kG-(resp. kN-)module.
(i) If S|XC and X is weakly radical, then S is weakly radical.
(i) If X|Sn and S is weakly radical, then X is weakly radical.

Proof. Let P be a Sylow p-subgroup of G.
(i) We have Sp|(X%)p. By Mackey decomposition,

(X%)p ~ Br,ema/p((X™)pan)F.

It is straightforward to check that for each xz;, X% is also weakly radical. So
by Lemma 1, for each ¢, (X*)pany =~ 69,-(1@].)”””, where Q;; are subgroups of
PN N such that |Q;;] = |[vx(X)|. Hence S is weakly radical by Lemma 1.

(ii) We have Xpnn|Span. Put Sp =~ @;(1g,)? for suitable @; < P. Then
for each 1,

(1)) Prn = Ducgip/pan(Inn@oy=) ™

Since Q; are G-conjugate, |N N (Q;)*| are the same for all ¢ and u. Thus X is
weakly radical by Lemma 1. The proof is complete. O

]

3. D-radical blocks

Let B be a block of G with defect group D. D-radical blocks have been
investigated in [Hida-Koshitani]

Lemma 20. Let P and @ be p-subgroups of G.
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(i) If S is a weakly P-radical module and P < @, then S is weakly Q-radical.

(ii) If S is a P-radical module and P < @, then S is Q-radical. In particular,
if B is D-radical, then B is radical.

(iii) If B is P-radical, P contains a defect group of B.

Proof (i) Let X be an indecomposable summand of Sg. Then, since S is
weakly P-radical, (1¢,)"|Xp for some Q; < P with Q; =gvx(S). Then there
is a vertex vx(X) of X with vx(X) > @;. But vx(X) <gvx(5), so vx(X) = Q;.
Since X has trivial source, we obtain X = (1g,)?. Thus S is weakly Q-radical.

(ii) Since there is an epi (1p)? — 1¢, there is an epi ¢ : (1p)¢ — (1g)C.
We have (1p)¢ = U @ V, where U ~ mS for some integer m and V does not
involve S. Then (1g)¢ = ¢(U) + ¢(V). Here p(U) ~ m'S for some integer m/
and (V) does not involve S. Hence (19)¢ = ¢(U) ® ¢(V), and S is Q-radical.

(iii) Let S be a simple module in B with vertex D. Then S is P-radical, and
S is weakly P-radical. Thus P contains a vertex of S, and the result follows.
The proof is complete. |

Lemma 21. Let S be an indecomposable kG-module. Let vx(S) = Q < P
for a p-subgroup P of G. The following are equivalent.

(i) S is weakly P-radical and Q is strongly closed in P with respect to G.

(ii) S is weakly P-radical and Q is weakly closed in P with respect to G.

(iii) Sp ~ n(1g)¥ for some integer n and Q <1 P.

(iv) Q < KerS.

Proof. (i)= (ii): This is trivial.

(ii)=>(iii): We have Sp ~ @;(1g,)¥, where Q; =¢ Q for each i. Since
Q,Q; < P, we obtain @Q; = Q. Therefore Sp ~ n(1g)¥ for some integer n.
Clearly @ < P.

(ili)=(iv): Clearly Sp ~ mlg for some integer m.

(iv)=(i): We have Sg =~ mlg for some integer m, so that S is weakly
(J-radical. Thus S is weakly P-radical by Lemma 20. Put N = KerS. Then
Sn ~ mly and S is N-projective. Hence S and 1y have a common vertex. Thus
Q is a Sylow p-subgroup of N. Since @ < PN N < N, we obtain @ = NN P.
Then for any g € G,Q9NP < NN P = Q. Thus Q is strongly closed in P with
respect to G. The proof is complete. O

Let Bo(G) be the principal block of G.

Theorem 22 (Okuyama). If By(G) s radical, G is p-solvable.

Proof. See the proof of Theorem 1 of [Ok2]. O
Let R,(G) be the maximal normal p-solvable subgroup of G.

The following strengthens Theorem 1.1 of [HK].

161



162

Theorem 23. Let P be a Sylow p-subgroup of G with P > D. The following
are equivalent.

(i) B is D-radical.

(ii) B is weakly D-radical.

(iii) There is a p-solvable normal subgroup N of G such that:
B covers By(N), D is a Sylow p-subgroup of N, and Bo(N) is radical.

(iv) For a block b of R,(G) covered by B, it holds that:
D is a defect group of b, b is D-radical, and G = Ng(D)Rp(G).

(v) B is radical and D is strongly closed in P with respect to G.

(vi) B is radical and D is weakly closed in P with respect to G.

(vii) B is radical and there is a simple kG-module S in B with KerS > D.

(vill) B is radical and there is a normal subgroup N of G such that D is a
Sylow p-subgroup of N.

Proof. (i)<>(ii) This follows from Theorem 12.

(i1)=>(iii): Let S; be a simple kG-module in B with vertex D. Put N =KerS;.
Since S is weakly D-radical, (S1)p ~ nlp for some integer n. So D < N. Since
B covers By(N), D is a defect group of By(N). Thus D is a Sylow p-subgroup
of N. For any simple kN-module X in By(N), choose a simple kG-module S in
B lying over X. Then, since S is weakly D-radical, we see X is weakly radical
by Proposition 19 and Lemma 20. So By(N) is radical by Theorem 12 and N
is p-solvable by Theorem 22.

(iii)=>(iv): Let b be a block of Ry,(G) covered by B. Since N < R,(G) and
b covers Bp(N), we may assume D is a defect group of b. By the Frattini argu-
ment G = Ng(D)N = Ng(D)R,(G). Let S be a simple module in b. For any
irreducible constituent X of Sn, X lies in By(N) and X is weakly D-radical.
Thus S is weakly D-radical. So b is weakly D-radical and hence D-radical by
Theorem 12.

(iv)=>(ii): For any simple kG-module S in B, let X be an irreducible con-
stituent in b of Sg,(z). Then, since b is D-radical and hence weakly D-radical,
Xp ~ ®i(1g,)P, where Q; =g, (G)vx(X). Sp is a direct sum of of the modules
of the form (X9)p,g € G. Now there is n € Ng(D) such that X9 ~ X™. Then

(X9)p > (X")p =~ (Xp)" =~ @;(1g,~)".

Since |Q;"] = [vx(X)|, S is weakly D-radical. Hence (ii) follows.

(v) =(vi): This is trivial.

(vi)=(v): Let S be a simple module in B with vertex D. Since S is weakly
radical and D is weakly closed in P with respect to G, D is strongly closed in
P with respect to G by Lemma 21.

(v)= (ii): Let S be a simple module in B. We have Sp ~ @;(1¢,)¥,
where @ is a vertex of S and Q; = Q%, x; € G. We may assume Q < D.
((10,)")p =~ Bucap/p(1genp)”. We see Q¢ = Q™* < D**NP < D by ().
Therefore ((10,)7)p ~ ®.( IQ;})D . Hence S is weakly D-radical.

(i) and (iii)= (vii): By Lemma 20, B is radical. Let S be a simple module
in B lying over 1. Then D < N < KerS.



(vii)= (viii): Let N = KerS. Then B covers By(N). Therefore D = DN N
is a defect group of By(N).

(vii)= (v): This follows from the fact that D = P N N. The proof is
complete. 0

Remark. The implication (i)=- (ii) has been proved in Lemma 7 of [Ko] in
a different way.

Corollary 24 ([HK], Corollary 1.3). If vx(S) < KerS for any simple module
S in B, then B is D-radical.

Proof. Let S be a simple module in B. By Lemma 21 S is weakly D-radical.
Hence B is weakly D-radical, and B is D-radical by Theorem 23. ]

The following extends Theorem 22.

Corollary 25. Let B be a radical block of G with defect group D. If D is a
Sylow p-subgroup of G, then G is p-solvable.

Proof. We see B is D-radical. If N is as in (iii) of Theorem 23, then N is
p-solvable and G/N is a p’-group. Hence G is p-solvable. O
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