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1 Introduction

Let M, be the set of plane curves of degree d in P? and let M4(X) C
M be the set of plane curves which have fixed topological type of sin-
gularities ¥. For a given plane curve C € Mg4(X), we are interested
in topological invariants of C. In particular, the fundamental group of
the compliment 7; (P2 \ C) and the Alexander polynomial Ag(t). It is
known that they do not be determined by the configuration ¥ and they
are influenced by the location of singular points £(C) and the form of
its defining polynomial. For example, there exist two irreducible plane
curve C1, Cy € Mg(6A2) such that there exists a smooth conic pass-
ing through the singular points of C; and there does not exist such a
conic for Cy. Then m1(IP2\ C1) = Zg * Z3 ¥ Zo ® Zs = m1(P? \ C2) and
Ac,(t) =12 —t+1+# 1= Ag,(t). ([5]). We can observe that the defining
polynomial of C; is written as F2 + F3 where deg F; = j. Such a pair
(Cy, Cy) is called a Zariski pair which is studied by many authors.

There exists another interesting example. In [7], Duc Tai Pho con-

- structs a new Zariski pair using dual curves. We recall this example. Let
E; be the Fermat curve of degree 4 and F, be another smooth quartic
which have 12 hyperflex points. Then their dual curves F; and E, in the
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space M12(12F¢+16A;) and the pair (El, E),) is an Alexander polynomial
distinguished Zariski pair. We are interest in this phenomena.

In general, the configuration ¥ of singularities of the dual curve is not
also determined by only the configuration Y of singularities of the original
curve. For example, we consider two plane curves D; = {G; = 0} and
Dy = {G2 = 0} of degree 4 which are defined by

Gi(X,Y,2) = (X =Y (X +Y)? ~Y3Z GyX,Y,Z2)=X*-Y3Z.

Then D; and D, are contained in My(Es). Note that D; is bi-tangent to
the line at infinity Lo, := {Z = 0} and D, intersects Lo, with multiplicity
4 where L.,. Now we consider dual curves D; and Ds. They are in
the different configurations spaces. That is D; € M4(24; + A;) and
D, € My(Es) ([8, 6]). Their fundamental groups are m,(P? \ C;) =
m1(P?\ Cy) & Z/47Z. To compare their topologies, M. Oka, introduces the
tangential fundamental group and the tangential Alexander polynomial
([6]). We recall them briefly. Take a line L C P? and we consider an
affine space C2 := P?\ L. If L = TpC for some smooth point P € C,
then we call 7;(C2 \ C) the tangential fundamental group and Ag(t; L)
the tangential Alexander polynomial ([6]). Moreover, M. Oka shows that

m(Cy, \ D1) #m(CL, \ D2),  Ap, (4 Loo) # Ap, (t; Loo)-

Moreover M. Oka studies line degenerations of irreducible plane curves
and line degenerated torus curves is divided by two classes wvisible or
invisible. ([6, 2]). The above example can be obtained by using visible
line degenerated torus curves of degree 4.

In this note, we consider the configuration space Mp.1(Bpt+1,p) Where
p is a positive odd integer and B,y is the Brieskorn singularity. Using
line degenerated torus curves, we will construct certain family of line de-
generated torus curves of degree p+1 which is in the space My 1(Bpy1p).
We study their dual curves and the tangential fundamental groups.



2 Preliminaries

2.1 Line degenerated torus curves

Let C = {F = FF + F? = 0} € M, be a projective (p, g) torus curve.
Suppose that F' has the following form:

F(X,Y,Z)= 2/ G(X,Y, Z) (1.2)

where G (X,Y,Z)isa reduced homogeneous polynomial of degree pg — j.
We call a curve D = {G = 0} a line degenerated torus curve of type (p, q)
of order j and the line Lo, = {Z = 0} the limit line of the degeneration.
Put £T;(p, q; d) as the set of line degenerated torus curves of type (p, q)
of order j and L7 (p,q) is the union of LT ;(p, ¢; d) with respect to j.

We can divide the situation (1.2) into two cases which are called visible
degenerations and invisible degenerations. Put the integer ry := max{r €
Z | Z" divides Fy} for k =p,q.

Visible case. Suppose that r, - r, # 0 and gr, # prq. Then F
and F, are written as Fo(X,Y,Z) = F,_, (X,Y,Z)Z" and F,(X,Y, 2) =
Fy_, (X,Y,Z)Z™. Putting j = min{gry,pre}, we can factor F as
F(X,Y,Z) = Z'G(X,Y,Z). Then G is written using F,_, and F,_,
as

n P / 7\q 79rp—PTq  if i —

CX.Y.Z) = {Fi_rqm R 5= pre,

Fq_rq(X, Y, Z)PZPra=ar + Fp_rp(X, Y,Z)® if j = qrp.
(1.3)
We call such a factorization wvisible factorization and D is called a visible
degeneration of (p,q) torus curve. We denote the set of visible degenera-
tions of order j by LT;-/(p, g;pq — j) and the union Ujﬁ'T;/(p, q;pq — J)
by LT (p, q).

Example 1. Let D; = {G; = 0} and Dy = {G3 = 0} be a plane curves
of degree 4 which are defined in §1. Recall that the defining polynomials
are G1(X,Y,Z) = (X =YX +Y)?-Y3Z and G»o(X,Y, Z) = X4-Y3Z.
We can check easily that D, and D, are in £T¥(3, 2;4).

Invisible case. Either r, = 0 or r, = 0 but F' can be written as
(1.2). Then D is called an invisible degeneration of (p,q) torus curve.
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In this case, write F{ + FF = " Ci(X,Y)Z*. Then Cy(X,Y) = 0
for ¢ is less than j — 1 and therefore Z7 divides F'. We denote the set
of invisible degenerations of order j by ﬁTj (p,¢;pqg — j) and the union

U;LT}(p,q;pa — j) by LT (p,q).

2.2 The divisibility of Alexander polynomials

Let U be an open neighborhood of 0 in C and let {C;|s € U} be an
analytic family of irreducible curves of degree d which degenerates into
Co:= D+ jLs (1 £j < d) where D is an irreducible curve of degree
d—jand L is a line. We assume that there is a point B € Lo, \ Lo N D
such that B € (s and the multiplicity of C, at P is j for any non-zero
s € U. We call such a degeneration a line degeneration of order j and we
call Ly, the limit line of the degeneration and B is called the base point
of the degeneration. In [6], M. Oka showed that there exists a canonical
surjection:

¢ : m(C?*\ D) = m(C%*\ C,)

where s is a sufficiently small positive real number, C? = P2\ L, and as
a corollary he showed the divisibility among the Alexander polynomials
of a line degeneration family:

Ag,(t) | Ap,(t).

He also showed that a visible type of torus curve of type (p,q) can be
expressed as a line degeneration of irreducible torus curves of degree pq.
Hence the Alexander polynomial of visible degenerations are not trivial.

2.3 Dual curves and its singularities

Let X be a finite set of topological class of singularities and let My(X)
be the configuration space of plane curves of degree d with a fixed singu-
larity configuration ¥ as in §1. We say that Z = (ny, ..., nk) is a partition
of d if Zle n; = d. Let P(d) be the set of partitions of the integer d. We
take C' € My(X) and we denote the set of singular points Sing C. Recall
that the class formula and the flex formula. Let d be the degree of the



dual curve C and F(C) be the number of the flex points. Then d and
F(C) are given by the following:

d=dd-1)— Y (uC,P)+m(C,P)-1)
PeSingC

F(C)=3d(d-2)— Y  I(CH(C);P)

PeSing C

where u(C, P) is the Milnor number of C' at P, m(C, P) is the multiplicity
of C at P and H(C) := {H = 0} is the Hessian curve of C where the
defining polynomial H of the Hessian curve is defined by the determinant

of the matrix
Fxx Fxy Fxz

Fyx Fyy Fygz
Fzx Fzy Fzz

where F is the defining polynomial of C and Fy ; is the partial differential
of variables I and J where I, J € {X,Y,Z}.

Take a smooth point P € C and we consider the tangent line Lp of
C at P and put the intersection points Lp N C := {Ri,...,Rx}. We
consider the map 1 : C'\ Sing C — P(d) which is defined by

W(P) = (I(C,Lp; Ry),...,1(C,LpRy)) € P(d)

where I(C, Lp; R;) is the intersection multiplicity of C' and Lp at R;. If
necessary, we assume I(C,Lp; R;) > I(C,Lp; R;) if i < j. A smooth
point P € C is called tangentially generic if (P) = (2,1,...,1) where G
is the Gauss map. Let "9(C) = { P11, ..., Pe+t} be the set of smooth
points which are not tangentially generic and put £(C) := Z(C)UL™(C).
It is known that the singularities of dual curves are come from points in
5(C). |

Recall basic properties of singularities of dual curves ([4, 3]). We take
P in £(C). First we assume that Lp is not a multi-tangent line of C' and
LpNSing C = 0. If (C, P) is topological equivalent to By, (n > m) and
the Puiseux order of C at P is n/m, then (C, P) is topological equivalent
t0 Bpn_m. Let P be a flex point of flex order k — 2. Then (C P) is
topological equivalent to By —; for k > 3.

11
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Next we assume that P € £™(C). Put Lp N C := {Ry,..., R} and
Y(P) = (n1,...,nk) € P(d). The following Lemma is important for our
results.

Lemma 1. Suppose that Ry, ..., Ry are smooth points of C and ng, ..., ny
> 2. Then the dual singularity (C, Lp) satisfies the following conditions.

(1) The singularity (C,Lp) has k-irreducible components Ci,...,Ch
such that C; and C; intersect with intersection multiplicity (n; —

1)(713 - 1)

(2) The singularity (C, Lp) is a degenerate singularity and its Milnor
number of (C, L*) is (d — k) —d + 1.

Proof. We may assume that the multi-tangent line Lp is the line at
infinity Lo = {Z = 0}. Put R; = (0;,1,0) for 1 = 1,...,k. Let
O* = (0,0, 1) € P? be the Gauss image of L.

As the multiplicities ny,...,ng > 2, (C,0*) has n-irreducible compo-
nents which are defined by the union of the Gauss image of (C, R;) for
i =1,...,k. Note that the tangent directions at O* of irreducible com-
ponents are mutually distinct and (C’,VRi) is topologically equivalent to
Bp,—1n; as R; is a flex point with the flex order n; — 2.

Let (u,v) = (U/W,V/W) be the affine coordinate system in C%, =
P2\ {W = 0}. Let f(u,v) be the defining polynomial of the dual curve
C' in this affine space. By the above considerations, we have

k
fu,v) = H (u,v), filu,v) = (v — Biw)™ !+~ u™ + (higher terms)
i=1
where (31, ..., By are mutually distinct complex numbers. The Newton
principal part of f(u,v) is given by

d

N(f;u,v) = H(v — Byu)m L

i=1

Then the Newton boundary is consists of the degenerate face A with the
weight vector T := (1,1). After taking toric modifications, we can count
its Milnor number using A’Compo Theorem [1]. O



3 Statement of Theorems

In this section, we assume that p and ¢ are positive integers such that
q|p—1 and we put p; :=p— ’%1 € Z. Let P(p1) be the set of partitions
of p;. For any partition Z = (t1,...,u) € P(p1), we say that k is the
length of Z and it is denoted by |Z|. Put a subset U(|Z]) C (C*)?Z!:

U(Z]) :={a=(a1,...,ap1) € (C"‘)lII o # aj (i #J)}

For a fixed partition Z = (t1,...,4) in P(py) of the length k, we
associate o = (ay,...,ax) € U(|Z]) with a (p,q) torus curve C(a) =
{Fy = 0} where

Fu(X,Y,Z) = F,.(X,Y,2)" = F,(X,Y, Z),
k
FpalX,Y,2) = [[(X —aiY)"2"7, F(X,Y,2)=Y"'Z

=1

Then we can factorize as the following:

Fo(X,Y,Z2)=F,(X,Y,2)! — F(X,Y, Z)?

k
— zp-1 (H(X — oY) — yp(q—l)Z> .

i=1
We consider a visible degeneration D(a) = {G, = 0} of degree p(¢g—1)+1:

k
D(a): Ga(X,Y,2)=]](X —a;Y)™ —Y?VZ =0,
i=1
By the definition, D(a) intersects to the limit line Lo, = {Z = 0} at
d-points and D(«) is smooth on L. That is Ly is a multi-tangent line
of D(a).

For a generic a € U(|Z]), D(a) has a unique singularity at O which is
topological equivalent to the Brieskorn type B := Bpg-1)+1,p(g—1)- Lhus
D(a) is contained in the space M := M,1(B). For an arbitrary partition
Z, we define a subspace M(Z) C M as

M(Z) :={D(a) e M | a € U(|Z})}.

13
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Example 2. Let Dy, Dy € £T5(3,2,4) be plane curves in Example 1.
By the definition, we can show that D; € M(Z,) and D, € M(Z,,) where

I, =(1,1), I, = (2) € P(2).
Now we consider degenerations of our curves. Let Z, be the generic

partition p;. The following Lemma is obviously holds by the definition.

Lemma 2. For any partition J € P(p1) of its length 1 < ¢ < d, there
erists a family of line degenerated torus curves {D;} such that Dy €

M(T) and Dy € M(Z,) fort # 0.
We will study geometries of a visible torus curve D(«a) in M(Z):
1. The configurations of singularities of the dual curve D(a).
2. The tangential fundamental group m (C3_ \ D(a)).
3. The tangential Alexander polynomial Ap(q)(t, Leo)-
Our main results are given as the following.

Theorem 1. Let T = (1,...,tk) € P(p1) be a partition of the length
k and we take a generic a € U(|Z|). If D(a) € M(Z), then the dual

singularities of the dual curve D(a) is generically given as the following:

~ ~

Z(D(a)) = [(2k = 2) Az, nAy, (D(e), 0)]

1 ’ -
where n = -2—(k —1)(2p(q — 1) — k — 4). The dual singularity (D(c), O0*)
satisfies the following:

(1) It is a degenerate singularity.

(2) It has d-components and each components intersect with intersec-
tion multiplicity (qu; —1)(qe; — 1) and its Milnor number (p(q—1) +
1—k)?—plg—1).

Theorem 2. Put ¢ = 2. Let I, = (1,...,1) be the generic parti-
tion and I, = (3(p + 1)) be the mazimal partition of 5(p 4+ 1). Then
the tangential fundamental groups are not isomorphic and the tangential
Alezander polynomials are different: m1(C3_ \ Dy) % m1(C;_ \ Dm) and
Ap, (t, Loo) # Ap,. (t, Loo) where Dy € M(Z,) and D € M(Zy).
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