On certain line degenerated torus curves and their dual curves

東京理科大学 理学研究科 川島 正行 Masayuki Kawashima Department of Mathematics Tokyo University of Science

1 Introduction

Let \mathcal{M}_d be the set of plane curves of degree d in \mathbb{P}^2 and let $\mathcal{M}_d(\Sigma) \subset \mathcal{M}_d$ be the set of plane curves which have fixed topological type of singularities Σ . For a given plane curve $C \in \mathcal{M}_d(\Sigma)$, we are interested in topological invariants of C. In particular, the fundamental group of the compliment $\pi_1(\mathbb{P}^2 \setminus C)$ and the Alexander polynomial $\Delta_C(t)$. It is known that they do not be determined by the configuration Σ and they are influenced by the location of singular points $\Sigma(C)$ and the form of its defining polynomial. For example, there exists a smooth conic passing through the singular points of C_1 and there does not exist such a conic for C_2 . Then $\pi_1(\mathbb{P}^2 \setminus C_1) = \mathbb{Z}_2 * \mathbb{Z}_3 \not\cong \mathbb{Z}_2 \oplus \mathbb{Z}_3 = \pi_1(\mathbb{P}^2 \setminus C_2)$ and $\Delta_{C_1}(t) = t^2 - t + 1 \neq 1 = \Delta_{C_2}(t)$. ([5]). We can observe that the defining polynomial of C_1 is written as $F_3^2 + F_2^3$ where deg $F_j = j$. Such a pair (C_1, C_2) is called a Zariski pair which is studied by many authors.

There exists another interesting example. In [7], Duc Tai Pho constructs a new Zariski pair using *dual curves*. We recall this example. Let E_1 be the Fermat curve of degree 4 and E_2 be another smooth quartic which have 12 hyperflex points. Then their dual curves \check{E}_1 and \check{E}_2 in the space $\mathcal{M}_{12}(12E_6+16A_1)$ and the pair $(\check{E}_1, \check{E}_2)$ is an Alexander polynomial distinguished Zariski pair. We are interest in this phenomena.

In general, the configuration Σ of singularities of the dual curve is not also determined by only the configuration Σ of singularities of the original curve. For example, we consider two plane curves $D_1 = \{G_1 = 0\}$ and $D_2 = \{G_2 = 0\}$ of degree 4 which are defined by

$$G_1(X, Y, Z) = (X - Y)^2 (X + Y)^2 - Y^3 Z, \quad G_2(X, Y, Z) = X^4 - Y^3 Z.$$

Then D_1 and D_2 are contained in $\mathcal{M}_4(E_6)$. Note that D_1 is bi-tangent to the line at infinity $L_{\infty} := \{Z = 0\}$ and D_2 intersects L_{∞} with multiplicity 4 where L_{∞} . Now we consider dual curves \check{D}_1 and \check{D}_2 . They are in the different configurations spaces. That is $\check{D}_1 \in \mathcal{M}_4(2A_2 + A_1)$ and $\check{D}_2 \in \mathcal{M}_4(E_6)$ ([8, 6]). Their fundamental groups are $\pi_1(\mathbb{P}^2 \setminus C_1) \cong$ $\pi_1(\mathbb{P}^2 \setminus C_2) \cong \mathbb{Z}/4\mathbb{Z}$. To compare their topologies, M. Oka introduces the tangential fundamental group and the tangential Alexander polynomial ([6]). We recall them briefly. Take a line $L \subset \mathbb{P}^2$ and we consider an affine space $\mathbb{C}_L^2 := \mathbb{P}^2 \setminus L$. If $L = T_P C$ for some smooth point $P \in C$, then we call $\pi_1(\mathbb{C}_L^2 \setminus C)$ the tangential fundamental group and $\Delta_C(t; L)$ the tangential Alexander polynomial ([6]). Moreover, M. Oka shows that

$$\pi_1(\mathbb{C}^2_{L_{\infty}} \setminus D_1) \not\cong \pi_1(\mathbb{C}^2_{L_{\infty}} \setminus D_2), \quad \Delta_{D_1}(t; L_{\infty}) \neq \Delta_{D_2}(t; L_{\infty})$$

Moreover M. Oka studies *line degenerations* of irreducible plane curves and line degenerated torus curves is divided by two classes *visible* or *invisible*. ([6, 2]). The above example can be obtained by using visible line degenerated torus curves of degree 4.

In this note, we consider the configuration space $\mathcal{M}_{p+1}(B_{p+1,p})$ where p is a positive odd integer and $B_{p+1,p}$ is the Brieskorn singularity. Using line degenerated torus curves, we will construct certain family of line degenerated torus curves of degree p+1 which is in the space $\mathcal{M}_{p+1}(B_{p+1,p})$. We study their dual curves and the tangential fundamental groups.

2 Preliminaries

2.1 Line degenerated torus curves

Let $C = \{F = F_q^p + F_p^q = 0\} \in \mathcal{M}_{pq}$ be a projective (p,q) torus curve. Suppose that F has the following form:

$$F(X, Y, Z) = Z^j G(X, Y, Z)$$

$$(1.2)$$

where G(X, Y, Z) is a reduced homogeneous polynomial of degree pq - j. We call a curve $D = \{G = 0\}$ a line degenerated torus curve of type (p, q)of order j and the line $L_{\infty} = \{Z = 0\}$ the limit line of the degeneration. Put $\mathcal{LT}_j(p, q; d)$ as the set of line degenerated torus curves of type (p, q)of order j and $\mathcal{LT}(p, q)$ is the union of $\mathcal{LT}_j(p, q; d)$ with respect to j.

We can divide the situation (1.2) into two cases which are called *visible* degenerations and *invisible* degenerations. Put the integer $r_k := \max\{r \in \mathbb{Z} \mid Z^r \text{ divides } F_k\}$ for k = p, q.

Visible case. Suppose that $r_p \cdot r_q \neq 0$ and $qr_p \neq pr_q$. Then F_q and F_p are written as $F_q(X, Y, Z) = F'_{q-r_q}(X, Y, Z)Z^{r_q}$ and $F_p(X, Y, Z) =$ $F'_{p-r_p}(X, Y, Z)Z^{r_p}$. Putting $j := \min\{qr_p, pr_q\}$, we can factor F as $F(X, Y, Z) = Z^j G(X, Y, Z)$. Then G is written using F'_{p-r_p} and F'_{q-r_q} as

$$G(X,Y,Z) = \begin{cases} F'_{q-r_q}(X,Y,Z)^p + F'_{p-r_p}(X,Y,Z)^q Z^{qr_p-pr_q} & \text{if } j = pr_q, \\ F'_{q-r_q}(X,Y,Z)^p Z^{pr_q-qr_p} + F'_{p-r_p}(X,Y,Z)^q & \text{if } j = qr_p. \end{cases}$$
(1.3)

We call such a factorization visible factorization and D is called a visible degeneration of (p,q) torus curve. We denote the set of visible degenerations of order j by $\mathcal{LT}_{j}^{V}(p,q;pq-j)$ and the union $\cup_{j}\mathcal{LT}_{j}^{V}(p,q;pq-j)$ by $\mathcal{LT}^{V}(p,q)$.

Example 1. Let $D_1 = \{G_1 = 0\}$ and $D_2 = \{G_2 = 0\}$ be a plane curves of degree 4 which are defined in §1. Recall that the defining polynomials are $G_1(X, Y, Z) = (X - Y)^2 (X + Y)^2 - Y^3 Z$ and $G_2(X, Y, Z) = X^4 - Y^3 Z$. We can check easily that D_1 and D_2 are in $\mathcal{LT}_2^V(3, 2; 4)$.

Invisible case. Either $r_p = 0$ or $r_q = 0$ but F can be written as (1.2). Then D is called an invisible degeneration of (p,q) torus curve.

In this case, write $F_p^q + F_q^p = \sum_{i=0}^{pq} C_i(X, Y)Z^i$. Then $C_i(X, Y) = 0$ for *i* is less than j-1 and therefore Z^j divides *F*. We denote the set of invisible degenerations of order *j* by $\mathcal{LT}_j^I(p,q;pq-j)$ and the union $\cup_j \mathcal{LT}_j^I(p,q;pq-j)$ by $\mathcal{LT}^I(p,q)$.

2.2 The divisibility of Alexander polynomials

Let U be an open neighborhood of 0 in \mathbb{C} and let $\{C_s \mid s \in U\}$ be an analytic family of irreducible curves of degree d which degenerates into $C_0 := D + j L_{\infty}$ $(1 \leq j < d)$ where D is an irreducible curve of degree d-j and L_{∞} is a line. We assume that there is a point $B \in L_{\infty} \setminus L_{\infty} \cap D$ such that $B \in C_s$ and the multiplicity of C_s at P is j for any non-zero $s \in U$. We call such a degeneration a line degeneration of order j and we call L_{∞} the limit line of the degeneration and B is called the base point of the degeneration. In [6], M. Oka showed that there exists a canonical surjection:

$$\varphi: \pi_1(\mathbb{C}^2 \setminus D) \to \pi_1(\mathbb{C}^2 \setminus C_s)$$

where s is a sufficiently small positive real number, $\mathbb{C}^2 = \mathbb{P}^2 \setminus L_{\infty}$ and as a corollary he showed the divisibility among the Alexander polynomials of a line degeneration family:

$$\Delta_{C_s}(t) \mid \Delta_{D_0}(t).$$

He also showed that a visible type of torus curve of type (p,q) can be expressed as a line degeneration of irreducible torus curves of degree pq. Hence the Alexander polynomial of visible degenerations are not trivial.

2.3 Dual curves and its singularities

Let Σ be a finite set of topological class of singularities and let $\mathcal{M}_d(\Sigma)$ be the configuration space of plane curves of degree d with a fixed singularity configuration Σ as in §1. We say that $\mathcal{I} = (n_1, \ldots, n_k)$ is a partition of d if $\sum_{i=1}^k n_i = d$. Let $\mathcal{P}(d)$ be the set of partitions of the integer d. We take $C \in \mathcal{M}_d(\Sigma)$ and we denote the set of singular points Sing C. Recall that the class formula and the flex formula. Let \check{d} be the degree of the dual curve \check{C} and $\mathcal{F}(C)$ be the number of the flex points. Then \check{d} and $\mathcal{F}(C)$ are given by the following:

$$\check{d} = d(d-1) - \sum_{P \in \operatorname{Sing} C} (\mu(C, P) + m(C, P) - 1)$$
$$\mathcal{F}(C) = 3d(d-2) - \sum_{P \in \operatorname{Sing} C} I(C, \mathcal{H}(C); P)$$

where $\mu(C, P)$ is the Milnor number of C at P, m(C, P) is the multiplicity of C at P and $\mathcal{H}(C) := \{H = 0\}$ is the Hessian curve of C where the defining polynomial H of the Hessian curve is defined by the determinant of the matrix

$$\left(\begin{array}{cccc} F_{X,X} & F_{X,Y} & F_{X,Z} \\ F_{Y,X} & F_{Y,Y} & F_{Y,Z} \\ F_{Z,X} & F_{Z,Y} & F_{Z,Z} \end{array}\right)$$

where F is the defining polynomial of C and $F_{I,J}$ is the partial differential of variables I and J where $I, J \in \{X, Y, Z\}$.

Take a smooth point $P \in C$ and we consider the tangent line L_P of C at P and put the intersection points $L_P \cap C := \{R_1, \ldots, R_k\}$. We consider the map $\psi : C \setminus \text{Sing } C \to \mathcal{P}(d)$ which is defined by

$$\psi(P) = (I(C, L_P; R_1), \dots, I(C, L_P R_k)) \in \mathcal{P}(d)$$

where $I(C, L_P; R_j)$ is the intersection multiplicity of C and L_P at R_j . If necessary, we assume $I(C, L_P; R_i) \geq I(C, L_P; R_j)$ if i < j. A smooth point $P \in C$ is called *tangentially generic* if $\psi(P) = (2, 1, ..., 1)$ where Gis the Gauss map. Let $\Sigma^{ntg}(C) = \{P_{k+1}, \ldots, P_{k+t}\}$ be the set of smooth points which are not tangentially generic and put $\tilde{\Sigma}(C) := \Sigma(C) \cup \Sigma^{ntg}(C)$. It is known that the singularities of dual curves are come from points in $\tilde{\Sigma}(C)$.

Recall basic properties of singularities of dual curves ([4, 3]). We take P in $\tilde{\Sigma}(C)$. First we assume that L_P is not a multi-tangent line of C and $L_P \cap \operatorname{Sing} C = \emptyset$. If (C, P) is topological equivalent to $B_{n,m}$ (n > m) and the Puiseux order of C at P is n/m, then (\check{C}, \check{P}) is topological equivalent to $B_{n,n-m}$. Let P be a flex point of flex order k - 2. Then (\check{C}, \check{P}) is topological equivalent to $B_{k,k-1}$ for $k \geq 3$.

Next we assume that $P \in \Sigma^{ntg}(C)$. Put $L_P \cap C := \{R_1, \ldots, R_k\}$ and $\psi(P) := (n_1, \ldots, n_k) \in \mathcal{P}(d)$. The following Lemma is important for our results.

Lemma 1. Suppose that R_1, \ldots, R_k are smooth points of C and $n_1, \ldots, n_k > 2$. Then the dual singularity (\check{C}, L_P) satisfies the following conditions.

- (1) The singularity (\check{C}, L_P) has k-irreducible components $\check{C}_1, \ldots, \check{C}_k$ such that \check{C}_i and \check{C}_j intersect with intersection multiplicity $(n_i - 1)(n_j - 1)$.
- (2) The singularity (\check{C}, L_P) is a degenerate singularity and its Milnor number of (\check{C}, L^*) is $(d-k)^2 d + 1$.

Proof. We may assume that the multi-tangent line L_P is the line at infinity $L_{\infty} = \{Z = 0\}$. Put $R_i = (\alpha_i, 1, 0)$ for $i = 1, \ldots, k$. Let $O^* = (0, 0, 1) \in \check{\mathbb{P}}^2$ be the Gauss image of L_{∞} .

As the multiplicities $n_1, \ldots, n_k > 2$, (\check{C}, O^*) has *n*-irreducible components which are defined by the union of the Gauss image of (C, R_i) for $i = 1, \ldots, k$. Note that the tangent directions at O^* of irreducible components are mutually distinct and (\check{C}, R_i) is topologically equivalent to B_{n_i-1,n_i} as R_i is a flex point with the flex order $n_i - 2$.

Let (u, v) = (U/W, V/W) be the affine coordinate system in $\mathbb{C}_W^2 = \check{\mathbb{P}}^2 \setminus \{W = 0\}$. Let $\check{f}(u, v)$ be the defining polynomial of the dual curve \check{C} in this affine space. By the above considerations, we have

$$\check{f}(u,v) = \prod_{i=1}^{k} \check{f}_i(u,v), \quad \check{f}_i(u,v) = (v - \beta_i u)^{n_i - 1} + \gamma_i u^{n_i} + (\text{higher terms})$$

where β_1, \ldots, β_d are mutually distinct complex numbers. The Newton principal part of $\check{f}(u, v)$ is given by

$$\mathcal{N}(\check{f}; u, v) = \prod_{i=1}^{d} (v - \beta_i u)^{n_i - 1}.$$

•

Then the Newton boundary is consists of the degenerate face Δ with the weight vector T := t(1, 1). After taking toric modifications, we can count its Milnor number using A'Compo Theorem [1].

3 Statement of Theorems

In this section, we assume that p and q are positive integers such that $q \mid p-1$ and we put $p_1 := p - \frac{p-1}{q} \in \mathbb{Z}$. Let $\mathcal{P}(p_1)$ be the set of partitions of p_1 . For any partition $\mathcal{I} = (\iota_1, \ldots, \iota_k) \in \mathcal{P}(p_1)$, we say that k is the length of \mathcal{I} and it is denoted by $|\mathcal{I}|$. Put a subset $U(|\mathcal{I}|) \subset (\mathbb{C}^*)^{|\mathcal{I}|}$:

$$U(|\mathcal{I}|) := \{ \alpha = (\alpha_1, \dots, \alpha_{|\mathcal{I}|}) \in (\mathbb{C}^*)^{|\mathcal{I}|} \mid \alpha_i \neq \alpha_j \ (i \neq j) \}.$$

For a fixed partition $\mathcal{I} = (\iota_1, \ldots, \iota_k)$ in $\mathcal{P}(p_1)$ of the length k, we associate $\alpha = (\alpha_1, \ldots, \alpha_k) \in U(|\mathcal{I}|)$ with a (p,q) torus curve $C(\alpha) = \{F_{\alpha} = 0\}$ where

$$F_{\alpha}(X,Y,Z) = F_{p,\alpha}(X,Y,Z)^{q} - F_{q}(X,Y,Z)^{p},$$

$$F_{p,\alpha}(X,Y,Z) = \prod_{i=1}^{k} (X - \alpha_{i}Y)^{\iota_{i}} Z^{\frac{p-1}{q}}, \quad F_{q}(X,Y,Z) = Y^{q-1}Z.$$

Then we can factorize as the following:

$$F_{\alpha}(X, Y, Z) = F_{p,\alpha}(X, Y, Z)^{q} - F_{q}(X, Y, Z)^{p}$$
$$= Z^{p-1} \left(\prod_{i=1}^{k} (X - \alpha_{i}Y)^{q\iota_{i}} - Y^{p(q-1)}Z \right).$$

We consider a visible degeneration $D(\alpha) = \{G_{\alpha} = 0\}$ of degree p(q-1)+1:

$$D(\alpha): \quad G_{\alpha}(X, Y, Z) = \prod_{i=1}^{k} (X - \alpha_i Y)^{q\iota_i} - Y^{p(q-1)} Z = 0$$

By the definition, $D(\alpha)$ intersects to the limit line $L_{\infty} = \{Z = 0\}$ at *d*-points and $D(\alpha)$ is smooth on L_{∞} . That is L_{∞} is a multi-tangent line of $D(\alpha)$.

For a generic $\alpha \in U(|\mathcal{I}|)$, $D(\alpha)$ has a unique singularity at O which is topological equivalent to the Brieskorn type $\mathcal{B} := B_{p(q-1)+1,p(q-1)}$. Thus $D(\alpha)$ is contained in the space $\mathcal{M} := \mathcal{M}_{p+1}(\mathcal{B})$. For an arbitrary partition \mathcal{I} , we define a subspace $\mathcal{M}(\mathcal{I}) \subset \mathcal{M}$ as

$$\mathcal{M}(\mathcal{I}) := \{ D(\alpha) \in \mathcal{M} \mid \alpha \in U(|\mathcal{I}|) \}.$$

Example 2. Let D_1 , $D_2 \in \mathcal{LT}_2^V(3,2,4)$ be plane curves in Example 1. By the definition, we can show that $D_1 \in \mathcal{M}(\mathcal{I}_g)$ and $D_2 \in \mathcal{M}(\mathcal{I}_m)$ where $\mathcal{I}_g = (1,1), \mathcal{I}_m = (2) \in \mathcal{P}(2).$

Now we consider degenerations of our curves. Let \mathcal{I}_g be the generic partition p_1 . The following Lemma is obviously holds by the definition.

Lemma 2. For any partition $\mathcal{J} \in \mathcal{P}(p_1)$ of its length $1 \leq i \leq d$, there exists a family of line degenerated torus curves $\{D_t\}$ such that $D_0 \in \mathcal{M}(\mathcal{J})$ and $D_t \in \mathcal{M}(\mathcal{I}_g)$ for $t \neq 0$.

We will study geometries of a visible torus curve $D(\alpha)$ in $\mathcal{M}(\mathcal{I})$:

- 1. The configurations of singularities of the dual curve $\dot{D}(\alpha)$.
- 2. The tangential fundamental group $\pi_1(\mathbb{C}^2_{L_{\infty}} \setminus D(\alpha))$.
- 3. The tangential Alexander polynomial $\Delta_{D(\alpha)}(t, L_{\infty})$.

Our main results are given as the following.

Theorem 1. Let $\mathcal{I} = (\iota_1, \ldots, \iota_k) \in \mathcal{P}(p_1)$ be a partition of the length k and we take a generic $\alpha \in U(|\mathcal{I}|)$. If $D(\alpha) \in \mathcal{M}(\mathcal{I})$, then the dual singularities of the dual curve $\check{D}(\alpha)$ is generically given as the following:

 $\Sigma(\check{D}(\alpha)) = [(2k-2)A_2, nA_1, (\check{D}(\alpha), O^*)]$

where $n = \frac{1}{2}(k-1)(2p(q-1)-k-4)$. The dual singularity $(\check{D}(\alpha), O^*)$ satisfies the following:

- (1) It is a degenerate singularity.
- (2) It has d-components and each components intersect with intersection multiplicity $(q\iota_i - 1)(q\iota_j - 1)$ and its Milnor number $(p(q-1) + 1-k)^2 - p(q-1)$.

Theorem 2. Put q = 2. Let $\mathcal{I}_g = (1, \ldots, 1)$ be the generic partition and $\mathcal{I}_m = (\frac{1}{2}(p+1))$ be the maximal partition of $\frac{1}{2}(p+1)$. Then the tangential fundamental groups are not isomorphic and the tangential Alexander polynomials are different: $\pi_1(\mathbb{C}^2_{L_{\infty}} \setminus D_g) \not\cong \pi_1(\mathbb{C}^2_{L_{\infty}} \setminus D_m)$ and $\Delta_{D_g}(t, L_{\infty}) \neq \Delta_{D_m}(t, L_{\infty})$ where $D_g \in \mathcal{M}(\mathcal{I}_g)$ and $D_m \in \mathcal{M}(\mathcal{I}_m)$.

参考文献

- N. A'Campo. La fonction zeta d'une monodromie. Comm. Math. Helv., 50:539–580, 1975.
- M. Kawashima and K. Yoshizaki. On (2,3) torus of decompositions of QL-configurations. SUT J. Math., 46(1):93–117, 2010.
- [3] M. Oka. Geometry of cuspidal sextics and their dual curves. In Singularities—Sapporo 1998, pages 245–277. Kinokuniya, Tokyo, 2000.
- [4] M. Oka. On Fermat curves and maximal nodal curves. Michigan Math. J., 53(2):459-477, 2005.
- [5] M. Oka. A survey on Alexander polynomials of plane curves. Singularités Franco-Japonaise, Séminaire et congrès, 10:209–232, 2005.
- [6] M. Oka. Tangential Alexander polynomials and non-reduced degeneration. In Singularities in geometry and topology, pages 669–704.
 World Sci. Publ., Hackensack, NJ, 2007.
- [7] D. T. Pho. Alexander polynomials of certain dual of smooth quartics. *Proc. Japan Acad. Ser. A Math. Sci.*, 89(9):119–122, 2013.
- [8] C. Wall. Geometry of quartic curves. Math. Proc. Camb. Phil. Soc., 117:415–423, 1995.