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1 Introduction

Let $\mathcal{M}_{d}$ be the set of plane curves of degree $d$ in $\mathbb{P}^{2}$ and let $\mathcal{M}_{d}(\Sigma)\subset$

$\mathcal{M}_{d}$ be the set of plane curves which have fixed topological type of sin-

gularities $\Sigma$ . For a given plane curve $C\in \mathcal{M}_{d}(\Sigma)$ , we are interested

in topological invariants of $C$ . In particular, the fundamental group of

the compliment $\pi_{1}(\mathbb{P}^{2}\backslash C)$ and the Alexander polynomial $\triangle_{C}(t)$ . It is

known that they do not be determined by the configuration $\Sigma$ and they

are influenced by the location of singular points $\Sigma(C)$ and the form of

its defining polynomial. For example, there exist two irreducible plane

curve $C_{1},$ $C_{2}\in \mathcal{M}_{6}(6A_{2})$ such that there exists a smooth conic pass-

ing through the singular points of $C_{1}$ and there does not exist such a

conic for $C_{2}$ . Then $\pi_{1}(\mathbb{P}^{2}\backslash C_{1})=\mathbb{Z}_{2}*\mathbb{Z}_{3}\not\cong \mathbb{Z}_{2}\oplus \mathbb{Z}_{3}=\pi_{1}(\mathbb{P}^{2}\backslash C_{2})$ and

$\triangle c_{1}(t)=t^{2}-t+1\neq 1=\triangle c_{2}(t)$ . ([5]). We can observe that the defining

polynomial of $C_{1}$ is written as $F_{3}^{2}+F_{2}^{3}$ where $\deg F_{j}=j$ . Such a pair

$(C_{1}, C_{2})$ is called a Zariski pair which is studied by many authors.

There exists another interesting example. In [7], Duc Tai Pho con-

structs a new Zariski pair using dual curves. We recall this example. Let
$E_{1}$ be the Fermat curve of degree 4 and $E_{2}$ be another smooth quartic

which have 12 hyperflex points. Then their dual curves $\check{E}_{1}$ and $\check{E}_{2}$ in the
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space $\mathcal{M}_{12}(12E_{6}+16A_{1})$ and the pair $(\check{E}_{1},\check{E}_{2})$ is an Alexander polynomial

distinguished Zariski pair. We are interest in this phenomena.

In general, the configuration $\check{\Sigma}$ of singularities of the dual curve is not

also determined by only the configuration $\Sigma$ of singularities of the original

curve. For example, we consider two plane curves $D_{1}=\{G_{1}=0\}$ and
$D_{2}=\{G_{2}=0\}$ of degree 4 which are defined by

$G_{1}(X, Y, Z)=(X-Y)^{2}(X+Y)^{2}-Y^{3}Z,$ $G_{2}(X, Y, Z)=X^{4}-Y^{3}Z.$

Then $D_{1}$ and $D_{2}$ are contained in $\mathcal{M}_{4}(E_{6})$ . Note that $D_{1}$ is bi-tangent to
the line at infinity $L_{\infty}$ $:=\{Z=0\}$ and $D_{2}$ intersects $L_{\infty}$ with multiplicity

4 where $L_{\infty}$ . Now we consider dual curves $\check{D}_{1}$ and $\check{D}_{2}$ . They are in

the different configurations spaces. That is $\check{D}_{1}\in \mathcal{M}_{4}(2A_{2}+A_{1})$ and
$\check{D}_{2}\in \mathcal{M}_{4}(E_{6})([8,6$ Their fundamental groups $are \pi_{1}(\mathbb{P}^{2}\backslash C_{1})\cong$

$\pi_{1}(\mathbb{P}^{2}\backslash C_{2})\cong \mathbb{Z}/4\mathbb{Z}$ . To compare their topologies, M. Oka introduces the

tangential fundamental group and the tangential Alexander polynomial

([6]). We recall them briefly. Take a line $L\subset \mathbb{P}^{2}$ and we consider an
affine space $\mathbb{C}_{L}^{2}$ $:=\mathbb{P}^{2}\backslash L$ . If $L=T_{P}C$ for some smooth point $P\in C,$

then we call $\pi_{1}(\mathbb{C}_{L}^{2}\backslash C)$ the tangential fundamental group and $\triangle c(t;L)$

the tangential Alexander polynomial ([6]). Moreover, M. Oka shows that

$\pi_{1}(\mathbb{C}_{L_{\infty}}^{2}\backslash D_{1})\not\cong\pi_{1}(\mathbb{C}_{L_{\infty}}^{2}\backslash D_{2}) , \triangle_{D_{1}}(t;L_{\infty})\neq\triangle_{D_{2}}(t;L_{\infty})$ .

Moreover M. Oka studies line degenerations of irreducible plane curves
and line degenerated torus curves is divided by two classes visible or
invisible. ([6,2 The above example can be obtained by using visible
line degenerated torus curves of degree 4.

In this note, we consider the configuration space $\mathcal{M}_{p+1}(B_{p+1,p})$ where

$p$ is a positive odd integer and $B_{p+1,p}$ is the Brieskorn singularity. Using

line degenerated torus curves, we will construct certain family of line de-

generated torus curves of degree $p+1$ which is in the space $\mathcal{M}_{p+1}(B_{p+1,p})$ .
We study their dual curves and the tangential fundamental groups.
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2 Preliminaries

2.1 Line degenerated torus curves

Let $C=\{F=F_{q}^{p}+F_{p}^{q}=0\}\in \mathcal{M}_{pq}$ be a projective $(p, q)$ torus curve.

Suppose that $F$ has the following form:

$F(X, Y, Z)=Z^{j}G(X, Y, Z)$ (1.2)

where $G(X, Y, Z)$ is a reduced homogeneous polynomial of degree $pq-j.$

We call a curve $D=\{G=0\}$ a line degenerated torus curve of type $(p, q)$

of order $j$ and the line $L_{\infty}=\{Z=0\}$ the limit line of the degeneration.

Put $\mathcal{L}\mathcal{T}_{j}(p, q;d)$ as the set of line degenerat’ed torus curves of type $(p, q)$

of order $j$ and $\mathcal{L}\mathcal{T}(p, q)$ is the union of $\mathcal{L}\mathcal{T}_{j}(p, q;d)$ with respect to $j.$

We can divide the situation (1.2) into two cases which are called visible

degenerations and invisible degenerations. Put the integer $r_{k}:= \max\{r\in$

$\mathbb{Z}|Z^{r}$ divides $F_{k}$ } for $k=p,$ $q.$

Visible case. Suppose that $r_{p}$ $r_{q}\neq 0$ and $qr_{p}\neq pr_{q}$ . Then $F_{q}$

and $F_{p}$ are written as $F_{q}(X, Y, Z)=F_{q-r_{q}}’(X, Y, Z)Z^{r_{q}}$ and $F_{p}(X, Y, Z)=$

$F_{p-r_{p}}’(X, Y, Z)Z^{r_{p}}$ . Putting $j$ $:= \min\{qr_{p}, pr_{q}\}$ , we can factor $F$ as
$F(X, Y, Z)=Z^{j}G(X, Y, Z)$ . Then $G$ is written using $F_{p-r_{p}}’$ and $F_{q-r_{q}}’$

as

$G(X, Y, Z)=\{\begin{array}{ll}F_{q-r_{q}}’(X, Y, Z)^{p}+F_{p-r_{p}}’(X, Y, Z)^{q}Z^{qr_{p}-pr_{q}} if j=pr_{q},F_{q-r_{q}}’(X, Y, Z)^{p}Z^{pr_{q}-qr_{p}}+F_{p-r_{p}}’(X, Y, Z)^{q} if j=qr_{p}.\end{array}$

(1.3)

We call such a factorization visible factorization and $D$ is called a visible

degeneration of $(p, q)$ torus curve. We denote the set of visible degenera-

tions of order $j$ by $\mathcal{L}\mathcal{T}_{j}^{V}(p, q;pq-j)$ and the union $\bigcup_{j}\mathcal{L}\mathcal{T}_{j}^{V}(p, q;pq-j)$

by $\mathcal{L}\mathcal{T}^{v}(p, q)$ .

Example 1. Let $D_{1}=\{G_{1}=0\}$ and $D_{2}=\{G_{2}=0\}$ be a plane curves

of degree 4 which are defined in \S 1. Recall that the defining polynomials

are $G_{1}(X, Y, Z)=(X-Y)^{2}(X+Y)^{2}-Y^{3}Z$ and $G_{2}(X, Y, Z)=X^{4}-Y^{3}Z.$

We can check easily that $D_{1}$ and $D_{2}$ are in $\mathcal{L}\mathcal{T}_{2}^{V}(3,2;4)$ .

Invisible case. Either $r_{p}=0$ or $r_{q}=0$ but $F$ can be written as

(1.2). Then $D$ is called an invisible degeneration of $(p, q)$ torus curve.
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In this case, write $F_{p}^{q}+F_{q}^{p}= \sum_{i=0}^{pq}C_{i}(X, Y)Z^{i}$ . Then $C_{i}(X, Y)=0$

for $i$ is less than $j-1$ and therefore $Z^{j}$ divides $F$ . We denote the set

of invisible degenerations of order $j$ by $\mathcal{L}\mathcal{T}_{j}^{I}(p, q;pq-j)$ and the union
$\bigcup_{j}\mathcal{L}\mathcal{T}_{j}^{I}(p, q;pq-j)$ by $\mathcal{L}\mathcal{T}^{I}(p, q)$ .

2.2 The divisibility of Alexander polynomials

Let $U$ be an open neighborhood of $0$ in $\mathbb{C}$ and let $\{C_{s}|s\in U\}$ be an
analytic family of irreducible curves of degree $d$ which degenerates into
$C_{0}$ $:=D+jL_{\infty}(1\leq j<d)$ where $D$ is an irreducible curve of degree
$d-j$ and $L_{\infty}$ is a line. We assume that there is a point $B\in L_{\infty}\backslash L_{\infty}\cap D$

such that $B\in C_{s}$ and the multiplicity of $C_{s}$ at $P$ is $j$ for any non-zero
$s\in U$ . We call such a degeneration a line degeneration of order $j$ and we
call $L_{\infty}$ the limit line of the degeneration and $B$ is called the base point

of the degeneration. In [6], M. Oka showed that there exists a canonical
surjection:

$\varphi:\pi_{1}(\mathbb{C}^{2}\backslash D)arrow\pi_{1}(\mathbb{C}^{2}\backslash C_{s})$

where $s$ is a sufficiently small positive real number, $\mathbb{C}^{2}=\mathbb{P}^{2}\backslash L_{\infty}$ and as
a corollary he showed the divisibility among the Alexander polynomials

of a line degeneration family:

$\triangle_{C_{s}}(t)|\triangle_{D_{0}}(t)$ .

He also showed that a visible type of torus curve of type $(p, q)$ can be
expressed as a line degeneration of irreducible torus curves of degree $pq.$

Hence the Alexander polynomial of visible degenerations are not trivial.

2.3 Dual curves and its singularities

Let $\Sigma$ be a finite set of topological class of singularities and let $\mathcal{M}_{d}(\Sigma)$

be the configuration space of plane curves of degree $d$ with a fixed singu-

larity configuration $\Sigma$ as in \S 1. We say that $\mathcal{I}=(n_{1}, \ldots, n_{k})$ is a partition

of $d$ if $\sum_{i=1}^{k}n_{i}=d$ . Let $\mathcal{P}(d)$ be the set of partitions of the integer $d$ . We
take $C\in \mathcal{M}_{d}(\Sigma)$ and we denote the set of singular points Sing $C$ . Recall
that the class formula and the flex formula. Let $\check{d}$ be the degree of the

10



dual curve $\check{C}$ and $\mathcal{F}(C)$ be the number of the flex points. Then $\check{d}$ and

$\mathcal{F}(C)$ are given by the following:

$\check{d}=d(d-1)-\sum_{P\in SingC}(\mu(C, P)+m(C, P)-1)$

$\mathcal{F}(C)=3d(d-2)-\sum_{P\in SingC}I(C, \mathcal{H}(C);P)$

where $\mu(C, P)$ is the Milnor number of $C$ at $P,$ $m(C, P)$ is the multiplicity

of $C$ at $P$ and $\mathcal{H}(C)$ $:=\{H=0\}$ is the Hessian curve of $C$ where the

defining polynomial $H$ of the Hessian curve is defined by the determinant

of the matrix

$(\begin{array}{lll}F_{X,X} F_{X,Y} F_{X,Z}F_{Y,X} F_{Y,Y} F_{Y,Z}F_{Z,X} F_{Z,Y} F_{Z,Z}\end{array})$

where $F$ is the defining polynomial of $C$ and $F_{I,J}$ is the partial differential

of variables $I$ and $J$ where $I,$ $J\in\{X, Y, Z\}.$

Take a smooth point $P\in C$ and we consider the tangent line $L_{P}$ of

$C$ at $P$ and put the intersection points $L_{P}\cap C$ $:=\{R_{1}, . . . , R_{k}\}$ . We

consider the map $\psi$ : $C\backslash$ Sing C $arrow \mathcal{P}(d)$ which is defined by

$\psi(P)=(I(C, L_{P};R_{1}), \ldots, I(C, L_{P}R_{k}))\in \mathcal{P}(d)$

where $I(C, L_{P};R_{j})$ is the intersection multiplicity of $C$ and $L_{P}$ at $R_{j}$ . If

necessary, we assume $I(C, L_{P};R_{i})\geq I(C, L_{P};R_{j})$ if $i<j$ . A smooth

point $P\in C$ is called tangentially generic if $\psi(P)=(2,1, \ldots, 1)$ where $G$

is the Gauss map. Let $\Sigma^{ntg}(C)=\{P_{k+1}, . . . , P_{k+t}\}$ be the set of smooth

points which are not tangentially generic and put $\tilde{\Sigma}(C)$ $:=\Sigma(C)\cup\Sigma^{ntg}(C)$ .

It is known that the singularities of dual curves are come from points in
$\tilde{\Sigma}(C)$ .
Recall basic properties of singularities of dual curves ([4, 3 We take

$P$ in $\tilde{\Sigma}(C)$ . First we assume that $L_{P}$ is not a multi-tangent line of $C$ and

$L_{P}\cap$ Sing $C=\emptyset$ . If $(C, P)$ is topological equivalent to $B_{n,m}(n>m)$ and

the Puiseux order of $C$ at $P$ is $n/m$ , then $(\check{C},\check{P})$ is topological equivalent

to $B_{n,n-m}$ . Let $P$ be a flex point of flex order $k-2$ . Then $(\check{C},\check{P})$ is

topological equivalent to $B_{k,k-1}$ for $k\geq 3.$
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Next we assume that $P\in\Sigma^{nt_{9}}(C)$ . Put $L_{P}\cap C$ $:=\{R_{1}, . . . , R_{k}\}$ and
$\psi(P)$ $:=(n_{1}, \ldots, n_{k})\in \mathcal{P}(d)$ . The following Lemma is important for our
results.

Lemma 1. Suppose that $R_{1}$ , . . . , $R_{k}$ are smooth points $ofC$ and $n_{1}$ , . . . , $n_{k}$

$>2$ . Then the dual singularity $(\check{C}, L_{P})$ satisfies the following conditions.

(1) The singularity $(\check{C}, L_{P})$ has $k$ -irreducible components $\check{C}_{1}$ , . . . , $\check{C}_{k}$

such that $\check{C}_{i}$ and $\check{C}_{j}$ intersect with intersection multiplicity $(n_{i}-$

1) $(n_{j}-1)$ .

(2) The singularity $(\check{C}, L_{P})$ is a degenerate singularity and its Milnor
number of $(\check{C}, L^{*})$ is $(d-k)^{2}-d+1.$

Proof. We may assume that the multi-tangent line $L_{P}$ is the line at

infinity $L_{\infty}=\{Z=0\}$ . Put $R_{i}=(\alpha_{i}, 1,0)$ for $i=1$ , . . . , $k$ . Let
$O^{*}=(O, 0,1)\in\check{\mathbb{P}}^{2}$ be the Gauss image of $L_{\infty}.$

As the multiplicities $n_{1}$ , . . . , $n_{k}>2,$ $(\check{C}, O^{*})$ has $n$-irreducible compo-
nents which are defined by the union of the Gauss image of $(C, R_{\eta}\cdot)$ for
$i=1$ , . . . , $k$ . Note that the tangent directions at $O^{*}$ of irreducible com-
ponents are mutually distinct and $(C^{v}R_{i})$ is topologically equivalent to
$B_{n_{i}-1,n_{i}}$ as $R_{i}$ is a flex point with the flex order $n_{i}-2.$

Let $(u, v)=(U/W, V/W)$ be the affine coordinate system in $\mathbb{C}_{W}^{2}=$

$\check{\mathbb{P}}^{2}\backslash \{W=0\}$ . Let $\check{f}(u, v)$ be the defining polynomial of the dual curve
$\check{C}$ in this affine space. By the above considerations, we have

$\check{f}(u, v)=\prod_{i=1}^{k}\check{f}_{i}(u, v)$ , $\check{f}_{i}(u, v)=(v-\beta_{i}u)^{n_{i}-1}+\gamma_{i}u^{n_{i}}+($higher terms $)$

where $\beta_{1}$ , . . . , $\beta_{d}$ are mutually distinct complex numbers. The Newton
principal part of $\check{f}(u, v)$ is given by

$\mathcal{N}(\check{f};u, v)=\prod_{i=1}^{d}(v-\beta_{i}u)^{n_{i}-1}$

Then the Newton boundary is consists of the degenerate face $\triangle$ with the

weight vector $T:=t(1,1$ ). After taking toric modifications, we can count
its Milnor number using A’Compo Theorem [1]. $\square$
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3 Statement of Theorems

In this section, we assume that $p$ and $q$ are positive integers such that

$q|p-1$ and we put $p_{1}$ $:=p- \frac{p-1}{q}\in \mathbb{Z}$ . Let $\mathcal{P}(p_{1})$ be the set of partitions

of $p_{1}$ . For any partition $\mathcal{I}=(\iota_{1}, \ldots, \iota_{k})\in \mathcal{P}(p_{1})$ , we say that $k$ is the

length of $\mathcal{I}$ and it is denoted by $|\mathcal{I}|$ . Put a subset $U(|\mathcal{I}|)\subset(\mathbb{C}^{*})^{|\mathcal{I}|}$ :

$U(|\mathcal{I}|):=\{\alpha=(\alpha_{1}, \ldots, \alpha_{|\mathcal{I}|})\in(\mathbb{C}^{*})^{|\mathcal{I}|}|\alpha_{i}\neq\alpha_{j}(i\neq j$

For a fixed partition $\mathcal{I}=(\iota_{1}, \ldots, \iota_{k})$ in $\mathcal{P}(p_{1})$ of the length $k$ , we

associate $\alpha=(\alpha_{1}, \ldots, \alpha_{k})\in U(|\mathcal{I}|)$ with $a(p, q)$ torus curve $C(\alpha)=$

$\{F_{\alpha}=0\}$ where

$F_{\alpha}(X, Y, Z)=F_{p,\alpha}(X, Y, Z)^{q}-F_{q}(X, Y_{)}Z)^{p},$

$F_{p,\alpha}(X, Y, Z)= \prod_{i=1}^{k}(X-\alpha_{i}Y)^{\iota_{i}}Z^{\frac{p-1}{q}}$ $F_{q}(X, Y, Z)=Y^{q-1}Z.$

Then we can factorize as the following:

$F_{\alpha}(X, Y, Z)=F_{p,\alpha}(X, Y, Z)^{q}-F_{q}(X, Y, Z)^{p}$

$=Z^{p-1}( \prod_{i=1}^{k}(X-\alpha_{i}Y)^{q\iota_{i}}-Y^{p(q-1)}Z)$

We consider a visible degeneration $D(\alpha)=\{G_{\alpha}=0\}$ of degree $p(q-1)+1$ :

$D(\alpha)$ : $G_{\alpha}(X, Y, Z)= \prod_{i=1}^{k}(X-\alpha_{i}Y)^{q\iota_{i}}-Y^{p(q-1)}Z=0.$

By the definition, $D(\alpha)$ intersects to the limit line $L_{\infty}=\{Z=0\}$ at
$d$-points and $D(\alpha)$ is smooth on $L_{\infty}$ . That is $L_{\infty}$ is a multi-tangent line

of $D(\alpha)$ .

For a generic $\alpha\in U(|\mathcal{I}|)$ , $D(\alpha)$ has a unique singularity at $O$ which is

topological equivalent to the Brieskorn type $\mathcal{B}$ $:=B_{p(q-1)+1,p(q-1)}$ . Thus
$D(\alpha)$ is contained in the space $\mathcal{M}$ $:=\mathcal{M}_{p+1}(\mathcal{B})$ . For an arbitrary partition

$\mathcal{I}$ , we define a subspace $\mathcal{M}(\mathcal{I})\subset \mathcal{M}$ as

$\mathcal{M}(\mathcal{I}):=\{D(\alpha)\in \mathcal{M}|\alpha\in U(|\mathcal{I}|)\}.$
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Example 2. Let $D_{1},$ $D_{2}\in \mathcal{L}\mathcal{T}_{2}^{V}(3,2,4)$ be plane curves in Example 1.

By the definition, we can show that $D_{1}\in \mathcal{M}(\mathcal{I}_{g})$ and $D_{2}\in \mathcal{M}(\mathcal{I}_{m})$ where
$\mathcal{I}_{g}=(1,1)$ , $\mathcal{I}_{m}=(2)\in \mathcal{P}(2)$ .

Now we consider degenerations of our curves. Let $\mathcal{I}_{g}$ be the generic

partition $p_{1}$ . The following Lemma is obviously holds by the definition.

Lemma 2. For any partition $\mathcal{J}\in \mathcal{P}(p_{1})$ of its length $1\leq i\leq d$ , there

exists a family of line degenerated torus curves $\{D_{t}\}$ such that $D_{0}\in$

$\mathcal{M}(\mathcal{J})$ and $D_{t}\in \mathcal{M}(\mathcal{I}_{g})$ for $t\neq 0.$

We will study geometries of a visible torus curve $D(\alpha)$ in $\mathcal{M}(\mathcal{I})$ :

1. The configurations of singularities of the dual curve $\check{D}(\alpha)$ .

2. The tangential fundamental group $\pi_{1}(\mathbb{C}_{L_{\infty}}^{2}\backslash D(\alpha))$ .

3. The tangential Alexander polynomial $\triangle_{D(\alpha)}(t, L_{\infty})$ .

Our main results are given as the following.

Theorem 1. Let $\mathcal{I}=(\iota_{1}, \ldots, \iota_{k})\in \mathcal{P}(p_{1})$ be a partition of the length
$k$ and we take a generic $\alpha\in U(|\mathcal{I}|)$ . If $D(\alpha)\in \mathcal{M}(\mathcal{I})$ , then the dual

singularities of the dual curve $\check{D}(\alpha)$ is generically given as the following:

$\Sigma(\check{D}(\alpha))=[(2k-2)A_{2}, nA_{1}, (\check{D}(\alpha), O^{*})]$

where $n= \frac{1}{2}(k-1)(2p(q-1)-k-4)$ . The dual singularity $(\check{D}(\alpha), O^{*})$

satisfies the following:

(1) It is a degenerate singularity.

(2) It $ha\mathcal{S}d$-components and each components intersect with intersec-

tion multiplicity $(q\iota_{i}-1)(q\iota_{j}-1)$ and its Milnor number $(p(q-1)+$

$1-k)^{2}-p(q-1)$ .

Theorem 2. Put $q=2$ . Let $\mathcal{I}_{g}=(1, \ldots, 1)$ be the generic parti-

tion and $\mathcal{I}_{m}=$ $( \frac{1}{2}(p+1))$ be the maximal partition of $\frac{1}{2}(p+1)$ . Then

the tangential fundamental groups are not isomorphic and the tangential

Alexander polynomials are different: $\pi_{1}(\mathbb{C}_{L_{\infty}}^{2}\backslash D_{g})\not\cong\pi_{1}(\mathbb{C}_{L_{\infty}}^{2}\backslash D_{m})$ and

$\triangle_{D_{g}}(t, L_{\infty})\neq\triangle_{D_{m}}(t, L_{\infty})$ where $D_{g}\in \mathcal{M}(\mathcal{I}_{g})$ and $D_{m}\in \mathcal{M}(\mathcal{I}_{m})$ .
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