ON THE V-TRANSVERSALITY CONSTRUCTION OF EQUIVARIANT FRAMED MAPS

Masaharu Morimoto

Graduate School of Natural Science and Technology, Okayama University

Abstract. Let G be a finite group. For a pointed G-map $Y^+ \wedge V^* \rightarrow V^*$, we introduce the notion of V-transversality, where Y is a compact (smooth) G-manifold, V is a real G-module, $Y^+ = Y \coprod \{y_\infty\}$, and $V^* = V \cup \{v_\infty\}$. Every V-transversal G-map $Y^+ \wedge V^* \rightarrow V^*$ gives rise of a G-framed map with the target manifold Y. This yields a one-to-one correspondence from the set of pointed G-homotopy classes to the set of G-framed cobordisms. From this viewpoint, we discuss the Burnside ring of G and the equivariant stable G-cohomotopy group $\omega^0_G(Y)$ which consists of equivalence classes of pointed G-maps $Y^+ \wedge V^* \rightarrow V^*$ for $V = \mathbb{C}[G]^m (m \gg 1)$.

1. INTRODUCTION

In this article, we report results obtained from discussions with Takashi Matsunaga and Yasuhiro Hara.

Let G be a finite group throughout this paper. A G-framed map f is a pair of a G-map $f : (X, \partial X) \rightarrow (Y, \partial Y)$ and a real G-vector bundle isomorphism $b : TX \oplus \varepsilon(\mathbb{R}^m) \rightarrow f^*TY \oplus \varepsilon(\mathbb{R}^m)$, where X and Y are compact (smooth) G-manifolds of same dimension. Let $\mathcal{N}(G, Y)$ be the set of G-framed cobordism classes of G-framed maps with the target manifold Y. Let $\omega^0_G(Y)$ be the equivariant stable cohomotopy group of Y, of which the definition will be given in Section 2. Let V be a real G-module (of finite dimension). In this paper we introduce the notion that a

\begin{flushleft}
2010 Mathematics Subject Classification. Primary 57S17; Secondary 57R85.
Key words and phrases. equivariant transversality, equivariant framed map, the Burnside ring, equivariant stable cohomotopy group.
This research was partially supported by JSPS KAKENHI Grant Number 26400090.
\end{flushleft}
G-map $Y^+ \wedge V^* \to V^*$ is V-transversal to 0 in V^*, essentially due to T. Petrie [8], cf. [5, §5]. The next result indicates importance of the notion in equivariant surgery theory.

Theorem 1.1. The V-transversality construction gives a one-to-one correspondence

$$\Phi : \omega_G^0(Y) \to \mathfrak{M}(G, Y).$$

This is an equivariant version of [4, Theorems B and C].

Let ω_G^0 denote the group $\omega_G^0(pt)$. Let $A(G)$ denote the Burnside ring, i.e. the Grothendieck group for the category of finite G-sets. By proofs in equivariant homotopy theory, e.g. [1], [6], we have seen that $A(G)$ is isomorphic to ω_G^0. However the theorem above gives rise of a geometric proof.

Theorem 1.2. The V-transversality construction yields an isomorphism

$$\Psi : \omega_G^0 \to A(G).$$

Details of the theorem will be given in Section 4.

Let $S(G)$ denote the set of all subgroups of G. Let \mathcal{F} be a set of subgroups of G. We call \mathcal{F} lower closed if $H \in \mathcal{F}$ then $S(H) \subset \mathcal{F}$. We call \mathcal{F} conjugation invariant if $gHg^{-1} \in \mathcal{F}$ holds for all $H \in \mathcal{F}$ and $g \in G$. Hereafter, we suppose that \mathcal{F} is lower closed and conjugacy invariant. Let $\mathfrak{F} = \mathfrak{F}(G, \mathcal{F})$ be the category such that $\text{Obj}(\mathfrak{F})$ is same as \mathcal{F} and $\text{Mor}(\mathfrak{F})$ consists of all (H, g, K) with $H, K \in \mathcal{F}$, $g \in G$ and $gHg^{-1} \subset K$. Let Y be a compact G-manifold. If $H \leq K \leq G$ then we have the restriction map $\text{res}^K_H : \omega_H^n(Y) \to \omega_K^n(Y)$. If $H \leq G$ and $g \in G$ then we have the conjugation map $c_g : H \to gHg^{-1}$ and hence the induced map $c_g^* : \omega^n_{gHg^{-1}}(Y) \to \omega_H^n(Y)$. For $(H, g, K) \in \text{Mor}(\mathfrak{F})$, the homomorphism $(H, g, K)^*$ is defined to be the composition

$$\omega_K^n(Y) \xrightarrow{\text{res}^K_{gHg^{-1}}} \omega_{gHg^{-1}}(Y) \xrightarrow{c_g^*} \omega_H^n(Y).$$

Let $\omega_G^n(Y)$ denote the inverse limit

$$\text{inv-lim}_{\mathfrak{F}} \omega^n_H(Y) \quad (H \in \mathcal{F}).$$

We set $\omega_G^n = \omega_G^n(pt)$. It is interesting to study the image and the kernel of the canonical map

$$\text{res}_{\mathcal{F}} : \omega_G^0(Y) \to \omega_G^0(Y).$$
Theorem 1.3 (Y. Hara-M. M.). Let G be a nontrivial nilpotent group and $\mathcal{F} = S(G) \setminus \{G\}$. The canonical map $\text{res}_\mathcal{F} : \omega^0_G \to \omega^0_{G,\mathcal{F}}$ is surjective if and only if G is a cyclic group of order a prime or a product of distinct primes.

This implies

Corollary 1.4. Let G and \mathcal{F} be as above and let Y be a compact G-manifold such that $Y^G \neq \emptyset$. If the canonical map $\text{res}_\mathcal{F} : \omega^0_G(Y) \to \omega^0_{G,\mathcal{F}}(Y)$ is surjective then G is a cyclic group of order a prime or a product of distinct primes.

Let k_G be the product of the primes p such that G contains a normal subgroup N with index p. Here k_G is understood to be 1 if G is a perfect group. The next lemma is essentially due to R. Oliver [7, Lemma 8].

Lemma 1.5. There exists an element $\gamma_G = [X_1] - [X_2]$ of $A(G)$ such that $|X_1^G| - |X_2^G| = k_G$ and $\text{res}^G_H \gamma_G = 0$ for all $H < G$, where X_1 and X_2 are finite G-sets.

Proposition 1.6. Let G be a nontrivial group and $\mathcal{F} = S(G) \setminus \{G\}$. Then the kernel of $\text{res}_\mathcal{F} : \omega^0_G \to \omega^0_{G,\mathcal{F}}$ is generated by γ_G.

Corollary 1.7. Let G and \mathcal{F} be as above. Then $\gamma_G \omega^0_G(Y)$ is contained in the kernel of $\omega^0_G(Y) \to \omega^0_{G,\mathcal{F}}(Y)$.

2. The Equivariant Stable Cohomotopy Group $\omega^n_G(Y)$

Let Y be a compact G-manifold. We denote by Y^+ the disjoint union $Y \amalg \{y_\infty\}$ and the point y_∞ is regarded as the base point of Y^+. Let V be a real G-module. We denote by V^* the one-point compactification $V \cup \{v_\infty\}$ and v_∞ is regarded as the base point of V^*. The smash product

$$Y^+ \wedge V^* = \frac{Y^+ \times V^*}{(Y^+ \times v_\infty) \cup (y_\infty \times V^*)}$$

can be regarded as the Thom space of real G-vector bundle $\pi : Y \times V \to Y$ with fiber V.

We denote by \mathbb{R} the 1-dimensional real vector space with trivial G-action. For a finite G-CW complex X and an integer n, we define $\omega^n_G(X)$ by

$$\omega^n_G(X) = \lim_{m \to \infty} [A, B]^G_m$$
where

\[
A = \begin{cases}
X^+ \wedge M_m^* & (n \geq 0) \\
X^+ \wedge (\mathbb{R}^{[n]} \oplus M_m)^* & (n < 0),
\end{cases}
\]

\[
B = \begin{cases}
(\mathbb{R}^n \oplus M_m)^* & (n \geq 0) \\
M_m^* & (n < 0),
\end{cases}
\]

\[M_m = \mathbb{C}[G]^{\oplus m},\]

and \([-, -]_G^n\) stands for the set of all homotopy classes of maps in the category of pointed \(G\)-spaces. We set \(\omega^n_G = \omega^n_G(pt)\). Define the map \(\deg_H : \omega^0_G \rightarrow \mathbb{Z}\) by

\[\deg_H([f : M^*_m \rightarrow M^*_m]) = \deg(f^H : M^H_m \rightarrow M^H_m).\]

It is known that the map

\[\prod_{H \in S(G)} \deg_H : \omega^n_G \rightarrow \prod_{H \in S(G)} \mathbb{Z}\]

is injective and

\[[V^*, V^*_0]_0 \cong \omega^0_G\]

via the canonical map whenever \(V \supset \mathbb{C}[G]\).

3. \(V\)-TRANSVERSALITY OF \(G\)-MAPS \(Y^+ \wedge V^* \rightarrow V^*\)

In this section we introduce the notion of \(V\)-transversality due to T. Petrie [8]. Let \(V\) be a real \(G\)-module with a \(G\)-invariant inner product. For \(H \leq G\), \(V\) is decomposed into \(V^H \oplus V_H\) as real \(N_G(H)\)-modules, where \(V^H\) is the \(H\)-fixed point set of \(V\). A base point preserving \(G\)-map \(\alpha : Y^+ \wedge V^* \rightarrow V^*\) is called \(V\)-transversal to 0 in the target space \(V^*\) if the following conditions are fulfilled.

(1) \(\alpha\) is smooth on a neighborhood of \(X\).

(2) \(\alpha\) is transversal to 0 in \(V\), i.e. \(d_x\alpha : T_x(Y \times V) \rightarrow T_0 V\) is surjective at every \(x \in X\).

(3) the normal derivative \(\nu_x(\alpha) : V_H \rightarrow V_H\) at \(x\), where \(H = G_x\), coincides with the identity map \(V_H \rightarrow V_H\) for every \(x \in X\),

where \(X = \alpha^{-1}(0)\) and \(\nu_x(\alpha)\) is defined to be the composition

\[V_H \xrightarrow{\text{incl}} V = T_{xV(x)}V \xrightarrow{\text{incl}} T_x(Y \times V) \xrightarrow{d_x\alpha} T_0(V) \xrightarrow{\text{proj}} V_H.\]
Lemma 3.1. Let Y be a compact G-manifold with G-invariant Riemannian metric, A a closed G-subset of Y, V a real G-module, and $\varepsilon : Y^+ \wedge V^* \to \mathbb{R}$ a G-invariant positive function. Let $\alpha : Y^+ \wedge V^* \to V^*$ be a base-point preserving G-map such that $\alpha : A^+ \wedge V^* \to V^*$ is V-transversal to 0 in V^*. Then there exists a base-point preserving G-homotopy $H : I \times (Y^+ \wedge V^*) \to V^*$, where $I = [0, 1]$, from α to $\beta : Y^+ \wedge V^* \to V^*$ satisfying the following conditions.

1. $H(t, (x, v)) = \alpha(x, v)$ for all $t \in I$, $x \in A$, and $v \in V$.
2. $d(\alpha(y, v), H(t, (y, v))) < \varepsilon(y, v)$ for all $(y, v) \in Y \times V$.
3. β is V-transversal to 0 in V^*.

A G-framed map $f = (f, b)$ consists of a G-map $f : X \to Y$, where X and Y are compact (smooth) G-manifolds, and a real G-vector bundle isomorphism $b : T(X) \oplus \mathbb{R}^m \to f^*T(Y) \oplus \mathbb{R}^m$ for some integer $m \geq 0$.

Suppose $\alpha : Y^+ \wedge V^* \to V^*$ is V-transversal to 0 in V^*. Then set $X = \alpha^{-1}(0)$ and let $f : X \to Y$ be the composition of the inclusion $j_X : X \to Y \times V$ and the projection $\pi_Y : Y \times V \to Y$. There is a canonical isomorphism

$$T(Y \times V)|_X = (\pi_Y TY \oplus \pi_V TV)|_X = f^*TY \oplus \mathbb{R}^m.$$

We also have an isomorphism

$$T(Y \times V)|_X = TX \oplus \nu(X, Y \times V) \cong TX \oplus (\alpha|_X)^*\nu(0, V) = TX \oplus \mathbb{R}^m.$$

Thus we get a G-vector bundle isomorphism

$$\beta : TX \oplus \mathbb{R}^m \to f^*TY \oplus \mathbb{R}^m$$

such that $(\beta|_x)(x, v) = (x, v) \in \mathbb{R}^m$ for all $x \in X$ and $v \in V_H$, where $H = G_x$. By Lück-Madsen [3, Appendix, Proposition (A2)] and [5, §6], in the case $m > \dim Y$, we obtain a G-vector bundle isomorphism

$$b : TX \oplus \mathbb{R}^m \to f^*TY \oplus \mathbb{R}^m$$

such that β and b are stably regularly G-homotopic. This procedure obtaining $f = (f, b)$ from α is called the V-transversality construction of G-framed maps. The construction may also be called Pontryagin-Petrie construction of G-framed maps, cf. [4, §7].
4. THE ISOMORPHISM $\Psi : \omega_G^0 \to A(G)$

Let $\alpha : V^* \to V^*$ be a base-point preserving G-map such that $V \supset \mathbb{C}[G]$. Then we have $\dim V^G \geq 2$. Suppose α is V-transversal to 0 in V^*. The V-transversality construction yields $X = \alpha^{-1}(0)$, $f = \alpha|_X : X \to \{pt\}$, $\beta : \epsilon(V) \to \epsilon(V)$ and $b : \epsilon(V^G) \to \epsilon(V^G)$ such that $\beta|_x : V \to V$ coincides with $d\alpha_x : V \to V$ for $x \in X$, and β is regularly G-homotopic to $b \oplus id_{\epsilon(V^G)}$. Decompose the G-set $X = \alpha^{-1}(0)$ into the disjoint union of G-orbits $X_i = Gx_i$, where $i = 1, \ldots, k$; i.e. $X = \coprod_{i=1}^{k} X_i$. We define

$$\epsilon(d\alpha_{x_i}) = \begin{cases} 1 & \text{(if } d\alpha_{x_i} \text{ is orientation preserving),} \\ -1 & \text{(if } d\alpha_{x_i} \text{ is orientation reversing).} \end{cases}$$

Set

$$X_+ = \coprod_{i} Gx_i : \epsilon(d\alpha_{x_i}) = 1,$$
$$X_- = \coprod_{i} Gx_i : \epsilon(d\alpha_{x_i}) = -1.$$

Then we obtain an element $[X_+] - [X_-]$ of $A(G)$. The correspondence $[f] \mapsto [X_+] - [X_-]$ gives the map $\Psi : \omega_G^0 \to A(G)$. We have a canonical one-to-one correspondence $\Xi : \mathfrak{N}(G, pt) \to A(G)$. Moreover the diagram

$$\begin{array}{ccc}
\omega_G^0 & \xrightarrow{\phi} & \mathfrak{N}(G, pt); \\
\Psi & \cong & \Xi \\
A(G) & \xrightarrow{\phi} & [f, b]
\end{array} \begin{array}{ccc}
[f] & \xrightarrow{\Psi} & [X_+] - [X_-]
\end{array}$$

commutes. Once it was admitted that Φ is a one-to-one correspondence, the map Ψ is bijective and hence an isomorphism.

REFERENCES

Graduate School of Natural Science and Technology, Okayama University
3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530 Japan
E-mail address: morimoto@ems.okayama-u.ac.jp