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ABSTRACT. The paper aims to review the structure of the cohomology, equi-

variant cohomology, and the spectral sequence of the orbit type filtration of

manifolds with locally standard torus actions. Certain restrictions are imposed

on such manifolds, in particular it will be assumed that all proper faces of the

orbit space are acyclic. In this case the simplicial poset dual to the orbit space

is a homology manifold. The questions under consideration are closely related

to socles of Buchsbaum simplicial posets, the theory in commutative algebra

and combinatorics introduced recently by Novik and Swartz.

1. $INTRODUCTI$

A simplicial poset is a combinatorial notion corresponding to the familiar topo-
logical notion of simplicial cell complex, i.e. a regular cell complex all of whose
cells are simplices. Let $S$ be a simplicial cell subdivision of a given topological
space $R$ , and let $f_{j}$ denote the number of $j$ -dimensional simplices in $S$ . The task
traditionally raised in combinatorics is to find the relations on the numbers $f_{j}$ for

a given space $R$ (e.g. a sphere, or a manifold). One of the greatest achievements
in combinatorics was the invention of the face rings. Every simplicial poset $S$ de-
termines a graded ring $k[S]$ , called the face ring, whose Hilbert-Poincare series
contains all the information about $f$-numbers. It was noted that topological prop-
erties of $R=|S|$ , the geometrical realization of $S$ , are in nice correspondence with
algebraical properties of its face ring. For example, if $R$ is a sphere, the face ring
$K[S]$ is Gorenstein (in particular, Cohen-Macaulay), and if $R$ is a manifold, then
$k[S]$ is a Buchsbaum ring. These observations allowed to formulate combinatorial
problems in the language of commutative algebra, and solve many of them.

If $S$ is a simplicial cell subdivision of a sphere, then $k[S]$ is Gorenstein and,

therefore, the quotient of $k[S]$ by a linear system of parameters $\theta_{1},$

$\cdots,$
$\theta_{n}$ is a 0-

dimensional Gorenstein algebra. This means that the quotient $k[S]/(\theta_{1}, \cdots, \theta_{n})$ is
a Poincare duality algebra. A natural question is: can we find a manifold whose
cohomology algebra is $k[S]/(\theta_{1}, \cdots, \theta_{n})$ ? The first example is well-known: any
complete smooth toric variety has cohomology algebra exactly of this form. The

idea to use projective toric varieties in the study of convex simplicial spheres lead
Stanley [14] to the proof of the famous $g$-theorem (the necessity part of the theo-
rem).

Certainly, not every ring $k[S]/(\theta_{1}, \cdots, \theta_{n})$ can be modeled by a toric variety

even if $k=\mathbb{Z}$ . In the seminal paper [8] Davis and Januszkiewicz introduced the

concept of what is now called a quasitoric manifold. A slight generalization of
their construction can be used to produce a closed homology manifold $X$ such that
$H^{*}(X;\mathbb{Z})\cong \mathbb{Z}[S]/(\theta_{1}, \cdots, \theta_{n})$ for a given homology sphere $S$ and a sequence of
linear elements $\theta_{1},$

$\cdots,$
$\theta_{n}$ which is a linear system of parameters over any field.

If $S$ is a simplicial cell subdivision of a manifold rather than just a sphere, the
corresponding combinatorial theory becomes more complicated. Schenzel [13] com-
puted the dimensions of graded components of the algebra $k[S]/(\theta_{1}, \cdots, \theta_{n})$ , which

are now called the $h’$-numbers of $S$ . They depend on $f$-numbers and Betti numbers
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of $S$ . In more recent works [11, 12] Novik and Swartz considered a distinguished
submodule $\tilde{I}_{NS}\subset k[S]/(\theta_{1}, \cdots, \theta_{n})$ and computed its rank. They showed that,
whenever the geometrical realization $|S|$ of a simplicial poset $S$ is an orientable ho-
mology manifold, the double quotient $(k[S]/(\theta_{1}, \cdots, \theta_{n}))/\tilde{I}_{NS}$ is a Poincare duality
algebra. The dimensions of its graded components are called the $h”$-numbers of $S.$

The problem of certain interest is to construct topological models for the algebras
$K[S]/(\theta_{1}, \cdots, \theta_{n})$ and $(k[S]/(\theta_{1}, \cdots, \theta_{n}))/\tilde{I}_{NS}$ in case $|S|$ is a homology manifold.
It is quiet natural to suspect that such a model would support a half-dimensional
torus action as in the spherical case. Of course, the first idea is to find a closed
topological manifold $X$ such that $H^{*}(X)\cong(\mathbb{Z}[S]/(\theta_{1}, \cdots, \theta_{n}))/\tilde{I}_{NS}$ . However, it
seems that this approach fails, since in this case $H^{*}(X)$ is only concentrated in
even degrees which implies that the underlying combinatorial structure $S$ of $X$ is
a sphere (not a general manifold as required) [10].

However, we may take the natural candidates for $X$ : the manifolds with locally
standard actions. Under some restrictions on $X$ we explicitly computed their co-
homology and equivariant cohomology rings. They are not isomorphic to $\mathbb{Z}[S]$ or
$\mathbb{Z}[S]/(\theta_{1}, \cdots, \theta_{n})$ or $(\mathbb{Z}[S]/(\theta_{1}, \cdots, \theta_{n}))/\tilde{I}_{NS}$ but there exist interesting relations
between these objects.

This paper is a review of the author’s results proved previously in [2],[3]. The
goal of the paper is twofold. First, we want to develop a topological approach
to study the face rings of simplicial manifolds. Second, we want to study the
topology of manifolds with locally standard actions. Note, that there are several
recent constructions in differential geometry providing non-trivial examples of such
manifolds. Examples include toric origami manifolds [7] and toric $\log$ symplectic
manifolds [9]. Both are the generalizations of symplectic toric manifolds but unlike
symplectic toric case such manifolds may have nontrivial topology of the orbit space.

2. COMMUTATIVE ALGEBRA PRELIMINARIES

Fix a ground ring $k$ (which is a field or $\mathbb{Z}$ ) and consider a simplicial complex
$K$ with the vertex set $[m]=\{1, \cdots, m\}$ . Let $k[m]$ $:=k[v_{1}, \cdots, v_{m}]$ , denote the
graded ring of polynomials, where we set $\deg v_{i}=2$ . Recall that the algebra

$K[K] :=k[m]/(v_{i_{1}}\cdot\ldots\cdot v_{i_{k}}|\{i_{1}, \cdots, i_{k}\}\not\in K)$

is called the face ring (or the Stanley-Reisner algebra) of a simplicial complex $K.$

A face ring is graded in even degrees and becomes a $k[m]$ -module via the natural
projection map $k[m]arrow k[K].$

This construction has a well-known generalization to simplicial cell complexes
(otherwise called simplicial posets). Recall that a finite partially ordered set (poset
for short) $S$ is called simplicial if (1) there exists a minimal element $\hat{0}\in S;(2)$ for
any $I\in S$ , the order ideal $S_{\leq I}$ $:=\{J\in S|J\leq I\}$ is isomorphic to a poset of faces
of a $k$-dimensional simplex for some $k\geq 0$ (i.e. aboolean lattice of rank $k+1$ ). The
number $k$ is called the dimension of $I\in S$ , and $k+1$ the rank of $I$ . The elements of
$S$ are called simplices and the elements of rank 1 vertices. The rank of $I$ is equal to
the number of vertices of $I$ $(i.e. the$ number $of$ vertices $i\in S, i<I)$ and is denoted
by $|I|.$

Let $I_{1}\vee I_{2}$ denote the set of least upper bounds of simplices $I_{1},$ $I_{2}\in S$ , and
$I_{1}\cap I_{2}\in S$ denote the intersection of simplices (it is well-defined and unique if
$I_{1}vI_{2}\neq\emptyset)$ .

Definition 2.1. The face ring $K[S]$ of a simplicial poset $S$ is the quotient of the
polynomial ring $k[\{v_{I}\}]$ , generated by variables $\{v_{I}|I\in S\},$ $\deg v_{I}=2|I|$ , by the
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relations

$v_{I_{1}} \cdot v_{I_{2}}=v_{I_{1}\cap I_{2}} \sum_{J\in I_{1}vI_{2}}v_{J}, v_{\hat{0}}=1.$

The sum over an empty set is assumed to be O.

When $S$ is a poset of simplices of a simplicial complex, this ring coincides with
the one defined previously. In general, if $[m]$ denotes the set of vertices of $S,$

we still have a ring homomorphism $k[m]arrow k[S]$ which sends $v_{i}$ to $v_{i}$ , but this
homomorphism may not be surjective. It defines the structure of a $k[m]$ -module
on $k[S].$

In the following we assume that $S$ is pure of dimension $n-1$ , which means that

all maximal simplices of $S$ have $n$ vertices. We call the map $\lambda:[m]arrow k^{n}$ a charac-
teristic function, if the following so called $(*)$ -condition holds: whenever $i_{1},$

$\cdots,$
$i_{n}$

are the vertices of a maximal simplex, the corresponding values $\lambda(i_{1})$ , $\cdots,$
$\lambda(i_{n})$ are

the basis of $k^{n}$ . Let $(\lambda_{i,1}, \cdots, \lambda_{i,n})$ be the coordinates of the vector $\lambda(i)$ in a fixed
basis of $k^{n}$ for each $i\in[m].$

For every characteristic function we can construct the linear elements of the face
ring:

$\theta_{j}=\sum_{i\in[m]}\lambda_{i,j}v_{i}\in k[K]_{2}$
for $j=1$ , . . . , $n.$

It is known (see e.g. [5, Lm3.3.2]) that $\theta_{1},$

$\cdots,$ $\theta_{n}\in K[K]$ is a linear system of
parameters which means that $k[K]/(\theta_{1}, \cdots, \theta_{n})$ is an algebra of Krull dimension
$0$ (i.e. a finite dimensional vector space). In the following we denote the ideal
$(\theta_{1}, \cdots, \theta_{n})$ by $\Theta.$

Let $f_{j}$ denote the number of $j$-dimensional simplices of a simplicial poset $S$ . The
$h$-numbers of $S$ are defined by the relation $\sum_{j=0}^{n}h_{j}t^{n-j}=\sum_{j=0}^{n}f_{j-1}(t-1)^{n-j},$

where $t$ is a formal variable. The Hilbert-Poincare series of the face ring is expressed
in terms of the $h$-numbers:

Hilb $( k[S];t)=\frac{\sum_{j=0}^{n}h_{j}t^{2j}}{(1-t^{2})^{n}}.$

For a simplex $I\in S$ let $1k_{S}$ $I$ denote the poset $\{J\in S|J\geq I\}$ . It is easily seen
that $1k_{S}$ $I$ is a simplicial poset whose minimal element is $I.$

Definition 2.2. A simplicial poset $S$ is called Buchsbaum (over k) if it is pure,

and $\tilde{H}_{r}(1k_{S}I; Ik)$ $=0$ for any proper simplex $I\in S,$ $I\neq\hat{0}$ and any $r<\dim lk_{S}I.$

If, moreover, $\tilde{H}_{r}(S;k)=0$ for $r<\dim S$ , then $S$ is called Cohen Macaulay.

Here and henceforth the notation $H_{*}(S)$ stands for the homology of the geomet-
rical realization $|S|$ of a poset $S$ with coefficients in $k$ . By abuse of terminology
we call a simplicial poset $S$ a homology sphere (resp. homology manifold) if its

geometrical realization is a homology sphere (resp. homology manifold). It can be
easily proved (see [16]) that every homology sphere is Cohen-Macaulay. Similarly,
every homology manifold is Buchsbaum.

The classical results of Stanley and Reisner [16, 15] state that $S$ is Cohen-
Macaulay over $K$ if and only if $k[S]$ is a Cohen-Macaulay ring (which means that
every homogeneous system of parameters in this ring is a regular sequence). It
follows that

Hilb $( k[S]/\Theta;t)=\sum_{j=0}^{n}h_{j}t^{2j}$

for Cohen-Macaulay simplicial posets. In particular, $h$-numbers of such posets are
nonnegative. Moreover, if $S$ is a homology sphere, then the algebra $k[S]/\Theta$ is a
Poincare duality algebra. This implies the well-known Dehn-Sommerville relations
$h_{j}=h_{n-j}$ for homology spheres.
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The corresponding theory for Buchsbaum posets and homology manifolds is more
complicated. The study of Buchsbaum complexes was initiated by Schenzel [13] in
1981. Recently a big progress in this theory was made by Novik and Swartz [11, 12].
Schenzel proved that a simplicial complex $K$ is Buchsbaum if and only if $k[K]$ is
Buchsbaum. In Buchsbaum case there holds

Hilb $( K[K]/\Theta;t)=\sum_{j=0}^{n}h_{j}’t^{2j},$

where

$h_{j}’$ $:=h_{j}+(\begin{array}{l}nj\end{array})$ $( \sum_{k=1}^{j}(-1)^{j-k-1}$ rk $\tilde{H}_{k-1}(K;K))$ .

Novik-Swartz extended these results to simplicial posets. Moreover, they proved
the following statements for general Buchsbaum posets. First, recall that the socle
of a $k[m]$ -module $\mathcal{M}$ is the subspace $Soc\mathcal{M}=\{x\in \mathcal{M}|x\cdot K[m]_{+}=0\}$ , where
$k[m]_{+}$ is the part of the polynomial ring of the positive degree.

$\bullet$ There exists a distinguished graded subspace $I_{NS}\subset Sock[S]/\Theta.$

$\bullet$ $(I_{NS})_{2j}\cong(\begin{array}{l}nj\end{array})\tilde{H}^{j-1}(S)$ for $j=0$ , . . . , $n$

$\bullet$ If $S$ is an orientable homology manifold, then $I_{NS}=Sock[S]/\Theta$ . Let $\tilde{I}_{NS}$

denote the subspace of $I_{NS}$ which coincides with $I_{NS}$ in degrees $<2n,$

and in degree $2n$ corresponds to the subspace of all cohomology classes in
$H^{2n}(S)\cong I_{NS}$ which vanish on the fundamental class of $S.$

$\bullet$ Under the assumptions of the previous paragraph, the quotient ring $(k[S]/\Theta)/\tilde{I}_{NS}$

is a Poincare duality algebra.

Let us define $h^{\prime/}$-numbers of $S$ as follows:

$h_{j}"=h_{j}’-(\begin{array}{l}nj\end{array})$ rk $\tilde{H}^{j-1}(S)$ for $j<n,$

and $h_{n}"=h_{n}’-(rkH^{n-1}(S)-1)$ . It follows from the statements above that $h$

numbers of any Buchsbaum poset are nonnegative. Moreover, for an orientable ho-
mology manifold $S$ we have Hilb $(( K[S]/\Theta)/\tilde{I}_{NS};t)=\sum_{j=0}^{n}h_{j}"t^{2j}$ . Poincare duality
then implies the well-known generalized Dehn-Sommerville relations for homology
manifolds: $h_{j}"=h_{n-j}".$

Note that for Cohen-Macaulay posets (in particular for homology spheres) the
numbers $h_{j}h_{j}’$ , and $h_{j}$ coincide.

3. TOPOLOGICAL MODELS IN SPHERICAL CASE

When $S$ is a homology sphere and the base ring is either $\mathbb{Z}$ or $\mathbb{Q}$ , there exists a
topological model for the algebra $K[S]/\Theta$ . More precisely, there exists a closed k-
homology 2$n$-manifold $X$ such that its cohomology algebra $H^{*}(X;k)$ is isomorphic
to $k[S]/\Theta$ and equivariant cohomology is isomorphic to $k[S]$ . Existence of such
objects gives a simple explanation for the Poincare duality in $k[S]/\Theta.$

Note that any complete smooth toric variety $X$ is an example of such topologi-
cal model. Indeed, let $\triangle x$ be the non-singular fan corresponding to $X;K$ be the
underlying simplicial complex of $\triangle_{X}$ , and $\lambda(i)=(\lambda_{i,1}, \cdots, \lambda_{i,n})\in \mathbb{Z}^{n}$ be the prim-
itive generator of the i-th ray of $\triangle x$ for $i\in[m]$ . Then Danilov-Jurkiewicz theorem
states $H^{*}(X;\mathbb{Z})\cong \mathbb{Z}[K]/\Theta$ , where $\Theta$ is generated by the linear forms $\sum_{i\in[m]}\lambda_{i,j}v_{i}$

for $j=1$ , . . . , $n.$

In general, the topological model can be obtained using Davis-Januszkiewicz
construction [8]. Let us identify the space $\mathbb{R}^{n}$ with the Lie algebra of a compact
torus $T^{n}$ . Then each nonzero rational vector $w\in \mathbb{Q}^{n}\subset \mathbb{R}^{n}$ determines a circle
subgroup $\exp(w)\subset T^{n}$ . If we are given a homology sphere $S$ on the vertex-set $[m],$
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and a characteristic function $\lambda:[m]arrow \mathbb{Q}^{n}$ , then we obtain the collection of circle
subgroups $\{T_{i}$ $:=\exp(\lambda(i))$ for $i\in[m]\}$ . Let $T_{I}$ denote the product $T_{i_{1}}x$ . $\cross T_{i_{k}}$

for any simplex $I\in S$ with vertices $i_{1},$
$\cdots,$

$i_{k}$ . Consider the space $P=$ cone $|S|,$

which is a homology ball. Its boundary has a simple face structure dual to $S$ ; we
denote by $G_{I}$ the face of $P$ dual to $I\in S$ . We have $\dim G_{I}=n-|I|$ , and the
vertices of $S$ correspond to the facets of $P$ . Now we can construct the space

$X=(P\cross T^{n})/\sim$

where $(x_{1}, t_{1})\sim(x_{2}, t_{2})$ if and only if $x_{1}$ coincides with $x_{2}$ and lies in the interior

of $G_{I}$ for some $I$ , and $t_{1}t_{2}^{-1}\in T_{I}$ . Then $X$ is a closed rational homology manifold
which satisfies $H_{T}^{*}(X;\mathbb{Q})\cong \mathbb{Q}[S]$ and $H^{*}(X;\mathbb{Q})\cong \mathbb{Q}[S]/\Theta$ (see [8], [10]). If $\lambda$ is a
characteristic function over $\mathbb{Z}$ , then $X$ is a $\mathbb{Z}$-homology manifold. Moreover, if $S$ is
PL-equivalent to a boundary of simplex, then $X$ is a topological manifold, and if
$S$ is the boundary of a convex simplicial polytope, then $X$ can be given a smooth
structure as described in [6].

4. MANIFOLDS WITH LOCALLY STANDARD ACTIONS

Now let $S$ be an orientable homology manifold. Our goal is to study reasonable
spaces, which model the rings $k[S]/\Theta$ and $(K[S]/\Theta)/\tilde{I}_{NS}$ , or at least reflect their
properties.

Let us recall the notion of a manifold with locally standard action. Let $X^{2n}$ be
a smooth compact manifold (also assumed connected, orientable) with an effective
smooth action of a half-dimensional torus $T^{n}(JX^{2n}$ . The action is called locally
standard if it is locally equivalent to the standard action

$T^{n}(J\mathbb{C}^{n}\cong \mathbb{R}^{2n} (t_{1}, \cdots, t_{n})\cdot(z_{1}, \cdots, z_{n})=(t_{1}z_{1}, \cdots, t_{n}z_{n})$ .

It means that there is an atlas of charts on $M$ , each equivariantly diffeomorphic, up
to automorphism of torus, to a $T^{n}$-invariant subset of $\mathbb{C}^{n}$ . The orbit space of the
standard action $\mathbb{C}^{n}/T^{n}$ is the nonnegative cone $\mathbb{R}_{\geq}^{n}=\{(x_{1}, \cdots, x_{n})\in \mathbb{R}^{n}|x_{j}\geq 0\}.$

It has a natural face stratification, and the faces correspond to different stabilizers
of the action. Therefore, the orbit space of any locally standard action $Q:=X/T^{n}$

has the natural structure of a manifold with corners.
Consider a facet $F_{i}\subset Q$ . An orbit $x\in F_{i}^{o}$ has a 1-dimensional stabilizer $G_{i}\subset T^{n},$

$G_{i}=\exp(\langle\lambda_{i,1}, \cdots, \lambda_{i,n}\rangle)$

for some primitive vector $(\lambda_{i,1}, \cdots, \lambda_{i,n})\in \mathbb{Z}^{n}$ . This construction associates a
primitive vector to each facet of $Q$ . These vectors are the analogues of primitive
generators for the rays in the fan of a toric variety.

A manifold with corners $Q$ is called nice, if any codimension $k$ facet of $Q$ lies in
exactly $k$ facets. It can be easily proved that the orbit spaces of locally standard
actions are nice manifolds with corners. For a manifold with corners $Q$ consider

the poset of faces of $Q$ ordered by reversed inclusion. Thus far $Q$ becomes the
minimal element of $S_{Q}$ and whenever $Q$ is nice $S_{Q}$ is a simplicial poset. In order
to distinguish between abstract simplices of $S_{Q}$ and the faces of $Q$ as topological
spaces, we denote the former by $I,$ $J\in S_{Q}$ as before and the corresponding faces
of $Q$ by $F_{I},$ $F_{J}$ etc. Facets of $Q$ correspond to vertices of $S_{Q}$ (the set of vertices
is denoted by $[m]$ as before). We have a map $\lambda:[m]arrow \mathbb{Z}^{n}$ sending $i\in[m]$ to
$\lambda(i)=(\lambda_{i,1}, \cdots, \lambda_{i,n})$ , which can be shown to be a characteristic map (over $\mathbb{Z}$ thus
over any k).

For a manifold $X$ with locally standard torus action the free part of action
determines a principal torus bundle $X^{free}arrow Q^{o}$ , where $Q^{o}$ is the interior of $Q.$

It can be extended over $Q$ which gives a principal torus bundle $\eta:Yarrow Q$ . It is
known, that up to equivariant homeomorphism any manifold with locally standard
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action is uniquely determined by the data $(Q, \eta:Yarrow Q, \lambda:[m]arrow \mathbb{Z}^{n})$ . More
precisely, Yoshida [17] proved that $X$ is equivariantly homeomorphic to the model
space $Y/\sim$ , where $y_{1}\sim y_{2}$ if and only if $\eta(y_{1})=\eta(y_{2})$ lies in the interior of $F_{I}$ , and
$y_{1},$ $y_{2}$ lie in one $T_{I}$ -orbit. We have a natural projection map $f:Yarrow X.$

There are natural topological filtrations on $Q,$ $Y$ , and $X$ :

$Q_{0}\subset Q_{1}\subset\cdots\subset Q_{n}=Q, Y_{0}\subset Y_{1}\subset\cdots\subset Y_{n}=Y,$

$X_{0}\subset X_{1}\subset\cdots\subset X_{n}=X,$

where $Q_{j}$ is the union of $j$ -faces of $Q,$ $Y_{j}=\eta^{-1}(Q_{j})$ , and $X_{j}$ is the union of all
$j$-dimensional orbits of $X$ (this filtration on $X$ is called the orbit type filtration).
These filtrations are compatible with the maps $\eta:Yarrow Q,$ $f:Yarrow X$ , and the
projection to the orbit space $Xarrow Q.$

Let $(E_{Q})_{**}^{*}\Rightarrow H_{*}(Q)$ , $(E_{Y})_{**}^{*}\Rightarrow H_{*}(Y)$ , and $(E_{X})_{**}^{*}\Rightarrow H_{*}(X)$ be the
homological spectral sequences associated with the above filtrations (all coeficients
in Ill). The map $f:Yarrow X$ induces maps of the spectral sequences on each page
$f_{*}^{r}:(E_{Y})_{**}^{r}arrow(E_{X})_{**}^{r},$ $r\geq 1.$

5. ACYCLIC PROPER FACES

Further on we impose two restrictions on $X$ . First, we assume that $Q$ is an
orientable manifold with corners $($equiv. $, X is$ orientable, $see [4])$ , and all its proper
faces are acyclic (over k). Second, the principal torus bundle $Yarrow Q$ is assumed
trivial. Thus $X=(Q\cross T^{n})/\sim$ . The following propositions were proved in [1, 2].

Proposition 5.1. The poset $S_{Q}$ is an orientable homology manifold (over k). $In$

particular, $S_{Q}$ is a Buchsbaum simplicial poset.

Proposition 5.2. There exists a homological spectral sequence $(\dot{E}_{Q})_{p,q}^{r}\Rightarrow H_{p+q}(Q)$ ,
$(\dot{d}_{Q})^{r}:(\dot{E}_{Q})_{p,q}^{r}arrow(\dot{E}_{Q})_{p-r,q+r-1}^{r}$ with the properties:

(1) $(\dot{E}_{Q})^{1}=H((E_{Q})^{1},$
$d_{Q}$ where the differential $d_{Q}^{-}:(E_{Q})_{p,q}^{1}arrow(E_{Q})_{p-1,q}^{1}$

coincides $with.(d_{Q})^{1}$ for $p<n$ , and vanishes otherwise.
(2) The module $(E_{Q})_{**}^{r}$ coincides with $(E_{Q})_{**}^{r}$ for $r\geq 2$

(3) $(\dot{E}_{Q})_{p,q}^{1}=\{\begin{array}{l}H_{p}(\partial Q) , if q=0,p<n;H_{q+n}(Q, \partial Q) , if p=n, q\leq 0;0, otherwise.\end{array}$

(4) Nontrivial differentials $forr\geq 1$ have the form $(\dot{d}_{Q})^{r}:(\dot{E}_{Q})_{n,1-r}^{r}arrow(\dot{E}_{Q})_{n-r,0}^{r}$

and coincide with the connecting homomorphisms $\delta_{n+1-r}:H_{n+1-r}(Q, \partial Q)arrow$

$H_{n-r}(\partial Q)$ in the long exact sequence of the pair $(Q, \partial Q)$ .

Let $\Lambda_{*}$ denote the homology module of a torus: $\Lambda_{*}=\oplus_{s}\Lambda_{s},$ $\Lambda_{s}=H_{s}(T^{n})$ .

Proposition 5.3. There exists a homological spectral sequence $(\dot{E}_{Y})_{p,q}^{r}\Rightarrow H_{p+q}(Y)$

such that

(1) $(\dot{E}_{Y})^{1}=H((E_{Y})^{1},$
$d_{Y}$ where the differential $d_{Y}^{-}:(E_{Y})_{p,q}^{1}arrow(E_{Y})_{p-1,q}^{1}$

coincides with $(d_{Y})^{1}$ for $p<n$ , and vanishes otherwise.
(2) $(\dot{E}_{Y})^{r}=(E_{Y})^{r}$ for $r\geq 2.$

(3) $(E_{Y})_{p,q}^{r}=\oplus_{q_{1}+q_{2}=q}(\dot{E}_{Q})_{p,q_{1}}^{r}\otimes\Lambda_{q_{2}}$ and $(\dot{d}_{Y})^{r}=(\dot{d}_{Q})^{r}\otimes id_{\Lambda}$ for $r\geq 1.$

Proposition 5.4. There exists a homological spectral sequence $(\dot{E}_{X})_{p,q}^{r}\Rightarrow H_{p+q}(X)$

and the morphism of spectral sequences $\dot{f}_{*}^{r}:(\dot{E}_{Y})_{**}^{r}arrow(\dot{E}_{X})_{**}^{r}$ such that:

(1) $(\dot{E}_{X})^{1}=H((E_{X})^{1}, d_{X}^{-})$ where the differential $d_{X}^{-}:(E_{X})_{p,q}^{1}arrow(E_{X})_{p-1,q}^{1}$

coincides with $(d_{X})^{1}$ for $p<n$ , and vanishes otherwise. The map $\dot{f}_{*}^{1}$ is
induced by $f_{*}^{1}:(E_{Y})^{1}arrow(E_{X})^{1}.$
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(2) $(\dot{E}_{X})^{r}=(E_{X})^{r}$ and $\dot{f}_{*}^{r}=f_{*}^{r}$ for $r\geq 2.$

(3) $(E_{X})_{p,.’ q}^{1}=(E_{X})_{p_{)}q}^{1}=0$ for $p<q.$

(4) $\dot{f}_{*}^{1}:(E_{Y})_{p,q}^{1}arrow(E_{X})_{p,q}^{1}$ is an isomorphism for $p>q$ and injective for $p=q.$

(5) As a consequence of previous items, for $r\geq 1$ , the differentials $(\dot{d}_{X})^{r}$ are
either isomorphic to $(\dot{d}_{Y})^{r}$ (when they hit the cells with $p>q$), or iso-

morphic to the composition of $(\dot{d}_{Y})^{r}$ with $\dot{f}_{*}^{r}$ (when they hit the cells with
$p=q)$, or zero (otherwise).

(6) The ranks of diagonal terms at a second page are the $h’$ -numbers of the
poset $S_{Q}$ dual to the orbit space: $rk(\dot{E}_{X})_{q,q}^{2}=rk(E_{X})_{q,q}^{2}=h_{n-q}’(S_{Q})$ .

(7) The cokernel of the injective map $\dot{f}_{*}^{1}:(\dot{E}_{Y})_{q,q}^{1}arrow(\dot{E}_{X})_{q,q}^{1}$ has rank $h_{n-q}"(S_{Q})$

if $q<n.$

6. COHOMOLOGY AND EQUIVARIANT COHOMOLOGY OF $X$

Under the same assumptions of orientability, proper face acyclicity, and triviality
of $\eta:Yarrow Q$ , there holds

Theorem 6.1 ([4]). There is an isomorphism of rings (and $k[m]$ -modules)

$H_{T}^{*}(X)\cong k[S_{Q}]\oplus H^{*}(Q)$ ,

where the $0$ -degree components are identified.

The expression for the ordinary cohomology $H^{*}(X)$ can be extracted from the
calculations of spectral sequences in the previous section and Poincare duality on
X. It appears to be more complicated comparing to equivariant cohomology. Let
$H_{T}^{*}(X)arrow H^{*}(X)$ be the ring homomorphism induced by the inclusion of a fiber
in the Borel fibration

(6.1) $Xarrow X\cross\tau^{ET}arrow\pi BT.$

There is a face ring inside $H_{T}^{*}(M)$ . Thus we have a composed map $\sigma:k[S_{Q}]\mapsto$

$H_{T}^{*}(X)arrow H^{*}(X)$ . This map factors through $k[S_{Q}]/\Theta$ , since $\Theta$ maps to $\pi^{*}(H^{+}(BT))$

under the first map and $\pi^{*}(H^{+}(BT))$ vanishes in ordinary cohomology according
to (6.1). We have the diagram of ring homomorphisms

The ring homomorphism $\rho$ has a clear geometrical meaning: the element $v_{I}\in$

$K[S_{Q}]/\Theta$ maps to the cohomology class Poincare dual to face submanifold $X_{I}\subset X$

lying over the face $F_{I}\subset Q$ . In general $\rho$ is neither injective nor surjective.

This homomorphism has the following properties.

Theorem 6.2 ([3]).

$\bullet$ $ker\rho\subseteq\tilde{I}_{NS}\subseteq Soc(K[S_{Q}]/\Theta)$ . Recall that $(\tilde{I}_{NS})_{2j}\cong(\begin{array}{l}nj\end{array})\tilde{H}^{j-1}(S_{Q})$ for
$j<n$ , and $(\tilde{I}_{NS})_{2n}\cong\{a\in\tilde{H}^{n-1}(S_{Q})|a[S_{Q}]=0\}$ . By Poincare duality

we have $(\tilde{I}_{NS})_{2j}\cong(\begin{array}{l}nj\end{array})(\tilde{H}_{n-j}(\partial Q)/\langle[\partial Q]\rangle)$ . Here we need to quotient out

the fundamental class of $\partial Q$ since we have reduced cohomology on the left.
$\bullet$ $(ker\rho)_{2j}\cong(\begin{array}{l}nj\end{array})ker(H_{n-j}(\partial Q)arrow H_{n-j}(Q))$ , for $j>0.$

$\bullet$ $\rho((k[S_{Q}]/\Theta)_{+})$ is an ideal in $H^{*}(X)$ ;
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$\bullet$ $H^{*}(X)/\rho((K[S_{Q}]/\Theta)_{+})=\oplus_{j=0}^{2n}A^{j}$ , where

(6.2)
$A^{j} \cong p+q=j\bigoplus_{p<q}(\begin{array}{l}nq\end{array})H^{p}(Q, \partial Q)\oplus\bigoplus_{p\geq q}p+q--j(\begin{array}{l}nq\end{array})H^{p}(Q)$

.

$\bullet$ The homomorphism $K[S_{Q}]\oplus H^{*}(Q)\cong H_{T}^{*}(X)arrow H^{*}(X)$ maps $H^{*}(Q)$

isomorphically to the summands in (6.2) having $q=0.$

Corollary 6.3. Betti numbers of $X$ depend only on $Q$ but not on the characteristic
junction $\lambda.$

Proof. The ranks of the graded components of $K[S_{Q}]/\Theta$ are the $h’$-numbers which
do not depend on $\Theta$ (hence $\lambda$ ) by Schenzel’s result. On the other hand, the ranks of
the graded components of the kernel and cokernel of the map $K[S_{Q}]/\Thetaarrow H^{*}(X)$

are expressed only in terms of Q. $\square$

To state things more shortly, let $\mathcal{F}^{*}(X)$ denote the image of $k[S_{Q}]/\Theta$ in $H^{*}(X)$ ,

i.e. a subalgebra spanned by the classes of $X$ Poincare dual to face submanifolds.
We call $\mathcal{F}^{*}(X)$ the face part of the cohomology ring. Then we have a diagram of
graded ring homomorphisms

$K[S_{Q}]/\Thetaarrow \mathcal{F}^{*}(X)rarrow(K[S_{Q}]/\Theta)/\tilde{I}_{NS}$

$H^{*}(X)$

which means that the face part of cohomology is clamped between $K[S_{Q}]/\Theta$ and
$(K[S_{Q}]/\Theta)\tilde{I}_{NS}.$

Corollary 6.4. The Betti numbers of $X$ in even degrees are bounded below by the
$h”$ -numbers of $S_{Q}$ :

rk $H^{2j}(X)\geq h_{j}$

Finally, let us mention that the independence of Betti numbers from the charac-
teristic function does not hold for general manifolds with locally standard actions.

Example 6.5. Two manifolds $M_{1}=S^{3}\cross S^{1}$ and $M_{2}=S^{2}\cross S^{1}\cross S^{1}$ can be
given a locally standard actions of $T^{2}$ such that the orbit space in both cases is
$Q=S^{1}\cross[0$ , 1 $]$ , the product of a circle and an interval. Surely, $M_{1}$ and $M_{2}$ have
different Betti numbers. The results shown above do not apply in this case, since
proper faces of $Q$ are not acyclic. See details in [2].
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