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1 Introduction

A coloring of a simple graph $G$ is to assign a color to each vertex of $G$ so that adjacent

vertices have different colors. The chromatic number of $G$ , denoted by $\chi(G)$ , is the

smallest number of colors we need to color $G$ . To compute the chromatic numbers of

graphs is called the graph coloring problem, which has been researched for a long time in

graph theory.

The first application of homotopy theory to this problem is Lov\’asz’s proof of Kneser’s

conjecture (see Section 2). He assigned a simplicial complex, called a neighborhood com-

plex, to a graph and showed that the connectivity of the complex gives a lower bound for

the chromatic number.

After that, several graph coloring complexes have been introduced by different authors.

Box complex is one of them. It is a $\mathbb{Z}_{2}$-poset $B(G)$ assigned to a graph. Here we regard

a poset as a topological space by its classifying space.

The purpose of this paper is a brief explanation of author’s paper [14] and its back-

ground. Roughly speaking, the main result of [14] is to mention that the Kronecker

double covering over $G$ completely determines the (non-equivariant) poset structure of

the box complex. The Kronecker double covering over $G$ is the graph $K_{2}\cross G$ . Here $K_{2}$

is the graph consisting of two vertices and one edge connecting them, and the notation
$”‘\cross$ means the categorical product. See Section 4 for details.

Section 2 and Section 3 are devoted to the background of neighborhood complexes and

box complexes. For a more concrete introduction to this subject, we refer to [12] or [10].

In Section 5, we mention the statement of the result. As an application of it, we can

construct graphs whose chromatic numbers are different but whose box complexes are

(non-equivariantly) isomorphic.

We closed this section by giving precise definitions relating to the graph coloring prob-

lem. A graph is a pair $G=(V(G), E(G))$ consisting of a set $V(G)$ with a symmetric

subset $E(G)$ of $V(G)\cross V(G)$ . Namely, a pair $(v, w)$ of vertices of $G$ is contained in
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$E(G)$ if and only if its transpose $(w, v)$ is contained in $E(G)$ . Therefore our graphs are
non-directed, may have loops, but have no multiple edges. A graph homomorphism is a

map $f$ : $V(G)arrow V(H)$ with $(f\cross f)(E(G))\subset E(H)$ . The complete graph $K_{n}$ is defined

by $V(K_{n})=\{0, 1, \cdots, n-1\}$ and $E(K_{n})=\{(x, y)|x\neq y\}$ . Then the chromatic number
$\chi(G)$ is formulated as the number

$\chi(G)=\inf\{n\geq 0|$ There is a graph homomorphism from $G$ to $K_{n}$

The author would like to thank Yasuhiro Hara and Tomohiro Kawakami for inviting

him to the conference “New topics on transformation groups”’ held at RIMS in May, 2015.
This article is a summary of the talk.

2 Neighborhood complex

In this section, we shall review the definition and known results concerning with neigh-

borhood complexes.

Let $G$ be a graph and $v$ a vertex of $G$ . The neighbor $N(v)$ of $G$ is the set of vertices of $G$

adjacent to $v$ . Note that if $v$ is not looped then $N(v)$ does not contain $v$ . The neighborhood

complex $N(G)$ , introduced in Lov\’asz [11], is the abstract simplicial complex defined as

follows:

$\bullet$ The underlying set of $N(G)$ is $V(G)$ .

$\bullet$ A finite subset $\sigma\subset V(G)$ is a simplex if there is a vertex $v\in V(G)$ with $\sigma\subset N(v)$ .

For example, the neighborhood complex of the complete graph $K_{n}$ is the boundary of

$(n-1)$ -simplex, and hence is homeomorphic to $S^{n-2}$ . Let $C_{n}$ denote the $n$-cycle graph

for $n\geq 3$ . If $n$ is odd then $N(C_{n})$ is the 1-sphere. $N(C_{4})$ is homotopy equivalent to $S^{0},$

and $N(C_{2n})$ with $n\geq 2$ is homotoopy equivalent to $S^{1}\sqcup S^{1}.$

For a space $X$ , we write conn(X) to indicate the largest integer $n\geq-1$ such that $X$ is
$n$-connected. Here $(-1)$ -connectivity means non-emptiness. If $X$ is contractible then we

regard conn(X) $=+\infty$ , and if $X$ is the empty space then conn(X) $=-\infty.$

Theorem 2.1 (Lov\’asz, 1978). If a graph $G$ is $n$ -connected then $\chi(G)$ is greater than

$n+2$ . Namely, we have $\chi(G)>conn(N(G))+2.$

This is a consequence of Borsuk-Ulam’s theorem. The outline of the proof used box

complex will be given in Section 3, Lov\’asz used Theorem 2.1 to prove Kneser’s conjecture.

Kneser’s conjecture [9] asserts that if the set of $k$-subsets of the $n$-point set $X=$

$\{0, 1, \cdots, n-1\}$ is divided into $(n-2k+1)$-classes, then there are two disjoint sub-

sets of $X$ contained in the same class. This conjecture was translated into the following
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graph coloring problem: For a pair of positive integers $n,$
$k$ with $n\geq 2k$ , Kneser’s graph

$KG_{n,k}$ is the graph defined by

$V(KG_{n,k})=\{\sigma\subset\{0, 1, \cdots, n-1\}|\#\sigma=k\},$

$E(KG_{n,k})=\{(\sigma, \tau)|\sigma\cap\tau=\emptyset\}.$

Then Kneser’s conjecture is equivalent to $\chi(KG_{n,k})=n-2k+2$ . (Precisely, the assertion

of Kneser’s conjecture is equivalent to $\chi(KG_{n_{\}}k})\geq n-2k+2$ . However, it is easy to

show $\chi(KG_{n,k})\leq n-2k+2$ . In fact one can construct an $(n-2k+2)$-coloring of

$KG_{n,k}$ by induction on $n$ . First, since $KG_{2k,k}$ is a disjoint union of $K_{2}’ s$ , we have that

$\chi(KG_{2k,k})=2$ . Suppose that there is a coloring $f$ : $KG_{n,k}arrow K_{n-2k+2}$ . Then we have a

coloring $g:KG_{n+1,k}arrow K_{n-2k+3}$ defined by

$g(\sigma)=\{\begin{array}{ll}f(\sigma) (n+1\not\in\sigma)n-2k+3 (n+1\in\sigma) .\end{array}$

This completes the proof of $\chi(KG_{n,k})\leq n-2k+2.$ )

Lov\’asz showed the following theorem.

Theorem 2.2 (Lov\’asz [11], 1978). The neighborhood complex of $KG_{n,k}$ is $(n-2k-1)-$

connected.

Combining Theorem 2.1 and Theorem 2.2, Lov\’asz deduced Kneser’s conjecture $\chi(KG_{n,k})=$

$n-2k+2.$

As a related topic, we mention stable Kneser’s graphs. A subset $S$ of $\mathbb{Z}/n$ is stable if

$x\in S$ implies $x+1\not\in S$ . Stable Kneser’s graph $SG_{n,k}$ is defined as follows: The vertices

of $SG_{n,k}$ are stable $k$-subsets of $\mathbb{Z}/n$ , and two stable $k$-subsets are adjacent if they are

disjoint. Clearly stable Kneser’s graph $SG_{n,k}$ is a subgraph of Kneser’s graph $KG_{n,k}$ and

hence $\chi(SG_{n,k})\leq\chi(KG_{n,k})$ . Soon after Lov\’asz [11], the following theorem stronger than

Kneser’s conjecture was proven by Schrijver [15]. Here a graph $G$ is called vertex critical

if every subgraph $H$ of $G$ with $V(H)\subsetneq V(G)$ satisfies $\chi(H)<\chi(G)$ .

Theorem 2.3 (Schrijver [15], 1978). Stable Kneser’s graph $SG_{n,k}$ is vertex critical and

$\chi(SG_{n,k})=n-2k+2.$

The homotopy types of neighborhood complexes of stable Kneser’s graphs were deter-

mined:

Theorem 2.4 (Bj\"orner-Longueville [2] 2003). The neighborhood complex of $SG_{n,k}$ is ho-

motopy equivalent to the $(n-2k)$ -sphere.
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3 Box complex

A partially ordered set is called a poset, for short. The order complex $\triangle(P)$ of $P$ is the

simplicial complex whose simplices are finite chains in $P$ . It is known that the classifying

space of $P$ is naturally homeomorphic to the geometric realization of $\triangle(P)$ . In this article,

the classifying space of a poset $P$ is denoted by $|P|$ . For a simplicial complex $K$ , we write

$FK$ to mean the face poset of $K$ . Then the triangulation determined by $|FK|$ is the

barycentric subdivision of $|K|$ and hence they are homeomorphic.

The box complex of a graph is a $\mathbb{Z}_{2}$-space assigned to a graph. There are similar

constructions as follows. For more detailed research, refer to [5], [13], or [18].

(1) Let $G$ be a finite graph. Consider the antitone map $v$ : $FN(G)arrow FN(G)$ defined by

$\nu(\sigma)=\{v\in V(G)|\sigma\subset N(v)\}$ . (In the definition of $v$ , we use the assumption that
$G$ is finite.) The Lov\’asz complex $L(G)$ is the induced subset of $FN(G)$ consisting of

simplices $\sigma\in N(G)$ with $v^{2}(\sigma)=\sigma$ . Then the restriction of $\nu$ to $L(G)$ determines

the involution of $L(G)$ . This complex was introduced by Lov\’asz [11] in the proof of

Kneser’s conjecture, and detailed research on it is found in Walker [17].

For a graph homomorphism $f$ : $Garrow H$ , we have a $\mathbb{Z}_{2}$-map $L(f)$ : $L(G)arrow L(H)$ de-

fined by $L(f)(\sigma)=v^{2}(f(\sigma))$ (note that $\nu^{3}=\nu$). For a composable graph homomor-

phisms $g$ and $f$ , one can see $L(g)oL(f)\simeq z_{2}L(gof)$ . However, $L(g)oL(f)\neq L(gof)$

in general.

(2) Let $G$ be a graph. The complex $B(G)$ is the subcomplex of $N(G)*N(G)$ whose

simplices are $\sigma*\tau$ for simplices $\sigma,$ $\tau\in N(G)$ with $\sigma\cross\tau\subset E(G)$ . The involution

of $B(G)$ is obviously defined. A graph homomorphism $f$ : $Garrow H$ gives rise to a
$\mathbb{Z}_{2}$-map $B(f)$ : $B(G)arrow B(H)$ and it satisfies $B(gof)=B(g)oB(f)$ .

(3) Let $G$ be a graph. The complex $Bip(G)$ is the poset

{ $(\sigma, \tau)|$ a and $\tau$ are non-empty subsets of $G$ with $\sigma\cross\tau\subset E(G).$ }

ordered by $(\sigma, \tau)\leq(\sigma’, \tau’)\Leftrightarrow\sigma\subset\sigma’$ and $\tau\subset\tau’$ . The involution of $Bip(G)$ is defined

by the correspondence $(\sigma, \tau)rightarrow(\tau, \sigma)$ , and a graph homomorphism $f$ : $Garrow H$

induces a $\mathbb{Z}_{2}$-map $Bip(f)$ : $Bip(G)arrow Bip(H)$ , $(\sigma, \tau)\mapsto(f(\sigma), f(\tau))$ . This complex

is isomorphic to the $Hom$ complex $Hom(K_{2}, G)$ , which was investigated in Babson-

Kozlov [1].

In the reference, authors usually called the complex $B(G)$ the box complex.1

$\overline{lInSect\mathring{i}n5wecallBip(G)}$the box complex of $G$ since there is no appropriate term indicating the complex $Bip(G)$ .
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Theorem 3.1 $($Csorba $et al [5], \check{Z}$ivaljevi $\acute{c}[18])$ . The above constructions of $\mathbb{Z}_{2}$ -spaces

are naturally $\mathbb{Z}_{2}$ -homotopy equivalent. Moreover, they are naturally homotopy equivalent

to neighborhood complexes

A fundamental result of the box complex is the following theorem. Here we consider
the $k$-sphere $S^{k}$ as $a\mathbb{Z}_{2}$-space by its antipodal map. For its proof, we refer to [1], [12], or
[10] for example.

Theorem 3.2. The box complex of the complete graph $K_{n}$ is $\mathbb{Z}_{2}$ -homotopy equivalent to
the $(n-1)$ -sphere $S^{n-2}$ for $n\geq 1.$

For a $\mathbb{Z}_{2}$ -space $X$ , set

ind(X) $= \inf$ { $k\geq-1|$ There is a $\mathbb{Z}_{2}$-map from $X$ to $S^{k}$ }.

Note that if there is a graph homomorphism from $G$ to $K_{n}$ then there is a $\mathbb{Z}_{2}$-map from
$B(G)$ to $B(K_{n})=S^{n-2}$ . Therefore we have the following.

Corollary 3.3. $\chi(G)\geq ind(B(G))+2.$

To deduce Theorem 2.1, it suffices to show conn$(X)+1\leq ind(X)$ . Note that if the $\mathbb{Z}_{2^{-}}$

space $X$ is $k$-connected then there is a $\mathbb{Z}_{2}$-map from $S^{k+1}$ to $X$ . Suppose ind(X) $=m$ and
let $Xarrow S^{m}$ be a $\mathbb{Z}_{2}$-map. Then there is a $\mathbb{Z}_{2}$-map from $S^{k+1}arrow S^{m}$ . Then Borsuk-Ulam’s

theorem implies $k+1\leq m$ . Therefore we have conn$(X)+1\leq ind(X)$ .

The difference between the inequality of Corollary 3.3 can be arbitrarily bad. In

fact Walker [17] showed that for a positive integer $n$ , there is a finite graph $G$ whose

box complex is $\mathbb{Z}_{2}$-homotopy equivalent to a 1-dimensional $\mathbb{Z}_{2^{-}}CW$-complex (and hence
$ind(B(G))\leq 1)$ but $\chi(G)\geq n.$

By the definition of $SG_{n,k}$ (see Section 2), the dihedral group $D_{2n}$ with order $2n$ acts on
$SG_{n,k}$ in an obvious way, and Braun [3] showed that the automorphism group of $SG_{n,k}$

coincides with $D_{2n}$ . Theorem 2.4 and Theorem 3.1 imply that $B(SG_{n,k})$ is homotopy

equivalent to $S^{n-2k}$ . Therefore $B(SG_{n,k})$ is a $\mathbb{Z}_{2}\cross D_{2n}$-space, and its topology was
investigated by Schultz [16].

4 Kronecker double covering

Let $G,$ $H$ be graphs. The (Kronecker) product $G\cross H$ is the graph defined by

$V(G\cross H)=V(G)\cross V(H)$ ,

$E(G\cross H)=\{((x, y), (x’, y |(x, x’)\in E(G), (y, y’)\in E(H)\}.$
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Then one can show that $G\cross H$ is the categorical product in the category of graphs.

A graph homomorphism $p:Garrow H$ is a covering if $p|_{N(v)}$ : $N(v)arrow N(p(v))$ is bijective.

The Kronecker double covering is the second projection $K_{2}\cross Garrow G,$ $(a, v)\mapsto v.$

Here we give a brief review of the theory of Kronecker double coverings. Perhaps, the

following formulation using 2-colored graphs might be first appeared in [14], but was

essentially obtained by other authors, see [8] for example.

A2-colored graph is a pair $(X, \epsilon)$ consisting of a graph $X$ with a 2-coloring $\epsilon$ : $Xarrow K_{2}.$

A graph homomorphism $f$ : $Xarrow Y$ between 2-colored graphs are 2-colored if $6_{Y}\circ f=\epsilon_{X}.$

We write $\mathcal{G}/K_{2}$ to indicate the category of 2-colored graphs whose morphisms are 2-colored

homomorphisms.

An odd involution of a 2-colored graph $(X, \epsilon)$ is a graph homomorphism $\tau$ : $Xarrow X$

such that $\tau^{2}=$ id and $\epsilon(\tau(x))\neq\epsilon(x)$ for all $x\in V(X)$ . Define the category $\mathcal{G}_{/K_{2}}^{odd}$ as

follows:

$\bullet$ An object of $\mathcal{G}_{/K_{2}}^{odd}$ is a triple $(X, \epsilon, \tau)$ such that $\tau$ is an odd involution of a 2-colored

graph $(X, \epsilon)$ .

$\bullet$ A morphism from $(X, \epsilon_{X}, \tau_{X})$ to $(Y, \epsilon_{Y}, \tau_{Y})$ is a 2-colored homomorphism $f$ : $Xarrow Y$

with $\tau_{Y}\circ f=fo\tau_{X}.$

Let $\mathcal{G}$ denote the category of graphs. Let $G$ be a graph. The Kronecker double covering

$K_{2}\cross G$ over $G$ is regarded as an object of $\mathcal{G}_{/K_{2}}^{odd}$ as follows: The 2-coloring of $K_{2}\cross G$ is the

first projection $K_{2}\cross Garrow K_{2},$ $(a, v)\mapsto a$ . The odd involution of $K_{2}\cross G$ is $(0, v)rightarrow(1, v)$ .

Thus Kronecker double covering gives a functor from the category $\mathcal{G}$ of graphs to $\mathcal{G}_{/K_{2}}^{odd}.$

Lemma 4.1. The functor
$K_{2}\cross-:\mathcal{G}arrow \mathcal{G}_{/K_{2}}^{odd}$

is an equivalence of categories.

Note that an involution $\tau$ of a graph $G$ is identified with a $\mathbb{Z}_{2}$-action on $G$ . We write

$G/\tau$ to indicate the orbit space with respect to this action. The quasi-inverse of $K_{2}\cross-$ :

$\mathcal{G}arrow \mathcal{G}_{/K_{2}}^{odd}$ is the quotient $(X, \tau, \epsilon)\mapsto X/\tau.$

5 Results

In this section we assume that the term “box complex”’ means the $\mathbb{Z}_{2}$-poset $Bip(G)$

introduced in (3) in the beginning of Section 3, and we write $B(G)$ instead of $Bip(G)$ . $A$

principal result of [14] is the following. Let $X$ be a 2-colored graph.
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Theorem 5.1 (M. [14]). Let $G,$ $H$ be graphs having no isolated vertices. Then the
following hold.

(1) The box complexes $B(G)$ and $B(H)$ are isomorphic as posets if and only if their

Kronecker double coverings $K_{2}\cross G$ and $K_{2}\cross H$ are isomorphic as graphs.

(2) The box complexes $B(G)$ and $B(H)$ are isomorphic as $\mathbb{Z}_{2}$ -posets if and only if they
are isomorphic.

Here we give the “if’ part of Theorem 4.2.(1). Define the box complex for 2-colored
graphs to be the induced subposet

$B_{/K_{2}}(X)=\{(\sigma, \sigma’)\in B(G)|\sigma\subset\epsilon_{X}^{-1}(O)$ and $\sigma’\subset\epsilon_{X}^{-1}(1)\}$

of the usual box complex $B(X)$ . The box complex $B_{/K_{2}}$ for 2-colored graphs gives a
functor from the category $g_{/K_{2}}$ of 2-colored graphs to the category $\mathcal{P}$ of posets, and it is
easy to show that $B(G)\cong B_{/K_{2}}(K_{2}\cross G)$ as posets. Therefore if $K_{2}\cross G\cong K_{2}\cross H$ then

$B(G)\cong B(K_{2}\cross G)\cong B(K_{2}\cross H)\cong B(H)$

and hence we have the (if” part of Theorem 4.2.(1).

The “only if’ part is due to the following lemma whose proof is a little complicated.

Lemma 5.2. Suppose that $X$ and $Y$ are 2-colored graphs having no isolated vertices. Let
$f$ : $B_{/K_{2}}(X)arrow B_{/K_{2}}(Y)$ be an isomorphism of posets. Then there is a unique 2-colored
isomorphism $\hat{f}$ : $Xarrow Y$ which induces $f.$

Then Theorem 4.2.(2) is obtained as follows. Let $G$ and $H$ be graphs. It is clear
that $G\cong H$ implies $B(G)\cong B(H)$ as $\mathbb{Z}_{2}$-posets. On the other hand, suppose that
$f$ : $B(G)arrow B(H)$ is an isomorphism of $\mathbb{Z}_{2}$-posets. Since $B_{/K_{2}}(K_{2}\cross G)\cong B_{/K_{2}}(K_{2}\cross H)$ ,

we have an isomorphism $\hat{f}$ : $K_{2}\cross Garrow K_{2}\cross H$ of 2-colored graphs which induces $f$ . Then
$\hat{f}$ commutes with their odd involutions, so we have that $K_{2}\cross G\cong K_{2}\cross H$ as objects in
$\mathcal{G}_{/K_{2}}^{odd}$ . Therefore Theorem 4.2.(2) follows.

As an application of Theorem 5.1, we can construct graphs $G,$ $H$ with $B(G)\cong B(H)$

as posets but $\chi(G)\neq\chi(H)$ .

Example 5.3. Consider the two graphs $G$ and $H$ depicted in Figure 1. Then their

Kronecker double coverings $K_{2}\cross G$ and $K_{2}\cross H$ are isomorphic to the bipartite graph $X$

depicted in Figure 2.
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The graph $G.$

Figure 1.
The graph $H.$

The graph $X.$

Figure 2.

To see this, consider two involutions $\tau_{h}$ and $\tau_{v}$ of $X$ defined as follows. $\tau_{h}$ is the reflection

in the central horizontal line of Figure 2, and $\tau_{h}$ is the reflection in the central vertical

line of Figure 2. Then they are odd involutions of $X$ and the quotient is $X/\tau_{h}=G$ and

$X/\tau_{v}=H$ . Therefore we have $K_{2}\cross G\cong X\cong K_{2}\cross H.$

It is easy to see that $\chi(G)=4$ and $\chi(H)=3$ . Therefore we have $B(G)\cong B(H)$

as posets but $\chi(G)\neq\chi(H)$ . Note that $X$ consists of two $K_{2}\cross K_{3}$ and two $K_{2}\cross K_{4}.$

Generalizing this construction, we have that for a pair $(n, m)$ of integers greater than 1,

there are graphs $G,$ $H$ such that $K_{2}\cross G\cong K_{2}\cross H$ (and hence $B(G)\cong B(H)$ as posets)

but $\chi(G)=n$ and $\chi(H)=m.$

Therefore to determine the chromatic number from $B(G)$ , we need to consider the

equivariant topology of $B(G)$ . On the other hand, Theorem 4.1.(2) implies that if $B(G)\cong$

$B(H)$ as $\mathbb{Z}_{2}$-posets then $G\cong H$ and hence $\chi(G)=\chi(H)$ . Thus we consider the following

problem:

Question 5.4. Is there a $\mathbb{Z}_{2}$ -topological invariant of a box complex equivalent to the

chromatic number $\chi(G)’$?

If we replace $\mathbb{Z}_{2}$-topological invariant”’ to $\mathbb{Z}_{2}$-homotopy invariant” in the above, then

the following example given by Walker [17] is a counterexample.
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$G_{1} G_{2}$
Figure 3.

In fact $\chi(G_{1})=3$ and $\chi(G_{2})=4$ , but their Lov\’asz complexes (see (1) in the beginning
of Section 3) are $\mathbb{Z}_{2}$-homeomorphic.
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