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1 Introduction

Let $X$ be an oriented connected closed smooth manifold of dimension $n$ with $n\geq 4$ , and
$F$ an embedded closed submanifold of codimension 2 with $[F]_{2}=0\in H_{n-2}(X;Z_{2})$ , where
$[F]_{2}$ denote the homology class represented by $F$ in $X$ with coefficients in $Z_{2}$ . Then we
have a double branched covering map $\tilde{X}arrow X$ branched along $F$ . In [2] and [3], we have
obtained the following result;

Theorem 1.1 Suppose that $H_{1}(X;Z_{2})=0$ . Then $\tilde{X}$ admits a spin structure if and only

if $F$ admits an orientation such that $[F]\#\in H^{2}(X;Z)$ is twice a cohomology class of which
reduction modulo 2 coincides with the second Stifel- Whitney class. Here, $[F]^{\#}$ denote the
Poincaoe’-dual of $[F].$

The assumption that $H_{1}(X;Z_{2})=0$ is essential. As a generalizaition of the above theo-
rem, we first obtain;

Theorem 1.2 Let $H$ be a connected closed surface smoothly embedded in X. Suppose
that $H_{1}(X, Z_{2})=0$ , that $n=4$ , and that $[H]_{m}=0\in H_{2}(X;Z_{m})$ , where $[H]_{m}$ denote
the homology class represented by the oriented H. Then $\tilde{X}$ is spin if and only if $[F]\#\in$

$H^{2}(X;Z)$ is $m$ times a cohomology class of which reduction modulo 2 coincides with the
second Stifel-Whitney class.

Although Theorem 1.2 is the case for $n=4$ , it should hold for all positive integer $n.$

Next we have obtained the following ([3]) as an another generalization of Theorem 1.1;

Theorem1.3 $\tilde{X}$ admits a spin structure that is preserved by the covering transformation
map $T$ : $\tilde{X}arrow\tilde{X}$ if and only if $[F]^{\#}\in H^{2}(X;Z)$ is twice a cohomology class of which
reduction modulo 2 coincides with the second Stifel-Whitney class.

Suppose that $F$ admits an orientation such that $[F]^{\#}=2w\in H^{2}(X;Z)$ with $(w)_{2}=$

$w_{2}(X)$ , where $(w)_{2}\in H^{2}(X;Z_{2})$ denotes the reduction modulo 2, Then we have

$H_{1}(X;Z)\cong\oplus_{i=1}^{n}Z_{2}\oplus_{i=1}^{N_{0}}Z\langle p_{i}\rangle\oplus_{i=1}^{N_{1}}Z_{2^{r_{i}}}\langle q_{i}\rangle\oplus_{i=1}^{N_{2}}Z_{k_{i}},$

where $r_{i}\geq 2$ and $k_{i}$ odd. Therefore we obtain

$H_{1}(X;Z_{2})\cong\oplus_{i=1}^{n}Z_{2}\oplus_{i=1}^{N_{0}}Z_{2}\langle p_{i}\rangle\oplus_{i=1}^{N_{1}}Z_{2}\langle q_{i}\rangle$
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Then the 1 st homology group $H_{1}(X-F;Z_{2})$ is isomorphic to $Z_{2}\langle\mu_{1}$ , . . . $\mu_{s}\rangle\oplus H_{1}(X;Z_{2})$ ,

where $\mu_{i}$ is homology class represented by a meridian circle to $F.$

We choose a homomorphism $v$ : $H_{1}(X-F;Z_{2})arrow Z_{2}$ so that $v(\mu_{i})=1\in Z_{2}$ holds

for all $1\leq i\leq s$ . Let $\Omega\subset X$ be an oriented closed $n-2$-submanifold of $X$ such that
$[\Omega]^{\#}=\omega\in H^{2}(X;Z)$ . Let $L_{i}\subset X$ be an oriented loop such that $[L]_{i}=l_{i}\in H_{1}(X)$ . Then

fix an embedding $f_{i}:S^{1}\cross D^{n-1}arrow X$ so that

$\{\begin{array}{l}f_{i}(S^{1}\cross 0)=L_{i}f_{i}(S^{1}\cross D^{n-1})\cap(F\cup\Omega)=\emptyset.\end{array}$

Since $2l_{i}=0$ , we can choose an emmbedded surface $G$ such that $\partial G=f_{i}(S^{1}\cross\{a,$ $b$

where $a,$
$b\in\partial D^{n-1}$ . Then by setting $X’=X-f_{i}(S^{1}\cross D^{n-1})$ , we have that $(G_{i}, \partial G_{i})\subset$

$(X’, \partial X$ Then define $v\in H^{1}(X-F;Z_{2})$ as

$v(l_{i})=[ \Omega]\cdot[G_{i}, \partial G_{i}]-\frac{1}{2}([F]\cdot[G_{i}, \partial G_{i}$

Here, : $H_{n-2}$ $(X’ ; Z)$ $\cross H_{2}(X’,$ $\partial X$ $Zarrow Z$ denote the intersection pairing. Then the

coveing trnsformation map $T:\tilde{X}arrow\tilde{X}$ of the double branched covering $\tilde{X}arrow X$ deter-

minded by $v$ is a spin structure preserving.

Remark 1.1 $ono$ gives semi-orientation of fixed point $\sim\sim setforeach$ spin structure on $\tilde{X}$

that is preserved by $T:\tilde{X}arrow\tilde{X}$ as follows([6]): let $SO(X)\simarrow X$ denote the orthonormal

frame bundle of $\tilde{X}$ together with a spin structure Spin$(X)arrow SO(X)$ that is presered by

T. Then the differential $dT$ : $SO(\tilde{X})arrow SO(X)$ has a lift $\overline{dT}$ : Spin$(\tilde{X})arrow Spin(\tilde{X})$ .

Since the restriction $\overline{dT}|_{\tilde{F}}$ is a bundle automorphism, it is a section of the adjoint bundle
$Ad(Spin(\tilde{X}))arrow\tilde{X}$ . Because $Ad(Spin(\tilde{X}))$ is a subbundle of the Clliford $\underline{al}gebra$ bundle
$Cl(\tilde{X})arrow\tilde{X}$ , and $Cl(\tilde{X})arrow\tilde{X}$ is isomorphic to the exterior bundle $\wedge^{*}T\tilde{X},$ $dT$ is a section
$of\wedge^{*}T\tilde{X}$ . Moreover we can $\underline{se}ethat\wedge^{*}T\tilde{X}$ is a section of $a$ exterior bundle of a normal
bundle $\nu$ of $\tilde{F}$ in $\tilde{X}$ . Thus $dT$ determines an orientation of $\nu$ , and given $\tilde{X}$ determines
an orientation of F. In [4], we have shown that the homology class $[F]^{\#}\in H^{2}(X;Z)$

represented by this orientaion on $F\approx\tilde{F}$ is twice a characteristic cohomology class.

Example 1.1 Let $A\approx S^{1}\cross(0,1)$ be an anulus embedded in $R^{2}$ and $t$ : $Aarrow A$ the

involution given by $t(x, y)=(-x, y)$ . Let the tangent bundle TA be trivialized so that its

framing be bounding one. Then the differential $dt$ : $TA|_{S^{1}\cross 0}\approx S^{1}\cross R^{2}arrow TA|_{S^{1}\cross 0}$ of $t$

has the following form;

$dt:(e^{\theta i}, (\begin{array}{l}ab\end{array}))arrow(e^{-\theta i}, -R(-2\theta)(\begin{array}{l}ab\end{array}))$ ,

where $R(\theta)$ denote the matrix $(\begin{array}{ll}cos\theta -sin\thetasin\theta cos\theta\end{array})$ . Then the lift $\tilde{dt}$ : Spin $(A)\approx A\cross$

$Spin(2)arrow Spin(A)$ of $dt$ : $SO(A)arrow SO(A)$ to the spin structure Spin$(A)arrow SO(A)$

with respect to the given framing has the form;

$(e^{\theta i}, \xi)arrow(e^{-\theta i}, (\cos\theta-\sin\theta\frac{\partial}{\partial x}\frac{\partial}{\partial y})\xi)$ .

Therefore at the north pole $N=((\begin{array}{l}10\end{array}), 0)\in A$ $(resp. south pole S=((\begin{array}{l}-10\end{array}), 0)\in A$), the
given spin structure determines the orientation $\frac{\partial}{\partial x}\wedge\frac{\partial}{\partial y}$ (resp. - $\frac{\partial}{\partial x}\wedge\frac{\partial}{\partial y}$ ).
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The above argument shows that the hyperelliptic involution $t:S^{2}arrow S^{2}$ together with
the unique spin structure $S^{2}$ gives the orientation of the branched locus $N\cup S$ of the
quotient space $S^{2}\approx S^{2}/\langle t\rangle$ so that $[N\cup S]^{\#}=0\in Z\cong H^{2}(S^{2};Z)$ , which is twice a
characteristic cohomology class.

Next we consider the case for anulus. Set $T=S^{1}\cross S^{1},l=S^{1}\cross*andm=*\cross S^{1}$ Then
the cohomology classes represented by $l$ and $m$ generate the cohomology group $H^{1}(T;Z_{2})\cong$

(Z). If we give a spin structure on $T$ that restricts to Lie group spin structres on $l$ and
$m$ , then the induced orientation of the branched locus $F$ in the quotient space $S^{2}\approx T/\langle t\rangle$

by the hyperelliptic involution $t$ : $Tarrow T$ satisfies $[F]^{\#}=\pm 4\in Z\cong H^{2}(S^{2}, Z)$ . If we
consider a spin structure that restricts to Lie group spin structres on $l$ and to bounding
spin structure on $m$ , then the induced orientation satisfies $[F]^{\#}=\pm 0\in$ Z. These are
orienations which are twice a characteristic cohomology class.

By considering the Gysin exact sequence for the double cover $\tilde{X}-\tilde{F}arrow X-F$ , we
obtain the following([5]);

Theorem 1.4 $\tilde{X}$ is spin if and only there exists a class $w\in H^{1}(X-F;Z_{2})$ such that
$v\cup w=w_{2}(X-F)$ and that $\langle v,$ $\mu\rangle=1\in Z_{2}$ , where $v\in H^{1}(X-F;Z_{2})$ determines the
double cover $\tilde{X}-\tilde{F}arrow X-F$ , and $\mu\in H_{1}(X-F;Z_{2})$ is a homology class represented
by a meridian to $F.$

Theorem 1.4 implies another way to state Theorem 1.3([5]);

Theorem 1.5 $\tilde{X}$ admits a spin structure that is preserved by the covering transformation
map $T:\tilde{X}arrow\tilde{X}$ if and only if $v\cup v=w_{2}(X-F)$ .

As a corollary, we have([5]);

Corollary 1.1 Let $\tilde{Y}arrow Y$ be an unbranched double cover determinded by $\rho\in H^{1}(Y;Z_{2})$ .
$Then\sim\tilde{Y}$ admits a spin structure that is preserved by the covering transformation map
$t:Yarrow\tilde{Y}$ of odd type if and only if $\rho\cup\rho=w_{2}(Y)$ .

Example 1.2

Let $\tau$ : $S^{n}arrow S^{n}$ denote the antipodal map with odd $n$ and $q:S^{n}arrow RP^{n}$ its quotient
map. Then $\tau$ is a spin structure preserving map and $q$ is the double caverng map that
corresponds to $\rho=1\in Z_{2}\cong H^{1}(RP^{n};Z_{2})$ . Recall that $\tau$ is odd type with respect to the
unique spin structure on $S^{n}$ if and only if $n\equiv 3$ mod4 ([1]). Note that $n\equiv 3$ mod4 if
and only if $\rho\cup\rho=w_{2}(RP^{n})$ because $w_{2}(RP^{n})= \frac{n(n+1)}{2}\in Z_{2}\cong H^{2}(RP^{n};Z_{2})$ .
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