On orientations of fixed point sets of spin structure preserving involutions on manifolds.

Seiji Nagami Academic Support Center Setsunan University

1 Introduction

Let X be an oriented connected closed smooth manifold of dimension n with $n \ge 4$, and F an embedded closed submanifold of codimension 2 with $[F]_2 = 0 \in H_{n-2}(X; \mathbb{Z}_2)$, where $[F]_2$ denote the homology class represented by F in X with coefficients in \mathbb{Z}_2 . Then we have a double branched covering map $\widetilde{X} \to X$ branched along F. In [2] and [3], we have obtained the following result;

Theorem 1.1 Suppose that $H_1(X; \mathbb{Z}_2) = 0$. Then \widetilde{X} admits a spin structure if and only if F admits an orientation such that $[F]^{\sharp} \in H^2(X; \mathbb{Z})$ is twice a cohomology class of which reduction modulo 2 coincides with the second Stifel-Whitney class. Here, $[F]^{\sharp}$ denote the Poincaré-dual of [F].

The assumption that $H_1(X; \mathbb{Z}_2) = 0$ is essential. As a generalization of the above theorem, we first obtain;

Theorem 1.2 Let H be a connected closed surface smoothly embedded in X. Suppose that $H_1(X, \mathbb{Z}_2) = 0$, that n = 4, and that $[H]_m = 0 \in H_2(X; \mathbb{Z}_m)$, where $[H]_m$ denote the homology class represented by the oriented H. Then \tilde{X} is spin if and only if $[F]^{\sharp} \in$ $H^2(X; \mathbb{Z})$ is m times a cohomology class of which reduction modulo 2 coincides with the second Stifel-Whitney class.

Although Theorem 1.2 is the case for n = 4, it should hold for all positive integer n. Next we have obtained the following ([3]) as an another generalization of Theorem 1.1;

Theorem 1.3 \widetilde{X} admits a spin structure that is preserved by the covering transformation map $T: \widetilde{X} \to \widetilde{X}$ if and only if $[F]^{\sharp} \in H^2(X; \mathbb{Z})$ is twice a cohomology class of which reduction modulo 2 coincides with the second Stifel-Whitney class.

Suppose that F admits an orientation such that $[F]^{\sharp} = 2w \in H^2(X; \mathbb{Z})$ with $(w)_2 = w_2(X)$, where $(w)_2 \in H^2(X; \mathbb{Z}_2)$ denotes the reduction modulo 2. Then we have

$$H_1(X; \mathbf{Z}) \cong \bigoplus_{i=1}^n \mathbf{Z}_2 \oplus_{i=1}^{N_0} \mathbf{Z} \langle p_i \rangle \oplus_{i=1}^{N_1} \mathbf{Z}_{2^{r_i}} \langle q_i \rangle \oplus_{i=1}^{N_2} \mathbf{Z}_{k_i},$$

where $r_i \geq 2$ and k_i odd. Therefore we obtain

$$H_1(X; \mathbf{Z}_2) \cong \bigoplus_{i=1}^n \mathbf{Z}_2 \bigoplus_{i=1}^{N_0} \mathbf{Z}_2 \langle p_i \rangle \bigoplus_{i=1}^{N_1} \mathbf{Z}_2 \langle q_i \rangle$$

Then the 1-st homology group $H_1(X - F; \mathbb{Z}_2)$ is isomorphic to $\mathbb{Z}_2\langle \mu_1, \ldots, \mu_s \rangle \oplus H_1(X; \mathbb{Z}_2)$, where μ_i is homology class represented by a meridian circle to F.

We choose a homomorphism $v: H_1(X - F; \mathbb{Z}_2) \to \mathbb{Z}_2$ so that $v(\mu_i) = 1 \in \mathbb{Z}_2$ holds for all $1 \leq i \leq s$. Let $\Omega \subset X$ be an oriented closed n - 2-submanifold of X such that $[\Omega]^{\sharp} = \omega \in H^2(X; \mathbb{Z})$. Let $L_i \subset X$ be an oriented loop such that $[L]_i = l_i \in H_1(X)$. Then fix an embedding $f_i: S^1 \times D^{n-1} \to X$ so that

$$\begin{cases} f_i(S^1 \times 0) = L_i \\ f_i(S^1 \times D^{n-1}) \cap (F \cup \Omega) = \emptyset \end{cases}$$

Since $2l_i = 0$, we can choose an emmbedded surface G such that $\partial G = f_i(S^1 \times \{a, b\})$, where $a, b \in \partial D^{n-1}$. Then by setting $X' = \overline{X - f_i(S^1 \times D^{n-1})}$, we have that $(G_i, \partial G_i) \subset (X', \partial X')$. Then define $v \in H^1(X - F; \mathbb{Z}_2)$ as

$$v(l_i) = [\Omega] \cdot [G_i, \partial G_i] - \frac{1}{2}([F] \cdot [G_i, \partial G_i]).$$

Here, $\cdot : H_{n-2}(X'; \mathbf{Z}) \times H_2(X', \partial X'); \mathbf{Z} \to Z$ denote the intersection pairing. Then the covering transformation map $T : \widetilde{X} \to \widetilde{X}$ of the double branched covering $\widetilde{X} \to X$ determined by v is a spin structure preserving.

Remark 1.1 Ono gives semi-orientation of fixed point set for each spin structure on \widetilde{X} that is preserved by $T: \widetilde{X} \to \widetilde{X}$ as follows([6]): let $SO(\widetilde{X}) \to \widetilde{X}$ denote the orthonormal frame bundle of \widetilde{X} together with a spin structure $Spin(\widetilde{X}) \to SO(\widetilde{X})$ that is preserved by T. Then the differential $dT: SO(\widetilde{X}) \to SO(\widetilde{X})$ has a lift $\widetilde{dT}: Spin(\widetilde{X}) \to Spin(\widetilde{X})$. Since the restriction $\widetilde{dT}|_{\widetilde{F}}$ is a bundle automorphism, it is a section of the adjoint bundle $Ad(Spin(\widetilde{X})) \to \widetilde{X}$. Because $Ad(Spin(\widetilde{X}))$ is a subbundle of the Clliford algebra bundle $Cl(\widetilde{X}) \to \widetilde{X}$, and $Cl(\widetilde{X}) \to \widetilde{X}$ is isomorphic to the exterior bundle $\wedge^*T\widetilde{X}$, \widetilde{dT} is a section of $\wedge^*T\widetilde{X}$. Moreover we can see that $\wedge^*T\widetilde{X}$ is a section of a exterior bundle of a normal bundle ν of \widetilde{F} in \widetilde{X} . Thus \widetilde{dT} determines an orientation of ν , and given \widetilde{X} determines an orientation of \widetilde{F} . In [4], we have shown that the homology class $[F]^{\sharp} \in H^2(X; \mathbb{Z})$ represented by this orientaion on $F \approx \widetilde{F}$ is twice a characteristic cohomology class.

Example 1.1 Let $A \approx S^1 \times (0,1)$ be an anulus embedded in \mathbb{R}^2 and $t : A \to A$ the involution given by t(x,y) = (-x,y). Let the tangent bundle TA be trivialized so that its framing be bounding one. Then the differential $dt : TA|_{S^1 \times 0} \approx S^1 \times \mathbb{R}^2 \to TA|_{S^1 \times 0}$ of t has the following form;

$$dt: \left(e^{\theta i}, \begin{pmatrix}a\\b\end{pmatrix}\right) \to \left(e^{-\theta i}, -R(-2\theta) \begin{pmatrix}a\\b\end{pmatrix}\right),$$

where $R(\theta)$ denote the matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Then the lift $\tilde{dt} : Spin(A) \approx A \times Spin(2) \rightarrow Spin(A)$ of $dt : SO(A) \rightarrow SO(A)$ to the spin structure $Spin(A) \rightarrow SO(A)$ with respect to the given framing has the form;

$$\left(e^{\theta i},\xi\right) \rightarrow \left(e^{-\theta i},\left(\cos\theta-\sin\theta\frac{\partial}{\partial x}\frac{\partial}{\partial y}\right)\xi\right)$$

Therefore at the north pole $N = (\binom{1}{0}, 0) \in A$ (resp. south pole $S = (\binom{-1}{0}, 0) \in A$), the given spin structure determines the orientation $\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}$ (resp. $-\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}$).

The above argument shows that the hyperelliptic involution $t: S^2 \to S^2$ together with the unique spin structure S^2 gives the orientation of the branched locus $N \cup S$ of the quotient space $S^2 \approx S^2/\langle t \rangle$ so that $[N \cup S]^{\sharp} = 0 \in \mathbb{Z} \cong H^2(S^2; \mathbb{Z})$, which is twice a characteristic cohomology class.

Next we consider the case for analys. Set $T = S^1 \times S^1$, $l = S^1 \times *$ and $m = * \times S^1$. Then the cohomology classes represented by l and m generate the cohomology group $H^1(T; \mathbb{Z}_2) \cong$ $(\mathbb{Z}_2)^2$. If we give a spin structure on T that restricts to Lie group spin structres on l and m, then the induced orientation of the branched locus F in the quotient space $S^2 \approx T/\langle t \rangle$ by the hyperelliptic involution $t : T \to T$ satisfies $[F]^{\sharp} = \pm 4 \in \mathbb{Z} \cong H^2(S^2; \mathbb{Z})$. If we consider a spin structure that restricts to Lie group spin structures on l and to bounding spin structure on m, then the induced orientation satisfies $[F]^{\sharp} = \pm 0 \in \mathbb{Z}$. These are orienations which are twice a characteristic cohomology class.

By considering the Gysin exact sequence for the double cover $\widetilde{X} - \widetilde{F} \to X - F$, we obtain the following([5]);

Theorem 1.4 \widetilde{X} is spin if and only there exists a class $w \in H^1(X - F; \mathbb{Z}_2)$ such that $v \cup w = w_2(X - F)$ and that $\langle v, \mu \rangle = 1 \in \mathbb{Z}_2$, where $v \in H^1(X - F; \mathbb{Z}_2)$ determines the double cover $\widetilde{X} - \widetilde{F} \to X - F$, and $\mu \in H_1(X - F; \mathbb{Z}_2)$ is a homology class represented by a meridian to F.

Theorem 1.4 implies another way to state Theorem 1.3([5]);

Theorem 1.5 \widetilde{X} admits a spin structure that is preserved by the covering transformation map $T: \widetilde{X} \to \widetilde{X}$ if and only if $v \cup v = w_2(X - F)$.

As a corollary, we have ([5]);

Corollary 1.1 Let $\widetilde{Y} \to Y$ be an unbranched double cover determinded by $\rho \in H^1(Y; \mathbb{Z}_2)$. Then \widetilde{Y} admits a spin structure that is preserved by the covering transformation map $t: \widetilde{Y} \to \widetilde{Y}$ of odd type if and only if $\rho \cup \rho = w_2(Y)$.

Example 1.2

Let $\tau: S^n \to S^n$ denote the antipodal map with odd n and $q: S^n \to RP^n$ its quotient map. Then τ is a spin structure preserving map and q is the double caverng map that corresponds to $\rho = 1 \in \mathbb{Z}_2 \cong H^1(RP^n; \mathbb{Z}_2)$. Recall that τ is odd type with respect to the unique spin structure on S^n if and only if $n \equiv 3 \mod 4$ ([1]). Note that $n \equiv 3 \mod 4$ if and only if $\rho \cup \rho = w_2(RP^n)$ because $w_2(RP^n) = \frac{n(n+1)}{2} \in \mathbb{Z}_2 \cong H^2(RP^n; \mathbb{Z}_2)$.

References

- [1] M. Atiyah and R. Bott: A Lefschetz fixed point formula for elliptic complexes: II. Applications, Ann. Maht., 88(1968), 451-491.
- S.Nagami: Existence of spin structures on double branched covering spaces over fourmanifolds, Osaka J. Math., 37(2000), 425-440.
- [3] S.Nagami: A note on orientations of fixed point sets of spin structure preserving involutions, Kobe J. Math., **20**(2003), 39–51.

- [4] S.Nagami: Existence of spin structures on cyclic branched covering spaces over fourmanifolds, Perspectives of Complex Analysis, Differential Geometry and Mathematical Physics: Proceedings of the 5th International Workshop on Complex Structures and Vector Fields: St. Konstantin, Bulgaria, 3-9 September 2000. World Scientific, (2001), 86–92.
- [5] : S. Nagami: On spin structures of double branched coveint spaces, JP J. Geom. Top., 14(2013), 119–147.
- [6] K. Ono: On a Theorem of Edmonds, Progress in differential geometry, 243-245, Adv.Stud. Pure Math., 22, Math Soc. Japan, Tokyo, 1993.