Note on the space of polynomials with roots of bounded multiplicity

山口耕平 (Kohhei Yamaguchi) 電気通信大学 情報理工学研究科 (University of Electro-Communications)

Abstract

We study the homotopy type of the space $\mathrm{SP}_n^d(X)$ consisting of all d particles in X with multiplicity less than n. When $X=\mathbb{C}$, this space may be identified with the space SP_n^d of all monic complex coefficient polynomials $f(z)\in\mathbb{C}[z]$ of degree d without roots of multiplicity $\geq n$. In this paper we announce the main result given in [8] concerning to the homotopy stability dimension of this space which improves that obtained in the previous paper [3].

1 Introduction.

Basic definitions and notations. For spaces X and Y, let $\mathrm{Map}^*(X,Y)$ denote the space consisting of all continuous base-point preserving maps from X to Y with the compact-open topology. When X and Y are complex manifolds, we denote by $\mathrm{Hol}^*(X,Y)$ the subspace of $\mathrm{Map}^*(X,Y)$ consisting of all base-point preserving holomorphic maps.

For each integer $d \geq 1$, let $\operatorname{Map}_d^*(S^2, \mathbb{C}\mathrm{P}^{n-1}) = \Omega_d^2\mathbb{C}\mathrm{P}^{n-1}$ denote the space of all based continuous maps $f:(S^2,\infty) \to (\mathbb{C}\mathrm{P}^{n-1},[1:1:\cdots:1])$ such that $[f]=d\in\mathbb{Z}=\pi_2(\mathbb{C}\mathrm{P}^{n-1})$, where we identify $S^2=\mathbb{C}\cup\{\infty\}$ and choose $\infty\in S^2$ and $[1:1:\cdots:1]\in\mathbb{C}\mathrm{P}^{n-1}$ as the base points of S^2 and $\mathbb{C}\mathrm{P}^{n-1}$, respectively. Let $\operatorname{Hol}_d^*(S^2,\mathbb{C}\mathrm{P}^{n-1})$ denote the subspace of $\Omega_d^*\mathbb{C}\mathrm{P}^{n-1}$ consisting of all based holomorphic maps.

Let S_d denote the symmetric group of d letters. Then the group S_d acts on the space $X^d = X \times \cdots \times X$ (d-times) by the coordinate permutation and let $SP^d(X)$ denote the d-th symmetric product of X given by the orbit space $SP^d(X) = X^d/S_d$.

Let $F(X,d) \subset X^d$ denote the subspace consisting of all $(x_1, \dots, x_n) \in X^d$ such that $x_i \neq x_j$ if $i \neq j$. Since F(X,d) is S_d -invariant, we define the orbit space $C_d(X)$ by $C_d(X) = F(X,d)/S_d$. The space $C_n(X)$ is usually called the configuration space of unordered n-distinct points in X. Note that there is an inclusion $C_d(X) \subset SP^d(X)$.

Let $P^d(\mathbb{C})$ denote the space consisting of all monic polynomials

$$f(z) = z^d + a_1 z^{d-1} + \dots + a_d \in \mathbb{C}[z]$$

of the degree d. Similarly, let SP_n^d denote the susbspace of $\mathrm{P}^d(\mathbb{C})$ consisting of all monic polynomials $f(z) \in \mathrm{P}^d(\mathbb{C})$ without root of multiplicity $\geq n$.

Definition 1.1. Note that each element $\alpha \in SP^d(X)$ can be represented as the formal sum $\alpha = \sum_{k=1}^r n_k x_k$, where $\{x_k\}_{k=1}^r$ are mutually distinct points in X and each n_k is a positive integer such that $\sum_{k=1}^r n_k = d$.

Then by using the notation, we define the subspace $SP_n^d(X) \subset SP^d(X)$ by

$$\operatorname{SP}_n^d(X) = \left\{ \sum_{k=1}^r n_k x_k \in \operatorname{SP}^d(X) : n_k < n \text{ for any } 1 \le k \le r \right\}.$$

Note that there is an increasing filtration

$$\emptyset = \mathrm{SP}_1^d(X) \subset C_d(X) = \mathrm{SP}_2^d(X) \subset \mathrm{SP}_3^d(X) \subset \cdots \subset \mathrm{SP}_d^d(X) \subset \mathrm{SP}_{d+1}^d(X) = \mathrm{SP}^d(X).$$

Remark 1.2. (i) If $X = \mathbb{C}$ we can easily see that there is a natural homeomorphism $\mathrm{P}^d(\mathbb{C}) \cong \mathrm{SP}^d(\mathbb{C})$ by identifying $\mathrm{P}^d(\mathbb{C}) \ni \prod_{k=1}^r (z-\alpha_k)^{n_k} \mapsto \sum_{k=1}^r n_k \alpha_k \in \mathrm{SP}^d(\mathbb{C})$, where $(\alpha_1, \cdots, \alpha_r) \in F(\mathbb{C}, r)$ and $\sum_{k=1}^r n_k = d$. It is also easy to see that the there is a natural homemorphism $\mathrm{SP}_n^d \cong \mathrm{SP}_n^d(\mathbb{C})$ by using this identification.

(ii) It is easy to see that the space $\operatorname{Hol}_d^*(S^2, \mathbb{C}P^{n-1})$ can be identified with the space consisting of all n-tuples $(f_1(z), \dots, f_n(z)) \in P^d(\mathbb{C})^n$ of monic polynomials of the same degree d such that polynomials $f_1(z), \dots, f_n(z)$ have no common root.

Definition 1.3. Define the jet map $j_n^d: SP_n^d \to \Omega_d^2 \mathbb{C}P^{n-1} \simeq \Omega^2 S^{2n-1}$ by

$$j_n^d(f)(x) = \begin{cases} [f(x): f(x) + f'(x): f(x) + f''(x): \dots : f(x) + f^{(n-1)}(x)] & \text{if } x \in \mathbb{C} \\ [1:1:\dots:1] & \text{if } x = \infty \end{cases}$$

for $(f,x) \in \mathrm{SP}_n^d \times S^2$, where we identify $S^2 = \mathbb{C} \cup \infty$.

Remark 1.4. A map $f: X \to Y$ is called a homotopy equivalence (resp. a homology equivalence) up to dimension D if the induced homomorphism $f_*: \pi_k(X) \to \pi_k(Y)$ (resp. $f_*: H_k(X, \mathbb{Z}) \to H_k(Y, \mathbb{Z})$) is an isomorphism for any k < D and an epimorphism if k = D. Similarly, it is called a homotopy equivalence (resp. a homology equivalence) through dimension D if $f_*: \pi_k(X) \to \pi_k(Y)$ (resp. $f_*: H_k(X, \mathbb{Z}) \to H_k(Y, \mathbb{Z})$) is an isomorphism for any $k \leq D$.

2 The main result.

The previous results. Let M_g denote closed Riemann surface of genus g, and let $* \in M_g$ be its base-point. Note that $M_g = S^2$ if g = 0. Then, recall the following two results given in [12] and [3].

Theorem 2.1 ([12]; the case $g \geq 1$). If $g \geq 1$, there is a map $SP_n^d(M_g \setminus \{*\}) \rightarrow Map_0^*(M_g, \mathbb{C}P^{n-1})$ which is a homology equivalence up to dimension D(d, n), where $\lfloor x \rfloor$ is the integer part of a real number x and D(d, n) denotes the positive integer given by

$$D(d,n) = \begin{cases} \left\lfloor \frac{d}{2} \right\rfloor & \text{if } n = 2\\ \left\lfloor \frac{d}{n} \right\rfloor - n + 3 & \text{if } n \ge 3 \end{cases} \square$$

Remark 2.2. Recently the much better stability dimension for the case $g \ge 1$ was obtained by A. Kupers and J. Miller in [?] (cf. [5], [6], [10]).

Theorem 2.3 ([3]; the case g = 0). If g = 0, the jet map

$$j_n^d: \mathrm{SP}_n^d \to \Omega_d^2 \mathbb{C}\mathrm{P}^{n-1} \simeq \Omega^2 S^{2n-1}$$

is a homotopy equivalence up to dimension $(2n-3)\lfloor \frac{d}{n} \rfloor$ if $n \geq 3$ and it is a homology equivalence up to dimension $\lfloor \frac{d}{2} \rfloor$ if n=2.

Theorem 2.4 ([4], [11]). There is a homotopy equivalence

$$\mathrm{SP}_n^d \simeq \mathrm{Hol}^*_{\lfloor \frac{d}{n} \rfloor}(S^2, \mathbb{C}\mathrm{P}^{n-1}) \quad \text{ if } n \geq 3$$

and there is a stable homotopy equivalence $SP_2^d \simeq_s Hol_{\lfloor \frac{d}{2} \rfloor}(S^2, \mathbb{C}P^1)$ if n=2.

The new result. We can improve the stability dimension of the above result for $n \geq 3$ as follows:

Theorem 2.5 ([8]). If $n \geq 3$ and g = 0, the jet map $j_n^d : \mathrm{SP}_n^d \to \Omega_d^2 \mathbb{CP}^{n-1} \simeq \Omega^2 S^{2n-1}$ is a homotopy equivalence through dimension $D(d,n) = (2n-3)(\lfloor \frac{d}{n} \rfloor + 1) - 1$.

Acknowledgements. The author is supported by JSPS KAKENHI Grant Number 26400083.

References

- [1] M. Adamaszek, A. Kozlowski and K. Yamaguchi, Spaces of algebraic and continuous maps between real algebraic varieties, Quart. J. Math. **62** (2011), 771–790.
- [2] F.R. Cohen, R.L. Cohen, B.M. Mann and R.J. Milgram, The topology of rational functions and divisors of surfaces, Acta Math. 166 (1991), 163–221.
- [3] M.A. Guest, A. Kozlowski and K. Yamaguchi, Spaces of polynomials with roots of bounded multiplicity, Fund. Math. **116** (1999), 93–117.
- [4] M.A. Guest, A. Kozlowski and K. Yamaguchi, Stable splitting of the space of polynomials with roots of bounded multiplicity, J. Math. Kyoto Univ. 38 (1998), 351–366.

- [5] S. Kallel, An analogue of the May-Milgran model for configurations with multiplicities, Contemporary Math. **279** (2001), 135-149.
- [6] S. Kallel, Configuration spaces and the topology of curves in projective spaces, Contemporary Math. **279** (2001), 151-175.
- [7] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of coprime polynomials revisited, preprint (ArXiv:1405.0662).
- [8] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of polynomials with bounded multiplicity, preprint.
- [9] G.B. Segal, The topology of spaces of rational functions, Acta Math. **143** (1979), 39–72.
- [10] R. Vakil and M. Wood, Discriminants in the Grothendieck ring, preprint (Arxiv:1208.3166).
- [11] V.A. Vassiliev, Complements of discriminants of smooth maps, Topology and Applications, Amer. Math. Soc., Translations of Math. Monographs 98, 1992 (revised edition 1994).
- [12] K. Yamaguchi, Configuration space models for spaces of maps from a Riemann surface to complex projective, Publ. Res. Inst. Math. Sci. 39 (2003), 535-543.

Department of Mathematics, University of Electro-Communications 1-5-1 Chufugaoka, Chofu, Tokyo 182-8585, Japan E-mail: kohhei@im.uec.ac.jp