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1. INTRODUCTION AND MAIN RESULTS

This article is an announcement of the paper [5]. The proofs of
Theorems $A,$ $B$ , and $C$ in this article are in the paper [5].

We study the global bifurcation diagram of the semilinear elliptic
Dirichlet problem

(1.1)

$\triangle u+\lambda f(u)=0$ in $B,$

$u>0$ in $B,$

$u=0$ on $\partial B,$

where $B$ is the unit ball in $\mathbb{R}^{N}(N\geq 3)$ ,

(1.2) $f(u)=u^{p}+g(u)$ ,

(1.3) $p>p_{S}:= \frac{N+2}{N-2},$

$g(u)$ is a lower order ternl, and $\lambda$ is a non-negative constant. Specifi-
cally, we assume the following three conditions:

(f1) $f\in C^{1}([0, \infty))$ and $f(t)>0$ in $[0, \infty$ ),

(f2) $f(u)=u^{p}+g(u)(p>\rho_{S})$ , where there are $u_{0}>0,$

$\delta>0$ , and $C_{0}>0$ such that $|g(u)|\leq C_{0}\uparrow x^{p-\delta}$ for $u>u_{0},$

(f3) $f(u)=u^{p}+g(u)$ , where there are $u_{0}>0,$

$\delta>0$ , and $C_{0}>0$ snch that $|g’(u)|\leq C_{0}u^{p-1-\delta}$ for $u>u_{0}.$
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The exponent $\rho_{S}$ is called the Sobolev critical exponent. Because $p>$

$p_{S}$ , the Sobolev embedding $H^{1}(B)\mapsto L^{p+1}(B)$ does not hold. Hence, it
is difficult to use a variational method in the function space $H^{1}(B)$ . By
the symmetry result of Gidas Ni-Nirenberg [2], every positive solution
$u$ is radially $s^{\neg}$ynlnletric and $\Vert u\Vert_{\infty}=u(0)$ . This enables us to use ODE
techniques. Then there $i$ an unbounded branch $\{(\lambda, u)\}$ consisting of
positive radial sohltions of (1.1) such that the branch emanates from
$(0,0)$ .

We mention the existence of the singular solution of (1.1).

Proposition 1.1. Snppose that $(fl)-(f3)$ hold. Then (1.1) has a sin-
gular positive solution $(\lambda^{*}, u^{*})$ such that

(1.4) $u^{*}(r)=A(\rho, N)(\sqrt{\lambda^{*}}r)^{-\theta}(1+O(7^{\}}\delta\theta))$ as $rarrow 0,$

$?vhere_{J}\delta>0$ is the constant in $(f2)$ .

Corollary 1.2. Let $(\lambda^{*}, u^{*})$ be a singular soluti on given in Proposi-
tion 1.1. If $\rho>Ps$ , then $u^{*}\in H^{1}(B)$ .

The proof of Proposition 1.1 is essentially the same as one of [4, The-
orem 1.1], and Corollary 1.2 is an immediate consequence of Propo.si-
tion 1.1, The singular solution plays an important role in the study of
the global bifurcation $diag_{1}\cdot an’1.$

We are interested in the classification of the bifurcation diagram.
We call the bifurcation diagram Type $I$ if there is $\lambda^{*}>0$ such that the
branch has infinitely many turning points near $\lambda^{*}$ and that $a\fbox{Error::0x0000}$ singulal$\cdot$

solution exists at $\lambda^{*}$ The first main theorem is the followhg:

Theorem A. Suppose that $(fl)-(f3)$ hold. If Ps $<\rho<\rho_{JL}$ , then the
$bi_{ノ}$furcation diagram of (1.1) is of Type I and the extremal solution is
regular. In particular, $j_{ノ}f3\leq N\leq 10$ , then the bifurcation diagram
is always of Type I. Moreover, $m(u^{*})=\infty$ , where $u^{*}$ is the singular
solution given in Proposition 1.1 and $m(u^{*})$ is the Morse index of $u^{*}$

Neither the monotonicity of $f$ nor the convexity of $f$ is assumed in

Theorem A.
We considel$\cdot$ the case where $\rho>\rho_{JL}$ . Brezis-V\’azques [1] studied (1.1)

when

(1.5) $f$ is a continuous, positive, increasing, and

convex function on $[0, \infty$ ) such that $f(t)/tarrow\infty$ as $tarrow\infty.$

When (1.5) holds, there is a maximal or extremal $vah_{1}e$ of $\lambda>0$ such
that (1.1) has a solution which is minimal. In [1] the authors studied
the corresponding extremal solution when it is unbounded, i.e., the
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singular $\backslash soh_{1}$tion. We call the bifurcation diagram Type II if there is
$\lambda^{*}>0$ such that the branch consists only of minimal solutions for
$\lambda\in(0, \lambda^{*})$ and that a singular solution exists at $\lambda^{*}$ They have shown
that

Proposition 1.3 (Brezis-Vazquez [1, Theorem 3.1]). Suppose that (1.5)
holds. If $(\lambda^{*}, u^{*})$ is a singular solution of (1.1), if $u^{*}\in H^{1}(B)$ , and if
$u^{*}$ is stable in the sense where

(1.6) $\int_{B}(|\nabla\phi|^{2}-\lambda^{*}f’(u^{*})\phi^{2})dx\geq 0$ for all $\phi\in C_{0}^{1}(B)$ ,

then $(\lambda^{*}, u^{*})$ is the extremal solution which indicates that the bifurcation
diagram of (1.1) is of Type II.

Roughly speaking, Proposition 1.3 says that if $u^{*}\in H^{1}(B)$ and if
$m(u^{*})=0$ , then the bifurcation diagram is of Type II.

The second main theorem is the following:

Theorem B. Suppose that $(fl)-(f3)$ hold. If $\rho>p_{JL}$ , then $m(u^{*})<$

$\infty.$

We are interested in the case $1\leq m(u^{*})<\infty$ . We call the branch
Type III the branch has at least one but finitely many turning
points. We conjecture the following:

Conjecture 1.4. Suppose that $(fl)-(f3)$ hold. If $1\leq m(u^{*})<\infty$ , then
the bifurcation diagram is of $\tau_{1pe}III$. Moreover, for a certain class

of nonlinearities, the bifurcation diagram of (1.1) has exactly $7n(u^{*})$

turning point $(s)$ .

If $f$ is analytic, then the set of the turning points do not have an
accumulation points. It is enough to prove the nondegeneracy of large
solutions of (1.1) in order to prove the first statement of Conjecture 1.4
for analytic nonlinearities. However, it is difficult to prove the non-
degeneracy, because (1.1) is supercritical. We give one example of
Type III.

Theorem C. Let $f(u):=(u+\epsilon)+(u+\epsilon)^{p}$ . If $\rho>p_{JL}$ is large, and

if $\epsilon>0$ is small, then the bifurcation, diagram of (1.1) is of Type III.
Moreover, .every solution is nondegenerate $j_{ノ}f\Vert u\Vert_{\infty}$ is large.

Theorem $C$ indicates that the bifurcation diagram cannot be classi-
fied by $p$ if $\rho>\rho_{JL}$ . The information of the whole graph of $f$ is needed
in order to determine the type of the bifurcation diagram.
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The relations of Theorems $A,$ $B$ , and $C$ , Proposition 1.3 and Conjec-
ture 1.4 are shown as follows:

$\rho_{S}<\rho<p_{JL}$

Theorem A
$\frac{\backslash }{\vec{}}$ $m(u^{*})=\infty$

Theorem A
$\Rightarrow$ Type $I$

$p>p_{JL}$
Theorem B

$\Rightarrow$
$\{\begin{array}{l}m(u^{*})=0Proposition\Rightarrowor1\leq 7n(u^{*})<\infty Conj\Rightarrow ecture1\end{array}$

Type I $II?$

Type I $I$

When $p=\rho_{JL}$ , a more detailed asymptotics is needed to determine the
type. However, we need a sumptions of $g$ . We do not pursue the case
$p=\beta J_{JL}$ in this article.

Joseph-Lundgren [3] studied the positive radial branch of the prob-
lem

(1.7) $\{\begin{array}{ll}\triangle u+\lambda(1+u)^{p}=0 in B,u>0 in B,u=0 on \partial B.\end{array}$

In [3] the authors have shown that the bifurcation diagram of (1.7) is
of Type I if $\rho_{S}<\rho<p_{JL}$ and that it is of Type II if $p\geq p_{JL}$ . This
example is a prototype of our study. In Subsection 2.1 we shall study
this equation by our theory.

This article consists of two sections. In Section 2 we give two ex-
amples: $f(u)=(u+1)^{p}8Jnd(2.1)$ . In Subsection 2.1 we classify the
bifurcation diagrams of the equation $\triangle u+\lambda(u+1)^{p}=0$ by Theorenl $A$

and Proposition 1.3. We obtain the same results as above. In the case
of the second equation we cannot expect a special change of variables.
We see in Corollary 2.2 that Theorem A and Proposition 1.3 determine
the structure of the solutions of (2.1).

2. Two EXAMPLES

2.1. First example. This case was studied by Joseph Lundgren [3].
They used a special change of variables. Then the equation can be re-
$d_{lI}ced$ to an autonomous system in the phase plane. Hence, the phase
plane analysis can be done. In this subsection we will see that The-
orem A and Proposition 1.3 are applicable and that the classification
of the bifurcation diagrams can be done by Theorem A and Proposi-
tion 1.3,

Let $f(u):=(u+1)^{p}$ . Then $g(u):=(u+1)^{p}-u^{p}.$ $(1.1)$ has a $sing\iota 1la$

solution $(\lambda^{*}, u^{*})=(A^{p-1}, r^{-\theta}-1)$ , where $\theta=2/(\rho-1)$ and $u^{*}\in H^{1}(B)$
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provided that $\rho>\rho_{S}$ . We can easily check (f1). There is a large $C_{0}>0$

such that

$|g(u)|=|(u+1)^{p}-u^{p}|\leq\rho(u+1)^{p-1}\leq C_{0}u^{p-1}.$

Hence, (f2) holds. Since

$|g’(u)|=\rho(u+1)^{p-1}-\rho u^{p-1}$

$\leq\{\begin{array}{ll}\rho(u+1)^{p-2} (\rho\geq 2) ,\rho u^{p-2} (1<p<2) .\end{array}$

If $\delta\in(0, \rho-1)$ is small, then there are constants $C_{1}>0,$ $u_{1}>0$ snch
that

$|g’(u)|\leq mu\backslash ’\{\rho(u+1)^{p-2}, pu^{p-2}\}\leq C_{1}u^{p-1-\delta}(u>u_{1})$

Thus (f3) holds. Applying Theorem $A$ , we see that if $\rho_{S}<l$ ) $<$ ?
then the bifurcation diagrams is of Type I and $\prime/rx(u^{*})=\infty$ . Next, we
consider the case $1,$ $\geq\rho_{JL}$ . It is easy to see that $f$ satisfies (1.5). By

direct calculation we can show that if $\rho\geq\rho_{JL}$ , then $\rho A^{p-1}\leq(N-2)^{2}/4.$

We have

$\int_{B}(|\nabla\phi|^{2}-\lambda^{*}f’(u^{*})\phi^{2})dx=\int_{B}(|\nabla\phi|^{2}-\frac{pA^{p-1}}{r^{2}}\phi^{2})dx$

$\geq\int_{B}(|\nabla\phi|^{2}-\frac{(N-2)^{2}}{4r^{2}}\phi^{2})dx\geq 0,$

where we use Hardy’s inequality and $(N-2)^{2}/4$ is its best constant.

Applying Proposition 1,3, we see that if $p\geq\rho_{JL}$ , then the bifurcation

diagram is of Type II and $7n(u^{*})=0$ . We have the following:

Corollary 2.1. Let $f(u):=(u+1)^{p}$ . Then (1.1) has the singular
solution $(\lambda^{*}, u^{*})=(A^{p-1}, r^{-\theta}-1)$ and

the bifurcation dlagram is $of\{\begin{array}{l}Type I and m(u^{*}). =\infty if Ps <\rho<p_{JL},Type II and m(u^{*})=0\prime j_{ノ}f\rho\geq\rho_{JL}.\end{array}$

In particular, the Type III bifurcation diagram does $r/,ot$ appear.

2.2. Second example. Let $\epsilon>0$ be small, and let

$a:= \frac{1}{2}\sqrt{(u+1-\epsilon)^{2}+4\epsilon}+\frac{1}{2}(u+1-\epsilon)$

and $b:=(u+1-\epsilon)^{2}+4\epsilon$ . We define

(2.1) $f(u):=a^{p}+ \epsilon\frac{N-2+\theta}{N-2-\theta}a^{p-2}.$
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Then (1.1) has a singular solution

(2.2) $(X, u^{*}) :=(\theta(N-2-\theta), r^{-\theta}-1-\epsilon(^{\backslash }r^{\theta}-1$

Note that $N-2-\theta>$ O. If $\epsilon=0$ , then $f(u)=(u+1)^{p}$ and $u^{*}=$

$r^{-\theta}-1$ . We can expect that the same property as in Subsection 2.1
holds provided that $\epsilon>0$ is small.

We can easily check (f1). We show that (f2) holds. Since $\leq$

$u+1+\epsilon$ , there are a small $\delta>0$ and a large $\prime_{-l_{0}}.>0$ such that

$|g(u)| \leq(\frac{u+1+\epsilon}{2}+\frac{u+1-\epsilon}{2})^{p}-u^{p}+\epsilon\frac{N-2+\theta}{N-2-\theta}a^{p-2}$

$\leq(u+1)^{p}-u^{p}+C_{0}u^{p-\delta} (u\geq u_{0})$ .

Since $u_{0}>0$ is large, there is $C_{1}>0$ such that $(u+1)^{p}-u^{p}\leq$

$\rho(u+1)^{p-1}\leq C_{1}u^{p-\delta}(u\geq u_{0})$ . Therefore, $|g(u)|\leq(C_{0}+C_{1})u^{p-\delta}$

$(u\geq u_{0})$ and (f2) holds. We show that (f3) holds. We can easily
show that $p(u+1-\epsilon)^{p-1}-pu^{p-1}\leq C_{2}u^{p-1-\delta}$ for large $u$ . Using this
$ine(.1$uality, we see that there is $u_{1}>0$ such that

$|g’(u)|= \rho\frac{r\iota^{p}}{\sqrt{b}}-pu^{p-1}+\epsilon(\rho-2)\frac{N-2+\theta}{N-2-\theta}\frac{a^{p-2}}{\sqrt{b}}$

$\leq\rho\frac{(u+1+\epsilon)^{p}}{u+1-\epsilon}-pu^{p-1}+C_{3}u^{p-1-\delta}$

$=p(u+1- \epsilon)^{p-1}-pu^{p-1}+2\epsilon p\frac{(u+1+\epsilon.)^{p-1}}{u+1-\epsilon}+C_{3}u^{p-1-\delta}$

$\leq(C_{2}+C_{4}+C_{3})u^{p-1-\delta} (u\geq u_{1})$ .

Thus, (f3) holds. We can apply Theorem A. We obtain the Type I
bifurcation diagram when $\rho_{S}<p<p_{JL}.$

Next, we check (1.5) when $\rho\geq\rho_{JL}$ and $N\geq 11$ . In particular, we
prove $f’(u)>0(u>0)$ and $f”(u)>0(u>0)$ .

First, we show that $f’(u)>0(u>0)$ . Since

$f’(u)= \frac{a^{p-2}}{\sqrt{b}}\{pa^{2}+\epsilon(p-2)\frac{N-2+\theta}{N-2-\theta}\})$

$f’(u)>0(u>0)$ provided that $\rho\geq 2$ . We considel$\cdot$ the case $\rho_{JL}\leq$

$\rho<2$ . If $p_{JL}<2$ , then $N\geq 16$ . This case appears when $N\geq 16.$

Since $c.\iota\geq 1$ , it is enough to show that

(2.3) $\epsilon<\frac{\rho(N-2-\theta)}{(2-\rho)(N-2+\theta)}(=:y_{N}(p))$ .
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elemental calculation we can show that $y_{N}(\rho)$ is increasing in $\rho\in$

$[\rho_{JL}$ , 2 $)$ . We have

$y_{N}(p_{JL})= \frac{(N-2\sqrt{N-1})(N-2+2\sqrt{N-1})}{(N-8-2\sqrt{N-1})(3N-6-2\cdot\sqrt{N-1})}>0$ $(N\geq 16)$

and $\lim_{Narrow\infty}y_{N}(p_{JL})=1/3$ . Therefore, $\inf_{N\geq 16}y_{N}(\rho_{JL})>0$ . This
means that if $\epsilon>0$ is small, then (2.3) holds for all $\rho\in[p_{JL}$ , 2). Thus,

$f’(u)>0(u>0)$ if $\rho_{JL}\leq\rho<2.$ $c_{on1}$bining the cases $p\geq 2$ and
$\rho_{JL}<p<2$ , we have shown that $f’(u)>0(u>0)$ for all $p\geq\rho_{JL}.$

Second, we show that $f”(u)>0(u>0)$ . We have

(2.4) $f”(u)= \frac{pa^{p}}{b}(a-\frac{u+1-\epsilon}{\sqrt{b}})$

$+ \epsilon(p-2)\frac{N-2+\theta}{N-2-\theta}\frac{a^{p-2}}{\prime\sqrt{l_{J}}}(\rho-2-\frac{u+.1-\epsilon}{\sqrt{b}})$ .

Since $(u+1-\epsilon)/\sqrt{b}<1$ , we easily see that if $p\geq 3$ , then $f”(u)>0$
$(u>0)$ . When $1<\rho\leq 2$ , the second term of (2.4) is positive, hence
$f”(u)>0(u>0)$ . All we have to do is to study the case $2<p<3.$
Using

$\rho^{2}a^{2\sqrt{|y}}-pa^{2}(u+1-\epsilon)=pa^{2}\{\sqrt{|)}-(u+1-\epsilon)\}+\rho(\rho-1)a^{2\sqrt{f)}}$

$\geq\rho(\rho-1)a^{2}\sqrt{}$

$\geq\rho(p-1)(\iota(u+1-\epsilon)\cdot\sqrt{!)},$

we have

$f”(u)= \frac{a^{p-2}}{()^{\frac{3}{2}}}[p^{2}a^{2}$而一 $\rho a^{2}(u+1-\epsilon)$

$+ \epsilon(\rho-2)\frac{N-2+\theta}{N-2-\theta}\{(2’-2)b-(u+1-\epsilon)\sqrt{l)}\}]$

$\geq\frac{a^{p-2}}{[)^{\frac{3}{2}}}\{1_{\backslash })(\rho-1)a^{2}(u+1-\epsilon)\cdot\sqrt{}$

$- \epsilon(\rho-2)\frac{N-2+\theta}{N-2-\theta}(u+1-\epsilon)\sqrt{b}\}$

$= \frac{a^{p-2}}{b}(u+1-\epsilon)\{\rho(\rho-1)a-\epsilon(p-2)\frac{N-2+\theta}{N-2-\theta}\}.$

Since

$\rho(1\cdot)-1)a-\epsilon(\rho-2)\frac{N-2+\theta}{N-2-\theta}>p(p-1)a-\epsilon(\rho-1)\frac{N-2+\theta}{N-2-\theta},$
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it is enough to show that

(2.5) $\epsilon<\rho\frac{N-2-\theta}{N-2+\theta}(=:z_{N}(p)) (2<\rho<3)$ .

We easily see that $z_{N}(\rho)$ is increasing in $p\in(2,3)$ when $N\geq 3$ . Since
$Z_{N(2)}=2(N-4)/N>0(N\geq 5)$ and $\lim_{Narrow\infty}z_{N}(2)=3$ , we see that
$\inf_{N\geq 11}z_{N}(2)>$ O. This inequality means that if $\epsilon>0$ is small and if
$N\geq 5$ , then (2.5) holds for all $p\in(2,3)$ . Thus, $f”(u)>0(u>0)$
for $\rho\in(2,3)$ . Combining three caseb, we have shown that $f”(u)>0$
$(u>0)$ for all $p\geq p_{JL}$ . The proof of (1.5) is complete.
We check (1.6) when $\rho\geq\rho_{JL}$ and $N\geq 11$ . Since $p\geq p_{JL},$ $(N-2)^{2}\geq$

$4p\theta(N-2-\theta)$ . Then

$(N-2)^{2}-4\theta(p-2)(N-2+\theta)$

$\geq 4p\theta(N-2-\theta)-4\theta(p-2)(N-2+\theta)$

$=8\theta(N-4)>0,$

because $N\geq 11$ . Using this inequality, we have
(2.6)
$(N-2)^{2}-4p\theta(N-2-\theta)+\epsilon r^{2\theta}\{(N-2)^{2}-4\theta(p-2)(N-2+\theta)\}\geq 0$

for $0\leq r\leq 1$ . Using (2.6), we have

$\lambda^{*}f(u^{*})=\frac{\lambda^{*}r^{-(p-2)\theta}}{r^{-\theta}+\epsilon r^{\theta}}\{\rho r^{-2\theta}+\epsilon(\rho-2)\frac{N-2+\theta}{N-2-\theta}\}$

$= \frac{\theta(N-2-\theta)}{(1+\epsilon r^{2\theta})r^{2}}\{\rho+\epsilon(\rho-2)\frac{N-.2+\theta}{N-2-\theta}r^{2\theta}\}$

$\leq\frac{(N-2)^{2}}{4\uparrow\backslash 2} (0\leq \leq 1)$ .

By Hardy’s inequality we have

$\int_{B}(|\nabla\phi|^{2}-\lambda^{*}f’(u^{*})\phi^{2})dx\geq.$ $\int_{B}(|\nabla\phi|^{2}-\frac{(N-2)^{2}}{4r^{2}}\phi^{2})dx\geq 0$

for all $\phi\in C_{0}^{1}c(B)$ . Thus, (1.6) holds, and Proposition 1.3 is applicable.
We have the following:

Corollary 2.2. Let $f$ be given by (2.1), and let $\epsilon>0$ be small. Then
$(1\cdot\cdot 1)$ has the singular solution (2.2) and

the bifurcation diagram is $of\{\begin{array}{l}T?/pe I and m(u^{*})=\infty j_{ノ}f\rho s<p<\rho_{JL},Type II and m(u)=0 if \rho\geq\rho_{JL}.\end{array}$

In particular, the $\tau_{mpeIII}$ bifurcation diagram does not appear.
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