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1. INTRODUCTION AND MAIN RESULTS

This article is an announcement of the paper [5]. The proofs of
Theorems A, B, and C in this article are in the paper [5].

We study the global bifurcation diagram of the semilinear elliptic
Dirichlet problem

Au+Af(u) =0 in B,

(1.1) u>0 in B,
uw=0 on 0B,
where B is the unit ball in RN (N > 3),
(1.2) F(u) = + g(w),
N +2
1. v re
(1.3) p>psi= 5,

g(u) is a lower order term, and X is a non-negative constant. Specifi-
cally, we assume the following three conditions:

(f1) f e C*[0,00)) and f(t) >0 in [0,00),

(f2) f(u) =u? + g(u) (p > ps), where there are uy > 0,
§ > 0, and Cp > 0 such that |g(u)| < CouP ™% for u > g,

(f3) f(u) =uP + g(u) , where there are ug > 0,
§ >0, and Cy > 0 such that |g'(u)| < CouP ™7 for u > wup.
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The exponent pg is called the Sobolev critical exponent. Because p >

ps, the Sobolev embedding H*(B) — LPT'(B) does not hold. Hence, it

is difficult to use a variational method in the function space H'(B). By

the symmetry result of Gidas-Ni-Nirenberg (2], every positive solution
w is radially symmetric and ||u|lo, = ©(0). This enables us to use ODE
techniques. Then there is an unbounded branch {(\, u)} consisting of
positive radial solutions of (1.1) such that the branch emanates from
(0,0).

We mention the existence of the singular solution of (1.1).

Proposition 1.1. Suppose that (f1)-(f3) hold. Then (1.1) has a sin-
gular positive solution (X*,u") such that

(1.4) w'(r) = Alp, NY(V )P (1+0(%) as r— 0,
where 6 > 0 is the constant in (f2).

Corollary 1.2. Let (A\*,u*) be a singular solution given in Proposi-
tion 1.1. If p > pg, then u* € H*(B).

The proof of Proposition 1.1 is essentially the same as one of [4, The-
orem 1.1}, and Corollary 1.2 is an immediate consequence of Proposi-
tion 1.1. The singular solution plays an important role in the study of
the global bifurcation diagram.

We are interested in the classification of the bifurcation diagram.
We call the bifurcation diagram Type [ if there is A* > 0 such that the
branch has infinitely many turning points near A* and that a smgnl(u
solution exists at A*. The first main theorem is the following:

Theorem A. Suppose that (f1)-(f3) hold. If ps < p < pyr, then the
bifurcation diagram of (1.1) is of Type I and the extremal solution is
reqular. In particular, if 3 < N < 10, then the bifurcation diagram
is always of Type 1. Moreover, m(u*) = oo, where u* is the singular
solution given in Proposition 1.1 and m(u*) is the Morse index of w*.

Neither the monotonicity of f nor the convexity of f is assumed in
‘Theorem A.

We consider the case where p > p,r. Brezis-Vézques [1] studied (1.1)
when

(1.5) f is a continuous, positive, increasing, and

convex function on [0, co) such that f(t)/t — oo as t — co.

When (1.5) holds, there is a maximal or extremal value of A > 0 such
that (1.1) has a solution which is minimal. In [1] the authors studied
the corresponding extremal solution when it is unbounded, i.e., the
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singular solution. We call the bifurcation diagram Type II if there is
A* > 0 such that the branch consists only of minimal solutions for
A € (0, X%) and that a singular solution exists at A*. They have shown
that

Proposition 1.3 (Brezis-Vazquez [1, Theorem 3.1]). Suppose that (1.5)
holds. If (\*,u*) is a singular solution of (1.1), if u* € HY(B), and if
u* 1s stable in the sense where

(1.6) /B (IVP)* = X' f'(u*)¢?) dz > 0 for all ¢ € C3(B),

then (A*,u*) is the extremal solution which indicates that the bifurcation

diagram of (1.1) is of Type II.

Roughly speaking, Proposition 1.3 says that if u* € H'(B) and if
m(u*) = 0, then the bifurcation diagram is of Type II.
The second main theorem is the following:

Theorem B. Suppose that (f1)-(f8) hold. If p > pyr, then m(u*) <
0.

We are interested in the case 1 < m(u*) < co. We call the branch
Type IIT when the branch has at least one but finitely many turning
points. We conjecture the following:

Conjecture 1.4. Suppose that (f1)-(f8) hold. If1 < m(u*) < oo, then
the bifurcation diagram is of Type III. Moreover, for a certain class
of monlinearities, the bifurcation diagram of (1.1) has ezactly m(u*)
turning point(s).

If f is analytic, then the set of the turning points do not have an
accumulation points. It is enough to prove the nondegeneracy of large
solutions of (1.1) in order to prove the first statement of Conjecture 1.4
for analytic nonlinearities. However, it is difficult to prove the non-
degeneracy, because (1.1) is supercritical. We give one example of
Type I1L.

Theorem C. Let f(u) := (u+¢e)+ (u+¢€)P. If p > pyr is large, and
if € > 0 is small, then the bifurcation diagram of (1.1} is of Type III.
Moreover, every solution is nondegenerate if ||[ulloo 45 large.

Theorem C indicates that the bifurcation diagram cannot be classi-
fied by p if p > pyr. The information of the whole graph of f is needed
in order to determine the type of the bifurcation diagram.



The relations of Theorems A, B, and C, Proposition 1.3 and Conjec-
ture 1.4 are shown as follows:

(P <D <P — m{u*) = 0o = Type |
bs p PIL Theorem A ( ) Theorem A Yl
=
) m(u*) =0 Proposition 1.3 Type I
p>piL Th:> 5 or
oorem 1<mu')<oo == = Typelll?
. Theorem C

When p = p,r, a more detailed asymptotics is needed to determine the
type. However, we need assumptions of g. We do not pursue the case
p = pyr in this article.

Joseph-Lundgren [3] studied the positive radial branch of the prob-
lem

Au+A1+uP =0 in B,
(1.7) w>0 in B,
u=70 on 0B.

In [3] the authors have shown that the bifurcation diagram of (1.7) is
of Type I if ps <'p < pyr and that it is of Type II if p > pyr. This
example is a prototype of our study. In Subsection 2.1 we shall study
this equation by our theory.

This article consists of two sections. In Section 2 we give two ex-

amples: f(u) = (u+ 1) and (2.1). In Subsection 2.1 we classify the
bifurcation diagrams of the equation Au+ A(u+1)? = 0 by Theorem A
and Proposition 1.3. We obtain the same results as above. In the case
of the second equation we cannot expect a special change of variables.
We see in Corollary 2.2 that Theorem A and Proposition 1.3 determine
the structure of the solutions of (2.1).

2. TWO EXAMPLES

2.1. First -example. This case was studied by Joseph-Lundgren [3].
They used a special change of variables. Then the equation can be re-
duced to an autonomous system in the phase plane. Hence, the phase
plane analysis can be done. In this subsection we will see that The-
~orem A and Proposition 1.3 are applicable and that the classification
of the bifurcation diagrams can be done by Theorem A and Proposi-
tion 1.3.

Let f(u) := (u+1)?. Then g(u) := (u+1)? —uP. (1.1) has a singular
solution (A*,u*) = (AP~1 r=¢—1), where § = 2/(p—1) and u* € H(B)
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provided that p > pg. We can easily check (f1). There is a large Cy > 0
such that

lg(u)]| = |(u+ 1P —uP| < plu+1)P < CouP .
Hence, (f2) holds. Since
19'(w)] = p(u+ 1)P~F — puP~
_ [pr 1 p22),
| puP? (1<p<?2).
If § € (0,p—1) is small, then there are constants C; > 0, u; > 0 such
that
1¢'(u)] < max{p(u+ 172 puP~2} < CP™ 0 (u> u)

Thus (f3) holds. Applying Theorem A, we see that if pg < p < pyr,
then the bifurcation diagrams is of Type [ and m(u*) = co. Next, we
consider the case p > pyr. It is easy to see that f satisfies (1.5). By
direct calculation we can show that if p > pyr, then pAP~! < (N—2)?/4.
We have

[ (we = xpw)e) do = [ (1997 ~20mg?) o
B B 7

2 (N=2)% 5\
> /B <1V¢>| - A2 QS > dz > 0,

where we use Hardy’s inequality and (N — 2)%/4 is its best constant.
Applying Proposition 1.3, we see that if p > p;, then the bifurcation
diagram is of Type II and m(u*) = 0. We have the following:

Corollary 2.1. Let f(u) := (u+ 1)?. Then (1.1) has the singular
solution (\*,u*) = (AP7L,7=% = 1) and

Type I and m(u*) = oo if ps < p < pyr,

the bifurcation diagram is of _
Type IT and m(u*) =0 if p > pyrL.

In particular, the Type III bifurcation diagram does not appear.

2.2. Second example. Let € > 0 be small, and let

1 1
a:.= -2-\/(’IL+1—€)2+4€+§(’M+1—6)

and b:= (u+ 1 — €)% + 4e. We define
N-2+46 .,

(21) f(u) = ap+€m(l,
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Then (1.1) has a singular solution
(2.2) Au )= ON —2-60),r " —1—e(®—1)).

Note that N —2 — 0 > 0. If ¢ = 0, then f(u) = (v + 1)? and u* =
r~% — 1. We can expect that the same property as in Subsection 2.1
holds provided that € > 0 is small.

We can easily check (f1). We show that (f2) holds. Since vb <
u+ 1+ €, there are a small ¢ > 0 and a large ug > 0 such that

u+l+e u+l-e\" N-2+40
< — P p—2
mm”—< 7 T3 ) CTEN 29
<(u+1)P =P + CouP™°  (u > up).

Since uy > 0 is large, there is C; > 0 such that (v +1)? — u? <
p(u+ 1)P71 < C1wP™? (u > wug). Therefore, |g(u)] < (Co + C1)uP™?
(u > wup) and (f2) holds. We show that (f3) holds. We can easily
show that p(u + 1 — &)P™t — puP~t < CouP~ 17 for large u. Using this
inequality, we see that there is u; > 0 such that

1P : N —2+40a~2
()] = p — pup~t +(p — 2)

Vb N=2-0 b
(?j 1 11+ gg)p — Pl 4 G
L1 —

(u+ 14 ¢)P?
u+1l—e¢
< (Co+ Cy+ Co)uP 170 (u > uy).

+ C37,Lp_1—6

=plu+1-—e)P 1 —puP~t + 2p

Thus, (f3) holds. We can apply Theorem A. We obtain the Type I
bifurcation diagram when pg < p < pyr.

Next, we check (1.5) when p > pyr and N > 11. In particular, we
prove f'(u) >0 (uw > 0) and f”(u) > 0 (u > 0).

First, we show that f'(u) > 0 (u > 0). Since

N—2+6}

aP—?
)

f'(u) > 0 (u > 0) provided that p > 2. We consider the case pjp <
p <2 If pjp < 2, then N > 16. This case appears when N > 16.
Since a > 1, it is enough to show that

p(N —2-10)

(2.3) €<<2_muv_2+9%=ywwﬂ

f'(u) =

2 — ——————————————
{pa +e(p 2>N—2—0
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By elemental calculation we can show that yx(p) is increasing in p €
[psr,2). We have

(oon) = (N—-2y/N-=1)(N -2+2y/N —1)
men—(N~8_2¢ﬁ?ﬂ@N—6—2¢Vfﬂ

and limy_eo yn(psr) = 1/3. Therefore, infys16yn(psr) > 0. This

means that if € > 0 is small, then (2.3) holds for all p € [p,r,2). Thus,

f(w) >0 (w>0)if pjr < p < 2. Combining the cases p > 2 and

psr < p < 2, we have shown that f'(u) > 0 (u > 0) for all p > pyr.
Second, we show that f”(u) > 0 (u > 0). We have

>0 (N >16)

" paP u+1—6>
24 w=—1\(a— ————
24) /=2 (o= 2025
+5(;~2)N_2+0ap—2<;_ _u—f—l—&)
P=9N 2" 5 U A

Since (u+ 1 —€)/vb < 1, we easily see that if p > 3, then f”(u) > 0
(w > 0). When 1 < p < 2, the second term of (2.4) is positive, hence
f"(u) >0 (u > 0). All we have to do is to study the case 2 < p < 3.

Using
Vb~ pat(u+1—¢) = pa* {Vh— (u+1—e)} +p(p - 1)a*V5
> p(p — 1)a*Vb
> p(p— Da(u+ 1 —e)vb,

we have
p—2
f(u) = a{ . [pzaz\/l; —pat(u+1—¢)
h2
N—2+90 B
+€(p — Q)m {(p — 2)!) — (’U, -+ 1-— E)\/—i‘}]
p—2
> a} 3 {p(p —Da(u+1-¢)Vh
2
N-—-2+6
—E(p — 2)m('{b +1- 5)\/6}
aP~? N—-2+6
Since

N—-2+6 N-2+0
p(p—l)a-—e(p—Q)m >P(P—1)a“5(P“1)N_2_9’



it is enough to show that
N-2-46
N—-2+4+¢
We easily see that zy(p) is increasing in p € (2,3) when N > 3. Since
2n(2) =2(N —4)/N > 0 (N > 5) and limy_ 2nv(2) = 3, we see that
infy>17 2v(2) > 0. This inequality means that if € > 0 is small and if
N > 5, then (2.5) holds for all p € (2,3). Thus, f"(u) > 0 (v > 0)
for p € (2,3). Combining three cases, we have shown that f"(u) > 0
(u > 0) for all p > pyr. The proof of (1.5) is complete.
We check (1.6) when p > pyr and N > 11. Since p > pyr, (N—2)? >
4pf(N — 2 — 6). Then
(N = 2)2—46(p — 2)(N — 2+ )
> 4pf(N —2—0) —40(p —2)(N — 2+ 0)
= 80(N — 4) > 0,

(2.5) e<p (=:2n(p)) (2<p<3).

because N > 11. Using this inequality, we have
(2.6)
(N=2)*—4pf(N—2—0)+er® {(N —2)> —40(p —2)(N —2+6)} >0

for 0 < r < 1. Using (2.6), we have

. . )\*r—(p—z)e s N—-24+0
(N — 2 — ) N—2+0,
= (15 erty? {p +e(p — 2)—»———————N 4"
N —2)? |
<Lzﬁa—(ogrgn.

By Hardy’s inequality we have
/ * * N —2 2
/B (VP> = N f'(w")?) dz > /B <1V¢l2 - L——Z,—z——.)——&) dz >0

for all ¢ € C}(B). Thus, (1.6) holds, and Proposition 1.3 is applicable.
We have the following:

Corollary 2.2. Let f be given by (2.1), and let € > 0 be small. Then
(1.1) has the singular solution (2.2) and

Type I and m(u*) = o0 if ps < p < pyr,

the bifurcation diagram is o
f g f{ Type II and m(u*) =0 if p > pyr.

In particular, the Type I1I bifurcation diagram does not appear.
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