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Variational problems
for the conformality of maps
and

for pullback metrics
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Graduate School of Science and Engineering
Yamaguchi University

§0. Introduction

There exists a fundamental question:

Question What maps are closest to conformal ones?

We give a variational approach to this question. We consider the
functional

o(f) = y Tyl dv,

where T is a covariant symmetric tensor such that
Tf=0 <= [ isa weakly conformal map.

In this note we give a brief summary of results for this functional.
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§1. A variational problem for the conformality of
maps

We use the following notations throughout this note:

( Notations ~
(M, 9) } compact Riemannian manifolds without boundar
( N, h) p ' Y-
m . the dimension of M
f : a smooth map from M into N.
X, Y . vector fields on M.
e; : a local orthonormal frame on M.
f*h . the pullback of the metric A by the map f, i.e.,
(f*R)(X, Y) = h(df (X), df(Y))
—_ J

We first recall notions of the conformality of maps:

4 Conformal and Weakly conformal ———

(1) A smooth map f is weakly conformal if there exists a
non-negative function ¢ on M such that

(%) f*h = pg.

(2) A smooth map f is conformal if there exists a positive

| function ¢ on M satisfying (x).
- J

Note that f is weakly conformal if and only if it is conformal at
z or (df), =0 for any z € M .

! A map f is called conformal at =z € M if it satisfies (x) at z.
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We give a tensor of the conformality. Let ||df|| denote the energy
density of f in the theory of harmonic maps, i.e.,

m

df||? = Zh(dﬂei), df (&:)).

We consider the following covariant symmetric tensor:

P Tensor T N
7, 9 fh- s
f m )
ie.,
ae ].
Ty(X,Y) < h(df(X), dF(¥)) - —lldflPg(X, ¥).
\. v J

Remark. In the case of m = 2, the tensor T} is equal to the stress -
energy tensor

L1
Sy = fh=5ldflg
for harmonic maps. (See Eells and Lemaire [2], p.392. )

We can verify the following basic properties for the tensor T}:
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- Properties of tensor T ~

Lemma T.

(1) Ty is symmetric, i.e.,, T(X, Y) = T¢(Y, X).
(2) f is weakly conformal if and only if Ty = 0.
(
(

1
3) Tyl = IIf*Rl* - Elldfﬂ“-
4) Ty is trace-free, ie.,

m

TI'ng = Zg(ei, ej)Tf(ei, ej) = 0.

i, j=1
(5) The trace of Ty with respect to the pullback f*h is equal |

to the norm of 7%, i.e.,

m

TepnTy = Y (fh)(es, €)Ty(ei e5) = IT7l.

i,5=1

We are concerned with the following functional:

Functional ®(f)

3(f) = /N 1Ty Pdv,.

This functional ®(f) gives a quantity of the conformality of maps
f. Note that if f is a conformal map, then ®(f) vanishes. In this
note we give the following results ([5], [4], [6], [3]):
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First variation formula

Second variation formula

Weak conformality for maps from or into spheres
Quasi-monotonicity formula

Bochner type formula

Existence of minimizers in 3-homotopy class

b N S o

Other variational problem

§2. First variation formula

In this section we give the first variation formula for the functional
®(f). We first define the following “f~'T N-valued” 1-form &;2. The
1-form & plays an important role in our arguments.

- 1-form &; N
E4(X) = ZTf (X, ej)df (¢;))
= Zh df (X), df e]))df(ej) - = ”deQdf( ).
\ J

‘Take any smooth deformation F' of f, i.e., any smooth map
F : (—e,e)xM — N st. F(0,z)= f(x).

Let fi(z) = F(t, x), and we often say a deformation fi(z) instead of

2 Though I-want to use the notation 74 instead of £y, it is confused with the notation of the
tension field in the theory of harmonic maps.



a deformation F(t, z). Let
X = dF(Z%”t:O

denote thevvariation vector fields of the deformation F. Then we
have the following first variation formula.

First variation formula

d®(f:)
dt

= ——4/ h (X, divyés) dy,.
M

t=0

Here dv, denotes the volume form on M, and div, {; denotes the
m

divergence of &y, i.e., divy s = Z(Veiff)(ezﬁ)*
i=1
We give here the notion of C-stationary maps.

- C-stationary map —

We call a smooth map f C-stationary if

a(f:)
dt

= 0

t=0

for any smooth deformation f; of f.
J

By the first variation formula, a smooth map f is C-stationary if
and only if it satisfies the following equation:

Euler-Lagrange equation

divgéy = 0.
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§3. Second variation formula

In this section we give the second variation formula for the func-
tional ®(f). Take any smooth deformation F' of f with two param-
eters, i.e., any smooth map

F: (- e)x(=6,0)xM — N st. F(0,0,z)= f(z).

Let fs+(z) = F(s, t, z), and we often say a deformation fs,1(z) in-
stead of a deformation F(s; t, ). Let

X = dF(2)|, o Y = dF(

denote the variation vector fields of the deformation F. Then we
have the following second variation formula.

()], =0

- Second variation formula ~

1 8%®(f, ) : 5 5
4 0sOt . =0 o /Mh(He;ssF(g- &) dlvggf)dvg

+ / D h(VeX, VoY) Ty(ei, €5) dug
M

+ /M ;h(veixx df (e;)) h(Ve.Y, df (¢;)) dvg
" /M E; h(VeX, df(e;) b (df (i), Ve,Y) dug
_ % /M SR (VeX, dile)) DR (VeY, diles)) dug

- /MZh(NR(df(ei),X)Y, df (¢;)) Ty (ei, €;) dvy

159
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Here Hess; denotes the Hessian of f, i.e., Hessy(Z, W) = (V zdf ) (W)
= (Vwdf)(Z).

Remark. Note that the first term in the right hand side vanishes if
f is a C-stationary map.

Remark. The last term of the right hand side is equal to

- /MZ.’L(NR (df (e), X)Y, &s(es)) dvg .

§4. Weak conformality for maps from or into
spheres

A C-stationary map f is called to be stable if the second variation
at f is non-negative. We give two results for the weak conformality
of stable C-stationary maps. (See Kawai-Nakauchi [4]. )

- Weak conformailty - . N

Let f be a stable C-stationary map from the standard spheré Sm
into a Riemannian manifold N. If m > 5, then f is a weakly

conformal map.
- : J

- Weak conformailty ' ~

Let f be a stable C-stationary map from a Riemannian manifold
M into the standard sphere S™. If n > 5, then f is a weakly

conformal map.
- J

The above results can be regarded as a type of Liouville theorems
since the trivial case for the functional ® is that of not constant maps,



but weakly conformal maps. On the other hand, stable C-stationary
maps are not weakly conformal in general. We see the following fact.

Existence of non-conformal stable C-stationary maps

There exists a stable C-stationary maps which is not weakly con-
formal.

This fact follows from a simple example. Let us define a map

fi o SixSlx...x8 — S (r)xSx-..xS!
W w
(2% ..., 3™) — (rat, 2%, ..., 2™)
where S! (resp. S*(r)) denotes the sphere of dimension 1 with radius
1 (resp. r) centered at the origin of R%. Obviously f is not weakly
conformal if r # 1. By simple calculations, we can verify that f is a
C-stationary map, and that f is stable if r is sufficiently close to 1.

§5. Quasi-monotonicity formula

In this section we prove a kind of the monotonicity formula for

C-stationary maps. We give this formula under the following weak
condition.

———— C-stationary w.r.t. diffeomorphisms ———

We call a map f C-stationary with respect to diffeomor-
phisms on M if

d
’(‘i—tq’(fo%).t:o =0

Lfor any l-parameter family ¢; of diffeomorphisms on M.
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Note that the above notion of C-stationary maps is weaker than
the previous one of C-stationary maps, since fi(z) = f o p(z) is a
deformation in the former notion.

Let B,(xo) be the open ball of a radius p with a center zy € M.

Then we have the following formula:

(Quasi-monotonicity formula —— ~

For any C-stationary map f with respect to diffeomorphisms, we
have

d —-m | -m C
- {eC”p“ / “Tf”2dvg} > 4e“’p <s0’(p) + -4—s0(p)>
p Bp(xO)

where
p(p) = /B " h(df (%), € () dvg -

. . , J/

Remark. If ¢(p) satisfies the condition ¢/'(p) + $p(p) > 0, then

eCr pt-m / | T ||?dv, is monotone non-decreasing. We cannot
Bp Io

expect such a monotonicity in general, since T} is indefinite.

§6. Bochner type formula

Bochner formulas are basic tools for various arguments in geome-
try. For the norm of Ty, we have the following Bochner type formula:



s Bochner type formula ~

%AHTW = divgay — h(rs, divy€&) + %HVTfHQ
+ Y h((Vedf)(e), (Vedf)(e;) Tr(es, €;)

Lk

+ Y h(df O MRles, ex)er), df(e;)) Tylei, €))
I k
— > h("R(df(e:), df (ex))df (ex), df (e5)) Ty (e, €5)
ik
where

ap(X) = h(&(X), 7).

\. 4

Here 7 = tr(Vdf) = Z(Vea.df)(ej) is the tension field of f in the

j
theory of harmonic maps. (See Eells and Lemaire [1], p.9.)

Remark. The first term in the right hand side is of divergence form,
and hence the integral of it over M vanishes.

Remark. The second term in the right hand side vanishes if f is a
C-stationary map.

Remark. The last two terms of the right hand side are equal to
+ > WA M R(es, en)en), E5(e)
and " k
— ST h(MR(df (es), df (er))df (ex), £¢(er))
ik

respectively.
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§7. Existence of local minimizers

In this section we utilize the notion of 3-homotopy in the Sobolev
spaces, which is given by White, and consider a variational problem
of minimizing the functional ®(f) in each 3-homotopy class. For any
two maps fi; and fy from M into N, these maps are k-homotopic
(k € N) if they are homotopic to each other on k-dimensional skele-
tons of a triangulation on M.

By Nash’s isometric embedding, we may assume that N is a sub-
manifold of a Euclidean space R?. Let

LYP(M, N) = { f e L'"?(M,R") | f(z) € N ae. },

where L1'?(M, R?) denotes the Sobolev space of R%-valued LP-functions

on M such that their derivatives are in L?. Then White proved that
the notion of the [p — 1]-homotopy is compatible with the Sobolev
space LLP(M, N), where | ] denotes the Gauss symbol, i.e., [r] is

the maximum integer less than or equal to r. We recall the following

results by White [8]. (See also White [7]. )

( Known results —
(1) The [p — 1]-homotopy is well-defined for any map f €

LY?(M, N).

(2) If f; converges weakly to fo in LYP(M, N), then f; and fo

are [p — 1]-homotopic for sufficient large 7. )

The functional ®(f) is defined on L“4(M, N), in which the 3-
homotopy is well-defined. Then for any given continuous map fy
from M into N, we want to minimize the functional ®(f) in the
following class: |
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F={fc¢ LY4(M, N) | f is 3-homotopic to fy and I fllese, vy < Co }

where Oy is a given positive constant. We may assume that the space



F is not empty for sufficiently large C.

There exists a minimizer of the functional ®(f) in F.

( Existence of minimizers

If a 3-'homotopy class contains a conformal map, then the confor-
mal map is a minimizer. Minimizers are expected to be closest to
conformal maps, even if its 3-homotopy class does not contain any

conformal map.

Remark. When M is 4-dimensional and m4(N) = 0, any continuous

minimizer is (freely) homotopic to fy in the ordinary sense .

§8. Other variational problem

By Lemma T (3), we see

1Ty ll* = (el
1

]
1

the norm of
the pullback metric

the energy density

of 4-harmonic maps

Then we consider the following function’ai for pullback metrics.

Functional F(f)

F(f) = /A 7hlds,.
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A map f is called a harmonic map if it is a critical point of the
energy functional E(f) = / ||df |*dv,. The theory of harmonic maps

made a rapid progress dur?r[lg the last fifty years, and gave various
applications to other branches in mathematics and physics. From
the viewpoint of pullback metrics, the square ||df]|? of the energy
density is the trace of the pullback f*h of the metric. Thus we see
~ the following correspondence between the energy functional E(f) and
our functional F(f).

the energy functional
in the theory of our functional
harmonic maps

E(f) = AJ \df|%do,
= /trg(f*h)dvg'
M

P = [ 1r°hlas,.

the trace of pullback metrics | the norm of pullback metrics

We have some results for the functional F(f). (See Nakauchi-
Takenaka [6] and Kawai-Nakauchi [3]. ) We call a critical point of
the functional F(f) a symphonic map, compared with a harmonic
map, since the norm contains informations of more components than

the trace while symphonies have more parts than harmonies?.

3 This is one of my favorite jokes, and I adopt the term of symphonic maps.
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