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\S O. Introduction

There exists a fundamental question:

Question What maps are closest to conformal ones?

We give a variational approach to this question. We consider the

functional

$\Phi(f)=\int_{M}\Vert T_{f}\Vert^{2}dv_{g},$

where $T_{f}$ is a covariant symmetric tensor such that

$T_{f}=0$ $\Leftrightarrow$ $f$ is a weakly conformal map.

In this note we give a brief summary of results for this functional.

数理解析研究所講究録

第 1969巻 2015年 153-167 153



\S 1. A variational problem for the conformality of
maps

We use the following notations throughout this note:

Notations
$(M, 9)$

: compact Riemannian manifolds without boundary.
$(N, h)$

$m$ : the dimension of $M$

$f$ : a smooth map from $M$ into $N.$

$X,$ $Y$ : vector fields on $M.$

$e_{i}$ : a local orthonormal frame on $M.$

$f^{*}h$ : the pullback of the metric $h$ by the map $f$ , i.e.,
$(f^{*}h)(X, Y)=h(df(X), df(Y))$

We first recall notions of the conformality of maps:

Conformal and Weakly conformal

(1) A smooth map $f$ is weakly conformal if there exists a
non-negative function $\varphi$ on $M$ such that

$(*) f^{*}h=\varphi g.$

(2) A smooth map $f$ is conformal if there exists a positive
function $\varphi$ on $M$ satisfying $(*)$ .

Note that $f$ is weakly conformal if and only if it is conformal at
$x$ or $(df)_{x}=0$ for any $x\in M^{1}.$

1 A map $f$ is called conformal at $x\in M$ if it satisfies $(*)$ at $\prime r_{ノ}.$
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We give a tensor of the conformality. Let $\Vert df\Vert$ denote the energy
density of $f$ in the theory of harmonic maps, i.e.,

$\Vert df\Vert^{2}=\sum_{j.=1}^{7r1\fbox{Error::0x0000}}h(df(e_{i}), df(e_{i}))$ .

We consider the following covariant symmetric tensor:

Tensor $T_{f}$

$T_{f}$
些 $f*$ん $- \frac{1}{m}|剛^{}2g,$

i.e.,

$T_{f}(X, Y)(le=^{f}h(df(X), df(Y))- \frac{1}{m}\Vert df\Vert^{2}g(X, Y)$ .

Remark. In the case of $m=2$ , the tensor $T_{f}$ is equal to the stress
energy tensor

$S_{f}=f^{*}h- \frac{1}{2}\Vert df\Vert^{2}g$

for harmonic maps. (See Eells and Lemaire [2], p.392. )

We can verify the following basic properties for the tensor $T_{f}$ :
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Properties of tensor $T_{f}$

Lemma T.

(1) $T_{f}$ is symmetric, i.e., $T_{f}(X, Y)=T_{f}(Y, X)$ .

(2) $f$ is weakly conformal if and only if $T_{f}=0.$

(3) $\Vert T_{f}\Vert^{2}=\Vert f^{*}h\Vert^{2}-\frac{1}{m}\Vert df\Vert^{4}.$

(4) $T_{f}$ is trace-free, i.e.,

$Tr_{g}T_{f}=\sum_{i,j=1}^{m}g(e_{i}, e_{j})T_{f}(e_{i}, e_{j})=0.$

(5) The trace of $T_{f}$ with respect to the pullback $f^{*}h$ is equal

to the norm of $T_{f}$ , i.e.,

Tr$f^{*}{}_{h}T_{f}= \sum_{i,j=1}^{rn}(f^{*}h)(e_{i}, e_{j})T_{f}(e_{i}, e_{j})=\Vert T_{f}|\cdot|^{2}.$

We are concerned with the following functional:

Functional $\Phi(f)$

$\Phi(f)=\int_{M}\Vert T_{f}\Vert^{2}dv_{g}.$

This functional $\Phi(f)$ gives a quantity of the conformality of maps
$f$ . Note that if $f$ is a conformal map, then $\Phi(f)$ vanishes. In this
note we give the following results ([5], [4], [6], [3]):
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1. First variation formula

2. Second variation formula

3. Weak conformality for maps from or into spheres

4. Quasi-monotonicity formula

5. Bochner type formula

6. Existence of minimizers in 3-homotopy class

7. Other variational problem

\S 2. First variation formula

In this section we give the first variation formula for the functional
$\Phi(f)$ . We first define the following “‘$f^{-1}TN$-valued”’ 1-form $\xi_{f^{2}}$ . The
1-form $\xi_{f}$ plays an important role in our arguments.

1-form $\xi_{f}$

$\xi_{f}(X)=\sum_{j}T_{f}(X, e_{j})df(e_{j})$

$= \sum_{j}h(df(X), df(e_{j}))df(e_{j})-\frac{1}{m}\Vert df||^{2}df(X)(.$

any smooth deformation $F$ of $f$ , i.e., any smooth map

$F$ : $(-\epsilon, \epsilon)\cross Marrow N$ s.t. $F(O, x)=f(x)$ .

Let $f_{t}(x)=F(t, x)$ , and we often say a deformation $f(x)$ instead of

$\overline{2}$Though $I\cdot$want to $nse$ the notation $\tau_{f}$ instead of $\xi_{f\}}$ it is confused with the notation of the
tension field in the theory of harmonic maps.
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a deformation $F(t, x)$ . Let

$X=dF( \frac{\partial}{\partial t,})|_{t=0}$

denote the variation vector fields of the deformation $F$ . Then we
have the following first variation formula.

First variation formula

$\frac{d\Phi(f_{t})}{dt}|_{t=0}=-4\int_{M}h(X, div_{g}\xi_{f})伽_{}g$
．

Here $dv_{g}$ denotes the volume form on $M$ , and $div_{g}\xi_{f}$ denotes the

divergence of $\xi_{f}$ , i.e., $div_{g}\xi_{f}=\sum_{i=1}^{7\gamma 1}(\nabla_{e_{i}}\xi_{f})(e_{i})\cdot.$

We give here the notion of maps.

$C$-stationary map

We call a smooth map $f$ $C$-stationary if

$\frac{d\Phi(f_{t}.)}{dt}|_{t=0}=0$

for any smooth deformation $f_{t}$ of $f.$

By the first variation formula, a smooth map $f$ is $C$-stationary if
and only if it satisfies the following equation:

Euler-Lagrange equation

$div_{g}\xi_{f}=0.$
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\S 3. Second variation formula

In this section we give the second variation formula for the func-
tional $\Phi(f)$ . Take any smooth deformation $F$ of $f$ with two param-

eters, i.e., any smooth map

$F:(-\epsilon, \epsilon)\cross(-\delta, \delta)\cross Marrow$ Nst. $F(O, 0, x)=f(x)$ .

Let $f_{s,t}(x)=F(s, t, x)$ , and we often say a deformation $f_{s,t}(x)$ in-

stead of a deformation $F(s, t, x)$ . Let

$X=dF( \frac{\partial}{\partial s})|_{s,t=0}, Y=dF(\frac{\partial}{\partial t})|_{8},t=0$

denote the variation vector fields of the deformation $F$ . Then we
have the following second variation formula.

159



Here $Hess_{f}$ denotes the Hessian of $f$ , i.e., $Hess_{f}(Z, W)=(\nabla_{Z}df)(W)$

$=(\nabla_{W}df)(Z)$ .

Remark. Note that the first term in the right hand side vanishes if
$f$ is a $C$-stationary map.

Remark. The last term of the right hand side is equal to

$- \int_{M}\sum_{i}h(^{N}R(df(e_{i}), X)Y, \xi_{f}(e_{i}))dv_{g}.$

\S 4. Weak conformality for maps from or into
spheres

A $C$-stationary map $f$ is called to be stable if the second variation
at $f$ is non-negative. We give two results for the weak conformality
of stable $C$-stationary maps. (See Kawai-Nakauchi [4]. )

Weak conformailty

Let $f$ be a stable $C$-stationary map from a Riemannian manifold
$M$ into the standard sphere $S^{7}$ If $n\geq 5$ , then $f$ is a weakly
conformal map.

The above results can be regarded as a type of Liouville theorems
since the trivial case for the functional $\Phi$ is that of not constant maps,
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but weakly conformal maps. On the other hand, stable $C$-stationary

maps are not weakly conformal in general. We see the following fact.

Existence of non-conformal stable $C$-stationary maps

There exists a stable $C$-stationary maps which is not weakly con-
formal,

This fact follows from a simple example. Let us define a map

$f$ : $S^{1}\cross S^{1}\cross\cdots\cross S^{1}$ $arrow$ $S^{1}(r)\cross S^{1}\cross\cdots\cross S^{1}$

u)

$(x^{1}, x^{2}, \ldots, x^{m}) \mapsto (rx^{1}, x^{2}, \ldots, x^{7\gamma}$

where $S^{1}$ (resp. $S^{1}(r)$ ) denotes the sphere of dimension 1 with radius

1 (resp. r) centered at the origin of $\mathbb{R}^{2}$ . Obviously $f$ is not weakly

conformal if $r\neq 1$ . By simple calculations, we can verify that $f$ is a
$C$-stationary map, and that $f$ is stable if $r$ is suficiently close to 1,

\S 5. Quasi-monotonicity formula

In this section we prove a kind of the monotonicity formula for
$C$-stationary maps. We give this formula under the following weak

condition.
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Note that the above notion of $C$-stationary maps is weaker than
the previous one of $C$ -stationary maps, since $f_{t}(x)=f\circ\varphi_{t}(x)$ is a
deformation in the former notion.

Let $B_{\rho}(x_{0})$ be the open ball of a radius $\rho$ with a center $x_{0}\in M.$

Then we have the following formula:

Quasi-monotonicity formula
For any $C$-stationary map $f$ with respect to diffeomorphisms, we
have

$\frac{d}{d\rho}\{e^{C\rho}\rho^{4-7n}\int_{B_{\rho}(x_{0})}\Vert T_{f}\Vert^{2}dv_{g}\}\geq 4e^{C\rho}\rho^{4-7n}(\varphi’(\rho)+\frac{C}{4}\varphi(\rho))$

where

$\varphi(\rho)=\int_{B_{\rho}(x_{0})}h(df(\frac{\partial}{\partial\dot{l}}), \xi_{f}(_{\partial_{\overline{r}}^{\partial}}))dv_{g}.$

Remark. If $\varphi(\rho)$ satisfies the condition $+ \frac{C}{4}\varphi(\rho)\geq 0$ , then

$e^{C\rho} \rho^{4-7n}\int_{B_{\rho}(x_{0})}\Vert\dot{T}_{f}\Vert^{2}dv_{g}$ is monotone non-decreasing. We cannot

expect such a monotonicity in general, since $T_{f}$ is indefinite.

\S 6. Bochner type formula

Bochner formulas are basic tools for various arguments in geome-
try. For the norm of $T_{f}$ , we have the following Bochner type formula:
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Bochner type formula

$\frac{1}{4}\triangle\Vert T_{f}\Vert^{2}=div_{g}\alpha_{f}-h(\tau_{f}, div_{g}\xi_{f})+\frac{1}{2}\Vert\nabla T_{f}\Vert^{2}$

$+ \sum_{?} , (\nabla_{e_{k}}df)(e_{j}))T_{f}(e_{i}, e_{j})$

$+ \sum_{j_{ノ}j}h(df(\sum_{k}^{M}R(e_{i}, e_{k})e_{k}), df(e_{j}))T_{f}(e_{i}, e_{j})$

$- \sum_{j_{)}ノ^{}\backslash j,k}h(^{N}R(df(e_{i}), df(e_{k}))df(e_{k^{J}}) , df(e_{j}))T_{f}(e_{i}, e_{j})$

where

$\alpha_{f}(X)=h(\xi_{f}(X), \tau_{f})$ .

Here
$\tau_{f}=tr(\nabla df)=\sum_{j}(\nabla_{e_{j}}df)(e_{j})$

is the tension field of $f$ in the

theory of harmonic maps. (See Eells and Lemaire [1],. p.9.)

Remark. The first term in the right hand side is of divergence form,

and hence the integral of it over $M$ vanishes.

Remark. The second term in the right hand side vanishes if $f$ is a
$C$-stationary map.

Remark.. The last two terms of the right hand side are equal to

$+ \sum_{j.,k}h(df(\sum_{k}^{M}R(e_{i}, e_{k})e_{k}), \xi_{f}(e_{i}))$

and

一

$\sum_{i,k}h(^{N}R(df(e_{i}), df(e_{k}))df(e_{k}),$
$\xi_{f}(e_{i}))$

respectively.
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\S 7. Existence of local minimizers

In this section we utilize the notion of 3-homotopy in the Sobolev
spaces, which is given by White, and consider a variational problem
of minimizing the functional $\Phi(f)$ in each 3-homotopy class. For any
two maps $f_{1}$ and $f_{2}$ from $M$ into $N$ , these maps are $k$-homotopic
$(k\in \mathbb{N})$ if they are homotopic to each other on $k$-dimensional skele-
tons of a triangulation on $M.$

By Nash’s isometric embedding, we may assume that $N$ is a sub-
manifold of a Euclidean space $\mathbb{R}^{q}$ . Let

$L^{1,p}(M, N)=\{f\in L^{1,p}(M, \mathbb{R}^{q})|f(x)\in N a.e. \},$

where $L^{1,p}(M, \mathbb{R}^{q})$ denotes the Sobolev space of $\mathbb{R}^{q}$-valued $L^{p}$-functions
on $M$ such that their derivatives are in $L^{p}$ . Then White proved that

notion of the $[p-1]$-homotopy is compatible with the Sobolev
space $L^{1,p}(M, N)$ , where $[$ $]$ denotes the Gauss symbol, i.e., $[r]$ is
the maximum integer less than or equal to $r$ . We recall the following
results by White [8]. (See also White [7]. )

Known results
(1) The $\lceil p-1$ ]-homotopy is well-defined for any map $f\in$

$L^{1,p}(M, N)$ .
(2) If $f_{j}$ converges weakly to $f_{\infty}$ in $L^{1,p}(M, N)$ , then $f_{j}$ and $f_{\infty}$

are $\lceil p-1]$ -homotopic for sufficient large $j.$

The functional $\Phi(f)$ is defined on $L^{1,4}(M, N)$ , in which the 3-
homotopy is well-defined. Then for any given continuous map $f_{0}$

from $M$ into $N$ , we want to minimize the functional $\Phi(f)$ in the
following class:

$\mathcal{F}=$ { $f\in L^{1,4}(M, N)|f$ is 3-homotopic to $f_{0}$ and $\Vert f\Vert_{L^{1,4}(M,N)}\leq C_{0}$ }
where $C_{0}$ is a given positive constant. We may assume that the space
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$\mathcal{F}$ is not empty for sufficiently large $C_{0}.$

If a 3-homotopy class contains a conformal map, then the confor-
mal map is a minimizer. Minimizers are expected to be closest to

conformal maps, even if its 3-homotopy class does not contain any
conformal map.

Remark. When $M$ is 4-dimensional and $\pi_{4}(N)=0$ , any continuous
minimizer is (freely) homotopic to $f_{0}$ in the ordinary sense.

\S 8. Other variational problem

By Lemma $T(3)$ , we see

$\Vert T_{f}\Vert^{2}$ $=$ $\Vert f^{*}h\Vert^{2}$ $-$ $\frac{1}{m}\Vert df\Vert^{4}$

$\uparrow$ $\uparrow$

the norm of the energy density
the pullback metric of 4-harmonic maps

Then we consider the following functional for pullback metrics.

Functional $F(f)$

$F(f)= \int_{M}\Vert f^{*}h\Vert^{2}dv_{g}.$
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A map $f$ is called a harmonic map if it is a critical point of the

energy functional $E(f)= \int_{M}\Vert df\Vert^{2}dv_{9}$ . The theory of harmonic maps

made a rapid progress during the last fifty years, and gave various
applications to other branches in mathematics and physics. From
the viewpoint of pullback metrics, the square $\Vert df\Vert^{2}$ of the energy
density is the trace of the pullback $f^{*}h$ of the metric. Thus we see
the following correspondence between the energy functional $E(f)$ and
our functional $F(f)$ .

We have some results for the functional $F(f)$ . (See Nakauchi-
Takenaka [6] and Kawai-Nakauchi [3]. ) We call a critical point of
the functional $F(f)$ a symphonic map, compared with a harmonic
map, since the norm contains informations of more components than
the trace while symphonies have more parts than harmonies 3.

This is one of my favorite jokeg, md I adopt the term of symphonic maps.
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