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1 introduction

In this talk, we discussed a homogenization problem for the random Schr\"odinger

operator. The purpose of this article is to present the results in the simplest

setting and to compare an analytic approach by Bal [1] with our probabilistic

one [2, 3]. For the background and related works, we refer the reader to [2]. Let

us start by introducing the notation to describe the setting.

$\bullet$
$D\subset \mathbb{R}^{d}$ : a bounded domain with smooth boundary;

$\bullet$
$D_{\epsilon}=D\cap\epsilon \mathbb{Z}^{d}$ : a natural discretization with mesh size $\epsilon>0$ ;

$\bullet\triangle_{\epsilon}f(x)=\epsilon^{-2}\sum_{|y-x|=\epsilon}(f(y)-f(x))$ for $f:\epsilon \mathbb{Z}^{d}arrow \mathbb{R}$ ;

$\bullet$ $(\{\xi(x)\}_{x\in D_{\epsilon}}, \mathbb{P})$ : $\mathbb{R}$-valued independent and identically distributed random
variables.

We are interested in the operator of the form

$H_{\epsilon,\xi}=-\triangle_{\epsilon}+\xi$

with the Dirichlet boundary condition imposed outside $D_{\epsilon}$ . Let $\{\lambda_{\epsilon,\xi}^{(k)}\}_{k\geq 1}$ be the
eigenvalues of this operator (matrix) ordered increasingly.

Assumptions 1. Assume $\mathbb{E}[\xi(x)]=0,$ $\mathbb{E}[\xi(x)^{2}]=1$ and for some $K>2 \vee\frac{d}{2},$

$\mathbb{E}[|\xi(x)|^{K}]<\infty$ . We also assume that $\xi$ is truncated as $\max_{x\in D_{\epsilon}}|\xi(x)|\leq\epsilon^{-\kappa}$

for some $\kappa\in(d/K, 2\wedge d/2)$ .

Remark 1. The latter assumption holds with high probability under the first one
but we do assume this, see Remark 2 below. In [3], both the mean and variance

are allowed to depend on $x$ in a continuous way. Here we consider the simplest

i.i. $d$ . case for simplicity.

As $\xi$ varies rapidly in $x$ for small $\epsilon$ , it is natural to expect that some averaging

occurs in the limit $\epsilonarrow 0$ . Then the limiting object should be the k-th smallest
eigenvalue $\lambda_{D}^{(k)}$ of $-\triangle$ on $H_{0}^{2}(D)$ and the following result shows that it is the case.

Theorem 1 (homogenization). Under Assumption 1,

$\lambda_{\epsilon,\xi}^{(k)}arrow\lambda_{D}^{(k)}$ as $\epsilon\downarrow 0$

in probability for each $k\geq 1.$
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We further found a Gaussian fluctuation of the eigenvalues around the mean.
The covariances are described in terms of $L^{2}$-normalized eigenfunction $\varphi_{D}^{(k)}$ cor-
responding to $\lambda_{D}^{(k)}.$

Theorem 2 (fluctuation). Suppose Assumption 1 holds and $\lambda_{D}^{(k_{1})}$ , . . . , $\lambda_{D}^{(k_{n})}$ are
distinct simple eigenvalues. Then,

$\epsilon^{-d/2}(\lambda_{\epsilon,\xi}^{(k_{1})}-\mathbb{E}\lambda_{\epsilon,\xi}^{(k_{1})}, \ldots, \lambda_{\epsilon,\xi}^{(k_{n})}-\mathbb{E}\lambda_{\epsilon,\xi}^{(k_{n})})arrow \mathscr{N}(0, \sigma)\epsilon\downarrow 0$

in law, where $\sigma$ is the covariance matrix with elements

$\sigma_{ij}^{2}:=\Vert\varphi_{D}^{(k_{i})}\varphi_{D}^{(k_{j})}\Vert_{2}^{2}.$

Remark 2. The truncation made in Assumption 1 does not affect $\lambda_{\epsilon,\xi}^{(k)}$ with high

probability. However, it may affect the mean value $\mathbb{E}\lambda_{\epsilon,\xi}^{(k)}.$

Note that the fluctuation not around the “homogenized eigenvalues”’ but
around their mean is found. The following result due to Bal [1] tells us that
the mean $\mathbb{E}\lambda_{\epsilon,\xi}^{(k)}$ can be replaced by $\lambda_{D}^{(k)}$ for $d\leq 3$ under the existence of fourth
moment.

Theorem 3 (fluctuation in low dimensions: Bal [1]). Let $d\leq 3$ and suppose that
$\{\xi(x)\}_{x\in D_{\epsilon}}$ are independent and identically distributed with $\mathbb{E}[\xi(x)^{4}]<\infty$ . Then

$\lambda_{\epsilon,\xi}^{(k)}arrow\lambda_{D}^{(k)}$ as $\epsilon\downarrow 0$

in probability for each $k\geq 1$ . Moreover, if $\lambda_{D}^{(k_{1})}$ , . . . , $\lambda_{D}^{(k_{\mathfrak{n}})}$ are distinct simple
eigenvalues, then

$\epsilon^{-d/2} (\lambda_{\epsilon_{)}\xi}^{(k_{1})}-\lambda_{D}^{(k_{1})}, . .. , \lambda_{\epsilon,\xi}^{(k_{n})}-\lambda_{D}^{(k_{n})})arrow \mathscr{N}(0\epsilon\downarrow 0, \sigma)$

in law, where the covariance $\sigma$ is the same as above.

Remark 3. Bal [1] established the above central limit theorem not only for
i.i. $d$ . case but also for sufficiently mixing case. The above setting is in fact
slightly different from the original one which studies an operator without any
discretization.

Notation: For a function $f$ : $D_{\epsilon}arrow \mathbb{R}$ , we write $\rangle$ and $\Vert\cdot\Vert_{2}$ for the $\ell^{2}$ inner
product and corresponding norm with respect to the counting measure multiplied
by $\epsilon^{d}.$

2 The argument of Bal in the i.i. $d$ . case
We present the argument of Bal [1] in a simplified i.i. $d$ . setting in this section.
It is based on a perturbation expansion and in order to control the reminder
terms, we need that the Green’s function for $-\triangle$ (with the boundary condition)

is in $L^{2+\delta}(D)$ for some $\delta>0$ , which requires $d\leq 3$ . We shall focus on the
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first eigenvalue $\lambda_{\epsilon,\xi}$ , with the superscript (1) dropped, and write $\varphi_{\epsilon,\xi}$ for the first
eigenfunction. Let $G_{\xi}$ and $G$ be the resolvent operators for $H_{\epsilon,\xi}$ and $-\triangle_{\epsilon}$ with

the Dirichlet boundary condition outside $D_{\epsilon}$ , respectively. As $G_{\xi}$ is well-defined
with high probability, we assume it always exists for simplicity.

The key to the proof of Theorem 3 is the following lemma.

Lemma 1.

$\lim_{Marrow\infty}\lim_{\epsilon\downarrow}\sup_{0}\mathbb{P}(\max\{\Vert G\xi G\Vert_{2arrow 2}, \Vert G\xi G\xi\Vert_{2arrow 2}, \Vert G_{\xi}-G\Vert_{2arrow 2}\}\geq M\epsilon^{d/2})=0$ . (1)

Moreover for any $\delta>0,$

$\lim_{\epsilon\downarrow 0}\mathbb{P}(\Vert G\xi G\xi G\Vert_{2arrow 2}\geq\delta\epsilon^{d/2})=0$ . (2)

Proof. For any $f:D_{\epsilon}arrow \mathbb{R}$ , we use the Cauchy-Schwarz inequality to obtain

$\Vert G\xi G\xi f\Vert_{2}^{2}=\sum_{x\in D_{\epsilon}}\epsilon^{d}|\sum_{y\inD_{\epsilon}}\sum_{z\in D_{\epsilon}}\epsilon^{2d}g(x, y)\xi(y)g(y, z)\xi(z)f(z)|^{2}$

$\leq\Vert f\Vert_{2}^{2}\sum_{x\in D_{\epsilon}}\sum_{z\in D_{\epsilon}}\epsilon^{2d}|\sum_{y\in D_{\epsilon}}\epsilon^{d}g(x, y)\xi(y)g(y, z)\xi(z)|^{2}$

$= \Vert f\Vert_{2}^{2}\sum_{x,y_{1},y_{2},z\in D_{\epsilon}}\epsilon^{4d}g(x, y_{1})\xi(y_{1})g(y_{1}, z)_{9}(x, y_{2})\xi(y_{2})_{9}(y_{2}, z)\xi(z)^{2}$

Noting that $\mathbb{E}[\xi(y_{1})\xi(y_{2})\xi(z)^{2}]\leq\delta_{y_{1},y_{2}}\mathbb{E}[\xi(z)^{4}]$ , we find

$\mathbb{E}[\Vert G\xi G\xi\Vert_{2arrow 2}^{2}]\leq$ Const.
$\epsilon^{d}\sum_{x,y,z\in D_{\epsilon}}\epsilon^{2d_{9(x,y)^{2}g(y,z)^{2}}}.$

The sum on the right-hand side is bounded for $d\leq 3$ , due to the square integra-

bility of the continuum Green’s function, and thus

$\lim_{Marrow\infty}\mathbb{P}(\Vert G\xi G\xi\Vert_{2arrow 2}\geq M\epsilon^{d/2})=0$

follows by the Chebyshev inequality. The estimate for $\Vert G\xi G\Vert_{2arrow 2}$ is essentially
the same and simpler. As for (2), it is routine to find

$\Vert G\xi G\xi G\Vert_{2arrow 2}^{2}\leq\sum_{x,y_{1},y_{2},z_{1},z_{2},w\in D_{\epsilon}}\epsilon^{6d}g(x, y_{1})\xi(y_{1})g(y_{1}, z_{1})\xi(z_{1})g(z_{1},w)$

$g(x, y_{2})\xi(y_{2})g(y_{2}, z_{2})\xi(z_{2})g(z_{2}, w)$

as above. Taking expectation and using

$\mathbb{E}[\xi(y_{1})\xi(y_{2})\xi(z_{1})\xi(z_{2})]\leq(\delta_{y_{1},y_{2}}\delta_{z_{1},z_{2}}+\delta_{y_{1_{\rangle}}z_{1}}\delta_{y_{2},z_{2}}+\delta_{y_{1},z_{2}}\delta_{y_{2},z_{1}})\mathbb{E}[\xi(z)^{4}],$
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we get

$\mathbb{E}[\xi(x)^{4}]^{-1}\mathbb{E}[\Vert G\xi G\xi G\Vert_{2arrow 2}^{2}]$

$\leq\sum_{x,y_{1},z_{1},w\in D_{\epsilon}}\epsilon^{6d}g(x, y_{1})^{2}g(y_{1},z_{1})^{2}g(z_{1}, w)^{2}$

$+ \sum_{x,y_{1},y_{2},w\in D_{\epsilon}}\epsilon^{6d}g(x, y_{1})g(y_{1}, y_{1})g(y_{1}, w)g(x, y_{2})g(y_{2}, y_{2})g(y_{2}, w)$

(3)

$+ \sum_{x,y_{1)}y_{2},w\in D_{\epsilon}}\epsilon^{6d}g(x, y_{1})g(y_{1}, y_{2})g(y_{2}, w)g(x, y_{2})_{9}(y_{2}, y_{1})g(y_{1}, w)$
.

The first term on the right-hand side is $O(\epsilon^{2d})$ when $d\leq 3$ . Next, using $2ab\leq$

$a^{2}+b^{2}$ one can bound the second term by

$\sum_{x,y_{1_{\rangle}}y_{2},w\in D_{\epsilon}}\epsilon^{6d}[g(x, y_{1})^{2}+g(x, y_{2})^{2}]g(y_{1}, y_{1})g(y_{2}, y_{2})[g(y_{1}, w)^{2}+g(y_{2}, w)^{2}]$

(4)
$\leq$ const. $\epsilon^{2d}\max_{u\in D_{\epsilon}}g(u, u)^{2}=o(\epsilon^{d})$

since $\epsilon^{d}\max_{u\in D_{\epsilon}}g(u, u)=o(\epsilon^{d/2})$ for $d\leq 3$ . As the third term can be estimated
in the same way, we obtain

$\mathbb{E}[\Vert G\xi G\xi G\Vert_{2arrow 2}^{2}]=o(\epsilon^{d})$

and (2) follows.
In order to bound $\Vert G_{\xi}-G\Vert_{2arrow 2}$ , we recast the equation $(-\triangle_{\epsilon}+\xi)G_{\xi}f=f$ as

$G_{\xi}f=G(f-\xi G_{\xi}f)=Gf-G\xi Gf+G\xi G\xi G_{\xi}f,$

where in the second equality, we have used the first equality to rewrite $G_{\xi}f$ in
the middle. We further rearrange the above to get rid of $G_{\xi}$ from the right-hand
side and arrive at

$(id-G\xi G\xi)(G_{\xi}-G)f=-G\xi Gf+G\xi G\xi Gf$ . (5)

We know from the above argument that $\Vert G\xi G\Vert_{2arrow 2},$ $\Vert G\xi G\xi\Vert_{2arrow 2}$ and $\Vert G\xi G\xi G\Vert_{2arrow 2}$

are of order $O(\epsilon^{d/2})$ with high probability. For such a $\xi$ , we conclude from (5)

that
$\Vert(G_{\xi}-G)f\Vert_{2}\leq$ const. $M\epsilon^{d/2}\Vert f\Vert_{2}$

for sufficiently small $\epsilon.$
$\square$

This lemma and a simple bound

$|\lambda_{\epsilon_{)}\xi}^{-1}-\lambda_{D}^{-1}|\leq\Vert G_{\xi}-G\Vert_{2arrow 2}$

yield $\lambda_{\epsilon,\xi}-\lambda_{D}=O(\epsilon^{d/2})$ with high probability, that is, the first part of Theorem 3
with an error control.

Let us turn to the proof of fluctuation result. Note that the argument so far
applies to the second eigenvalue as well. Thus we may assume that both the first
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and second eigenvalues are close to the homogenized eigenvalues. Then, it is not
hard to verify, by using the Rayleigh-Ritz variational formula and the well-known
fact $\lambda_{D}^{(1)}<\lambda_{D}^{(2)}$ , that the first eigenfunctions are close to each other:

$\Vert\varphi_{\epsilon,\xi}-\varphi_{D}\Vert_{2}arrow 0$ as $\epsilon\downarrow 0$ , in probability. (6)

The starting point of the argument is the following perturbative representation

of the eigenvalue difference:

$\lambda_{\epsilon_{)}\xi}^{-1}-\lambda_{D}^{-1}=\langle\varphi_{D}, (G_{\xi}-G)\varphi_{D}\rangle$

(7)
$+\langle\varphi_{\epsilon,\xi}-\varphi_{D}, [(G_{\xi}-\lambda_{\epsilon,\xi}^{-1})-(G-\lambda_{D}^{-1})]\varphi_{D}\rangle.$

Thanks to Lemma 1, the second term is bounded (in modulus) by

$\Vert\varphi_{\epsilon,\xi}-\varphi_{D}\Vert_{2}(\Vert G_{\xi}-G\Vert_{2arrow 2}+|\lambda_{\epsilon,\xi}^{-1}-\lambda_{D}^{-1}|)=o(\epsilon^{d/2})$ ,

which is of smaller order than the expected fluctuation. On the other hand, by

using Lemma 1 in (5), we find that the first term is approximated by

$\langle\varphi_{D}, -G\xi G\varphi_{D}\rangle=\sum_{x,y,z\in D_{\epsilon}}\epsilon^{3d}\varphi_{D}(x)g(x, y)\xi(y)g(y, z)\varphi_{D}(z)$

up to an $o(\epsilon^{d/2})$ error. This right-hand side is nothing but a sum of i.i. $d$ . random
variables $\xi$ with the weight

$\sum_{x,z\in D_{\epsilon}}\epsilon^{2d}\varphi_{D}(x)_{9}(x, \cdot)g(\cdot, z)\varphi_{D}(z)=\lambda_{D}^{-2}\varphi_{D}(\cdot)^{2}$

by the symmetry of $g$ and the eigen-equation. It is well-known that such a sum
satisfies the central limit theorem with the variance $\lambda_{D}^{-4}\Vert\varphi_{D}^{2}\Vert_{2}^{2}$ . As we know

$\lambda_{\epsilon,\xi}^{-1}-\lambda_{D}^{-1}\sim-\frac{\lambda_{\epsilon,\xi}-\lambda_{D}}{\lambda_{D}^{2}}$ as $\epsilon\downarrow 0$

from the first part of Theorem 3, the proof of the second part is completed.

3 The probabilistic argument

In this section, we review key points of the probabilistic methods in [2, 3] which

covers the general dimensions with an optimal moment condition. The argument

is probabilistic compared with the perturbative one in the previous section in that

it heavily uses concentration inequalities and a martingale central limit theorem.

However, the reader will notice that it also relies on some analytic inputs in an

essential way. We will focus only on the first eigenvalue as before.
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3.1 Homogenization

We first give an outline proof of the convergence in probability of the random
eigenvalue. Our starting point is the Rayleigh-Ritz formula:

$\lambda_{\epsilon,\xi}=\inf\{\Vert\nabla_{\epsilon}g\Vert_{2}^{2}+\langle\xi,$ $g^{2}\rangle:\Vert g\Vert_{2}=1$ and $g=0$ outside $D_{\epsilon}\},$

$\lambda_{D}=\inf\{\Vert\nabla\psi\Vert_{2}^{2}+\langle U, \psi^{2}\rangle:\psi\in H_{0}^{1}(D), \Vert\psi\Vert_{2}=1\}$

which are minimized by $\varphi_{\epsilon,\xi}$ and $\varphi_{D}$ . Roughly speaking, we prove

$\bullet$ $\lambda_{\epsilon,\xi}<\lambda_{D}\sim$ by taking $g=\varphi_{D}$ in the first formula and

$\bullet$ $\lambda_{\epsilon,\xi}>\lambda_{D}\sim$ by taking $\psi=\varphi_{\epsilon,\xi}$ in the second formula.

The first step

$\lambda_{\epsilon,\xi}\leq\Vert\nabla_{\epsilon}\varphi_{D}\Vert_{2}^{2}+\langle\xi, \varphi_{D}^{2}\ranglearrow^{\epsilon\downarrow 0}\Vert\nabla\varphi_{D}\Vert_{2}^{2}=\lambda_{D}$

is nothing but the weak law of large numbers. On the other hand, the second
step

$\lambda_{D}\leq \sim\Vert\nabla_{\epsilon}\varphi_{\epsilon,\xi}\Vert_{2}^{2}+\langle\xi, \varphi_{\epsilon}^{2},\rangle?\vee^{\xi}$

need an interpolation to give a sense randomly weighted sum

is more problematic. We use the following two tools:

Lemma 2. There exists a piecewise afine interpolation $\overline{\varphi_{\epsilon,\xi}}\in H_{0}^{1}(D)$ of $\varphi_{\epsilon,\xi}$

such that $\Vert\nabla_{\epsilon}\varphi_{\epsilon,\xi}\Vert_{2}=\Vert\nabla\overline{\varphi_{\epsilon,\xi}}\Vert_{2}.$

Lemma 3. For any $p\in(2\wedge d/2, K)$ , $\xi$ is bounded in $\ell^{p}(D_{\epsilon})$ with high probability.
On such $a$ event, $\Vert\varphi_{\epsilon,\xi}\Vert_{q}$ and $\Vert\nabla_{\epsilon}\varphi_{\epsilon,\xi}\Vert_{2}$ are bounded for any $q>1.$

Lemma 2 is a well-known scheme in the (finite element method”’ in numerics
and it solves the problem around the gradient. The first half of Lemma 3 is a
consequence of the moment assumption and the second one follows by the so-
called Moser iteration in the elliptic regularity theory. This $H^{1}$ -boundedness
combined with the Poincar\’e inequality allows us to approximate $\varphi_{\epsilon,\xi}$ by a step
function with large $(\gg\epsilon)$ plateaus. Then we can use the weak law of large

numbers (with a tail bound) plateau-wise to show that $\lim_{\epsilon\downarrow 0}\langle\xi,$ $\varphi_{\epsilon,\xi}^{2}\rangle=0$ in
probability. This verifies the second step and thus completes the proof.

Remark 4. We need a tail bound in the above argument since we use the union
bound to ensure that weak LLN holds for all plateaus simultaneously. The first
part of Assumption 1 would not give a sufficiently good bound but the second
part enables us to get it by using the Hoeffding inequality.
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3.2 Gaussian fluctuation

To show the fluctuation result in Theorem 2, we use a martingale central limit
theorem due to Brown [4]. Let $D_{\epsilon}=\{x_{1}, . . . , x_{n}\}(n=\# D_{\epsilon})$ and $\xi_{m}$ $:=\xi(x_{m})$

and define the filtration $\mathcal{F}_{m}=\sigma[\xi(x_{1}), . . . , \xi(x_{m})]$ . We decompose the fluctuation
around the mean as the sum of martingale differences as

$\lambda_{\epsilon,\xi}-\mathbb{E}[\lambda_{\epsilon,\xi}]=\sum_{m=1}^{n}\mathbb{E}[\lambda_{\epsilon,\xi}|\mathcal{F}_{m}]-\mathbb{E}[\lambda_{\epsilon,\xi}|\mathcal{F}_{m-1}]$

$=: \sum_{m=1}^{n}Z_{m}.$

Then [4] tells us that the desired convergence in law follows form the two condi-
tions:

(1) $\epsilon^{-d}\sum_{m}\mathbb{E}[Z_{m}^{2}|\mathcal{F}_{m-1}]arrow^{\epsilon\downarrow 0}\int_{D}\varphi_{D}(x)^{4}dx$ in probability and

(2) $\epsilon^{-d}\sum_{m}\mathbb{E}[Z_{m}^{2}1_{\{|Z_{m}|\}}>\delta\epsilon^{d/2}|\mathcal{F}_{m-1}]arrow 0\epsilon\downarrow 0$ in probability.

The second condition can be checked by using a rather simple $L^{\infty}$ bound on
the eigenfunction and we omit the detail. To check the first condition, we will
rewrite the martingale differences. Note first that by independence, the condi-
tional expectation $\mathbb{E}[\cdot|\mathcal{F}_{m}]$ is just an integration over the variables $(\xi_{m+1}, \ldots, \xi_{n})$

and hence

$Z_{m}=\mathbb{E}[\lambda_{\epsilon,\xi}|\mathcal{F}_{m}]-\mathbb{E}[\lambda_{\epsilon,\xi}|\mathcal{F}_{m-1}]$

$=\hat{\mathbb{E}}[\lambda_{D_{\epsilon},\xi_{\leq m},\hat{\xi}>m}-\lambda_{\epsilon,\xi_{<m},\hat{\xi}_{\geq m}}],$

where $(\hat{\xi,}\hat{\mathbb{P}})$ is an independent copy of $(\xi, \mathbb{P})$ and $\xi\leq m=(\xi_{1}, \ldots, x_{m})$ etc. We can
further rewrite the right hand side by using Hadamard’s first variation formula
$\partial_{\xi_{m}}\lambda_{\epsilon,\xi}=\epsilon^{d}\varphi_{\epsilon,\xi}(x_{m})^{2}$ as

$\hat{\mathbb{E}}[\int_{\hat{\xi}_{m}}^{\xi_{m}}\partial_{\xi_{m}}\lambda_{\epsilon,\xi_{<m},\tilde{\xi}_{m},\hat{\xi}>m}d\tilde{\xi}_{m}]=\hat{\mathbb{E}}[\int_{\hat{\xi}_{m}}^{\xi_{m}}\epsilon^{d}\varphi_{\epsilon,\xi<m,\tilde{\xi}_{m\rangle}\hat{\xi}>m}^{2}(x_{m})d\tilde{\xi}_{m}]$

Now, as in the argument of Bal, we can show that the eigenfunction $\varphi_{\epsilon,\xi}$

converges in $\Vert\cdot\Vert_{2}$ to $\varphi_{D}$ in probability, and then in fact the convergence holds in
$\Vert\cdot\Vert_{q}$ for any $q<\infty$ by Lemma 3. Then it is natural to expect that

$\epsilon^{-d}\sum_{m=1}^{n}\mathbb{E}[Z_{m}^{2}|\mathcal{F}_{m-1}]=\sum_{m=1}^{n}\epsilon^{d}\int \mathbb{P}(d\xi_{m})\hat{\mathbb{E}}[\int_{\hat{\xi}_{m}}^{\xi_{m}}\varphi_{\epsilon,\xi_{<m},\tilde{\xi}_{m},\hat{\xi}>m}^{2}(x_{m})d\tilde{\xi}_{m}]^{2}$

$\sim?\sum_{m=1}^{n}\epsilon^{d}\int \mathbb{P}(d\xi_{m})\hat{\mathbb{E}}[\int_{\hat{\xi}_{m}}^{\xi_{m}}\varphi_{D}^{2}(x_{m})d\tilde{\xi}_{m}]^{2}$

$= \sum_{m=1}^{n}\epsilon^{d}\varphi_{D}(x_{m})^{4}$

$\sim\int_{D}\varphi_{D}(x)^{4}dx.$
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However, there is a subtle issue arising from the integration with respect to the
dummy variable $\tilde{\xi}_{m}$ . Indeed, if $\xi$ obeys the Bernoulli distribution for example,
the configuration $(\xi_{<m},\tilde{\xi}_{m},\hat{\xi}_{>m})$ is typically not in the support of the law of $\xi$

and thus the above mentioned convergence of the eigenfunction in probability is

useless to verify $\sim?.$

Therefore, an essential part of the proof is to eliminate the dummy variable
by showing

$\varphi_{\epsilon,\xi_{<m},\tilde{\xi}_{m},\hat{\xi}>m}^{2}(x_{m})\sim\varphi_{\epsilon,\xi_{<m},\xi_{m},\hat{\xi}>m}^{2}(x_{m})$ , (8)

that is, the eigenfunction is not sesitive to the value of $\xi$ at a point. This is a
consequence of the following two lemmas:

Lemma 4.

$\partial_{m}\varphi_{\epsilon,\xi}(x_{m})=\varphi_{\epsilon,\xi}(x_{m})\langle\delta_{x_{m}}, P_{1}^{\perp}(H_{\epsilon,\xi}-\lambda_{\epsilon,\xi})^{-1}P_{1}^{\perp}\delta_{x_{m}}\rangle$

$=\epsilon^{d}\varphi_{\epsilon,\xi}(x_{m})G_{\epsilon}(x_{m}, x_{m};\xi)$ ,

where $P_{1}^{\perp}$ denoted the orthogonal projection onto $span\{\varphi_{\epsilon,\xi}\}\rangle^{\perp}and$

$G_{\epsilon}(x_{m}, x_{m}; \xi)=\sum_{k\geq 2}\frac{1}{\lambda_{\epsilon,\xi}^{(k)}-\lambda_{\epsilon,\xi}}\varphi_{\epsilon,\xi}^{(k)}(x_{m})^{2}.$

Lemma 5. With high probability,

$\sup_{1\leq m\leq n|\xi_{m}}\sup_{|\leq\epsilon^{-\kappa}}G_{\epsilon}(x_{m}, x_{m};\xi)\leq c_{d}\{\begin{array}{ll}1, d=1,\log\frac{1}{\epsilon}, d=2,\epsilon^{2-d}, d\geq 3.\end{array}$ (9)

(Recall the truncation in Assumption 1.)

Remark 5. In fact, we will need (and do have) an error control in Lemma 5
which decay faster than a certain power of $\epsilon$ . The reader can verify that the
probability bound we will prove below is in fact stretched exponential.

The proof of Lemma 4 is very simple and left to the reader. By solving the
ODE, we find

$\varphi_{\epsilon,\xi_{<m},\tilde{\xi}_{m},\hat{\xi}>m}^{2}(x_{m})$

$=\varphi_{\epsilon,\xi_{<m},\xi_{m},\hat{\xi}>m}^{2}(x_{m})\exp\{>m\}$

and with the help of Lemma 5, one can check that the exponential factor tends
to 1 as $\epsilon\downarrow 0$ , which establishes (8). Note that it is the uniform control over $\xi_{m}$

in (9) that eliminates the dummy variable.
Let us explain how to prove Lemma 5. For any $\lambda>0,$

$G_{\epsilon}(x_{m}, x_{m}; \xi)=\sum_{k\geq 2}\frac{1}{\lambda_{\epsilon,\xi}^{(k)}-\lambda_{\epsilon,\xi}}\varphi_{\epsilon,\xi}^{(k)}(x_{m})^{2}$

$\leq\sum_{k\geq 1}\frac{c_{\lambda}}{\lambda_{\epsilon,\xi}^{(k)}+\lambda}\varphi_{\epsilon,\xi}^{(k)}(x_{m})^{2}$

$=c_{\lambda}(H_{\epsilon,\xi}+\lambda)^{-1}(x_{m)}x_{m})$ .
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We are going to compare the right-hand side with $(-\triangle_{\epsilon}+\lambda)^{-1}(x_{m}, x_{m})$ , which
is known to enjoy the bound in (9). From the measure concentration viewpoint,
this would in principle follow if we know that $G_{\epsilon}(x_{m}, x_{m};\xi)$ is insensitive to the
noise $\xi.$ $(And in$ this $way, the$ uniformity $in \xi_{m}$ would follow $as a$ byproduct. $)$

The diffculty is of course that it depends on $\xi$ in a complicated nonlinear way.
To cope with this problem, we express it as the Laplace transform of the kernel
of semigroup:

$(H_{\epsilon,\xi}+ \lambda)^{-1}(x_{m}, x_{m})=\int_{0}^{\infty}e^{-t(H_{\epsilon,\xi}+\lambda)}(x_{m}, x_{m})dt.$

The point is that the semigroup kernel can be controlled in terms of a certain
linear function of $\xi_{-}$ (the negative part of $\xi$ ) as the following lemma shows.

Lemma 6 (Khas’minskii’s lemma, taken in this form from [5].). Suppose that
there exists $\tau>0$ such that

$\sup_{z\in D_{\epsilon}}I_{\tau,z}(\xi) :=\sup_{z\in D_{\epsilon}}\int_{0}^{\tau}e^{s\triangle_{\epsilon}}\xi_{-}(z)ds<1/8$ . (10)

Then for some $\zeta(\tau)>0,$ $e^{-tH_{\epsilon,\xi}}(x_{m}, x_{m})\leq\zeta(\tau)e^{t\zeta(\tau)}e^{t\triangle_{\epsilon}}(x_{m}, x_{m})$ holds for all
$t>0.$

The above $I_{\tau,z}(\xi)$ isjust a weighted sum of $\xi_{-}$ with mean $\mathbb{E}[I_{\tau,z}(\xi)]=\tau \mathbb{E}[\xi_{-}(x)]$

and the Lipschitz constant bounded as

$|I_{\tau,z}( \xi)|\leq\int_{0}^{\tau}\epsilon^{d/2}\Vert e^{s\triangle_{\epsilon}}(z, \cdot)\Vert_{2}|\xi_{-}|_{2}ds$

$=| \xi_{-}|_{2}\int_{0}$

$\tau$

$\epsilon^{d/2}e^{2s\triangle_{\epsilon}}(z, z)^{1/2}ds$

(11)

$\leq c_{d}|\xi_{-}|_{2}\{\begin{array}{ll}\tau^{1-d/4}\epsilon^{d/2}, d\leq 3,\epsilon^{2}\log(\tau\epsilon^{-2}) , d=4,\epsilon^{2}, d\geq 5.\end{array}$

Then Talagrand’s inequality (Theorem 6.6 in [6]) implies that if $\tau>0$ is fixed
sufficiently small, then $\mathbb{P}(I_{\tau,z}>1/8)\leq c_{1}\exp\{-c_{2}\epsilon^{-\delta}\}$ with $\delta>0$ for all small
$\epsilon>$ O. Now (11) allows us to take $\sup_{|\xi_{m}|\leq\epsilon^{-\kappa}}$ inside the probability and also,
since it is an exponential bound, we may further take $\sup_{1\leq m\leq n}\sup_{z\in D_{\epsilon}}$ . In this
way, we conclude that for some fixed $\tau,$

$\mathbb{P}(\sup_{1\leq m\leq n}\sup_{|\xi_{m}|\leq\epsilon^{-\kappa}}\sup_{z\in D_{\in}}I_{\tau,z}>1/8)\leq c_{1}\exp\{-c_{2}\epsilon^{-\delta}\}.$

Now if $\xi$ lies in the event on the left-hand side above, then

$(H_{\epsilon,\xi}+ \lambda)^{-1}(x_{m}, x_{m})\leq\zeta(\tau)\int_{0}^{\infty}e^{-t(-\triangle_{\epsilon}+\lambda-\zeta(\tau))}(x_{m}, x_{m})dt$

$=\zeta(\tau)(-\triangle_{\epsilon}+\lambda-\zeta(\tau))^{-1}(x_{m}, x_{m})$

and taking $\lambda=2\zeta(\tau)$ , we obtain (8). The rest of the proof of the first condition
of martingale central limit theorem is a bit long and tedious and we omit the
detail.
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