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Abstract: -We consider mathematical properties ofthe three-dimensional compressible rotating fluid in a
homogeneous gravity field, which may find an application in the study ofthe Atmosphere and the Ocean. In
particular, we investigate the structure and localization ofthe spectrum of internal oscillations for differential
operators generated by such flows. This spectrum may be very useful for studying the stability ofthe flows,
since it is closely related to the non-uniqueness of the limit amplitude ofthe stabilized flow. Also, it is
important in the investigation ofweakly non-linear flows, since the bifurcation points where the small non-
linear solutions arise, belong to the spectrum oflinear normal oscillations. We consider both inviscid and
viscous fluid for various boundary conditions. The novelty ofthis research is to consider simultaneously the
effects ofrotation and stratification, which has been studied separately in previous works.
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1 Preliminaries

Let us consider a bounded domain $\Omega\subset R^{3}$ with the boundary $\partial\Omega$ of the class $C^{1}$ and the
following system of fluid dynamics

$\{\begin{array}{l}\frac{\partial u_{1}}{\partial t}-v\Delta u_{1}-\omega u_{2}-v\beta\frac{\partial}{\partial x_{\gamma}} (divu)+ \frac{\partial p}{\ _{1}}=0\frac{\partial u_{2}}{\partial t}-+\omega u_{1}-v\Delta u_{2}-v\beta\frac{\partial}{a_{2}} (divu)+ \frac{\partial p}{a_{2}}=0\frac{\partial u_{3}}{\partial t}-v\Delta u_{3}-v\beta\frac{\partial}{a_{3}}(div\overline{u})+p+\frac{\partial p}{a_{3}}=0\frac{\partial\rho}{\partial t}-N^{2}u_{3}=0\alpha^{2}\frac{\partial p}{\partial t}+div\vec{u}=0 x\in\Omega, t\geq 0.\end{array}$ (1)

Here $\vec{u}=(u_{1},u_{2},u_{3})$ is a velocity field, $p(x,t)$ is the scalar field of the dynamic pressure and

$\rho(x,t)$ is the dynamic density. In this model, the stationary distribution of density is described by

the function $e^{-Nx_{1}}$ , so $N$ is a positive constant. For the compressibility coefficient $a$ , the kinematic

viscosity coefficient $v$ , and the volume (bulk) viscosity coefficient $\beta$ we assume
$\alpha>0,$ $v>0,$ $\beta\geq 0$ . We also suppose that $\omega$ is a positive constant so that system (1) describes

linear motions of compressible stratified barotropic viscous fluid which is rotating over the vertical

axis with a constant angular velocity $\overline{\omega}=(0,0,\omega)$ .

We consider as well the inviscid case ofthe model decribed by (1):

$\{\begin{array}{ll}\frac{\partial u_{1}}{\partial t}-\omega u_{2}+\frac{\partial p}{\partial\kappa_{1}}=0 \frac{\partial u_{2}}{\partial t}+\omega u_{1}+\frac{\Phi}{\partial\kappa_{2}}=0 \frac{\partial u_{3}}{\partial t}+\rho+\frac{\partial p}{a_{3}}=0 \frac{\partial\rho}{\partial t}-N^{2}u_{3}=0 \alpha^{2}\frac{\partial p}{\partial t}+divu =0 x\in\Omega, t\geq 0.\end{array}$ (2)

For inviscid case, the equations (2) are deduced in $[1]-[3]$ . For viscous compressible fluid, the

system (1) is deduced, for example, in [4].

The mathematical properties of rotational inviscid fluid were studied in various works of S.
Sobolev, starting from the famous paper [5]. The studying of qualitative properties of solutions of
PDE systems modeling rotational compressible flows was started by V. Maslennikova in [6] and
was developed later in her future works. We may observe that, despite an extensive study of
stratified flows from the physical point of view $(see, for$ example, $[7]-[11])$ , there have been
relatively few works considering the mathema-tical aspect of the problem, some results may be
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found in $[12]-[16]$ . Particularly, for $v=0$ and $\beta=0$ , for the case of compressible fluid $(\alpha>0)$ , in
[16] it was proved that the essential spectrum of operator of normal vibrations is the intel.val of the
imaginary axis $[-iN,iN]$ . For rotational inviscid fluid, the corresponding result was proved in [17],

[24]. And, finally, the spectral properties of stratified compressible viscous fluid were studied in
[18], [19]. However, the case of rotating stratified (either inviscid or viscious) fluid has not been
considered previously. The novelty of this problem, the explicit relationship between the parameters
ofrotation and stratification in the description ofthe spectral properties and its possible applications
to the dynamics ofthe Atmosphere and the Ocean was the motivation ofthis paper.

Let us consider first the system (2) with the boundary condition

$\overline{u}\cdot\overline{n}|_{\partial\Omega}=0$ , (3)

where $\vec{n}$ is an external normal vector for the boundary $\partial\Omega$ . We consider the following problem of
normal oscillations

$\vec{u}(x,t)=\overline{v}(x)e^{-\lambda l}$

$p(x,t)=Nv_{4}(x)e^{-\lambda/}$ (4)

$p(x,t)= \frac{1}{\alpha}v_{5}(x)e^{-\lambda/} \lambda\in C.$

We denote $\tilde{v}=(\vec{v},v_{4},v_{5})$ and write (2) as

$L=0$ (5)

where $L=M-\lambda I$ and

$M= \ovalbox{\tt\small REJECT}_{\frac{1}{\alpha}\frac{0_{\partial}}{\partial x_{1}}}^{0}0\omega\frac{1}{\alpha}\frac{0_{\partial}}{\partial x_{2}}-\omega 00\frac{1}{\alpha}\frac{N\partial}{\partial x_{3}}-000$
$N0000$

$\frac{}{}\frac{}{}\frac{1}{\alpha\alpha\alpha 11}\frac{}{}\frac{}{00\partial x_{3}\partial x_{2}\partial}\frac{\partial}{\partial x_{1},\partial}\ovalbox{\tt\small REJECT}$

. (6)

Let us denote as $M_{1}$ the differential operator (6) corresponding to the boundary conditions (3).

We define the domain ofthe differential operator $M_{1}$ as follows.

$D(M_{1})=\{\begin{array}{l}\overline{\mathcal{V}}\in(L(\Omega))^{3}|\exists f\in li(\Omega)\cdot(\vec{v},\nabla\varphi)=(f,\varphi)\forall\varphi\in W_{2}^{1}(\Omega)\end{array}\}\cross W_{2}^{1}(\Omega)\cross W_{2}(\Omega)$ , where $W_{2}^{1}(\Omega)$ is a Sobolev functional space

with the norm

$\Vert f\Vert=(\int_{\Omega}[|\nabla f|^{2}+f^{2}]d\kappa)^{\iota_{2}}/$ (7)

On the other hand, we will consider the system (1) with the boundary conditions

$\overline{u}|_{\partial\Omega}=0$ . (8)
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For system (1) we apply the separation ofvariables (4)$-(5)$ , and thus the matrix $M$will take the form

$M \mathscr{B}\frac{1}{\alpha}\frac{}{0_{0}a_{i}}\frac{1}{\alpha}\overline{\frac{\alpha}{\partial\infty}}\frac{1}{\alpha}$ . (9)

We denote as $M_{2}$ the differential operator (9) associated with the boundary conditions (8). In this

way, the domain of operator $M_{2}$ can be defined as follows.

$D(M_{2})=1_{M\tilde{v}\in(L_{2}(\Omega))^{5}}^{\overline{v}\in(W_{2}^{I}(\Omega))^{3},v_{4}\in L_{2}(\Omega),v_{5}\in L_{2}(\Omega):\}}0,$

where $W_{2}^{I}0(\Omega)$ is a closure ofthe functional space $C_{0}^{\infty}(\Omega)$ in the norm (7).

From the physical point of view, the separation of variables (4) serves as a tool to establish the
possibility to represent every non-stationary process described by (1), (2), as a linear superposition
ofthe normal oscillations. The knowledge ofthe spectrum of normal vibrations may be very useful
for studying the stability of the flows. Also, the spectrum of operators $M_{I},$ $M_{2}$ is important in the

investigation of weakly non-linear flows, since the bifurcation points where the small non-linear
solutions arise, belong to the spectrum oflinear normal vibrations. Our aim is to study the spectrum

of operators $M_{1},$ $M_{2}.$

2 Statement of the Problem

We observe first that the operators $M_{1},$ $M_{2}$ are closed operators, and their domains are dense in

$(L_{2}(\Omega))^{s}$

Let us denote by $\sigma_{ess}(M)$ the essential spectrum of a closed linear operator $M$. We recall that the

essential spectrum

$\sigma_{ess}(M)=\{\lambda\in C:(M-\lambda I)$ is not ofFredholm type $\}$ , is composed of the points belonging to the

continuous spectrum, limit points of the point spectrum and the eigenvalues of infinite multiplicity
(see [20],[21]).

In this way, every spectral point which does not belong to the essential spectrum, is an eigenvalue
of finite multiplicity. To fmd the essential spectrum of the operator $M$ , we will use the following
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property (see [22]):

$\sigma_{ess}(M)=Q\cup S,$

where

$Q=\{\begin{array}{l}\lambda\in C\cdot.(M-\lambda I)isnotellipticinsenseofDouglis- Nirenberg\end{array}\}$

and

$S=\{\begin{array}{l}of(M-\lambda I)\lambda\in C\backslash Q\cdot theboundaryconditionsdonotsatis6\prime Lopatinskiconditions\end{array}\}.$

We will use the definition and following properties of ellipticity in sense ofDouglis-Nirenberg from
[23], and the defnition ofthe Lopatinski conditions, from [22].

We also will use the following criterion which is attributed to Weyl ([20],[21]): a necessary and
sufficient condition that a real finite value $\lambda$ be a point of the essential spectrum of a self-adjoint
operator $M$ is that there exist a sequence of elements $v,$ $\in D(M)$ such that

$\Vert v_{n}\Vert=1,$ $v_{n}arrow 0,$ $\Vert(M-\lambda I)v_{n}\Vertarrow 0$ . (10)

We will find the essential spectrum of the operators $M_{1},$ $M_{2}$ . For that, we will use the concepts of

Lopatinski conditions and ellipticity in sense of Douglis-Nirenberg. Additionally, for the operator
$M_{1}$ we will prove the property of skew-selfadjointness and, for all the values ofthe spectral

parameter belonging to the essential spectrum, we will construct an explicit Weyl secuence (10),

which is the main result ofthis work. For the operator $M_{2}$ we will localize the sector ofthe

complex plane to which all the eigenvalues belong.

Finally, we will compare the obtained spectral results for stratified rotating fluid with the previous
analogous results considering separately the cases ofrotation and stratification, either for viscous or
for inviscid fluid.

3 The solution of the problem

Theorem 1.

The operator $M_{1}$ is skew-selfadjoint.

Proof.

We observe that $M_{1}$ can be represented as
$M_{1}=M_{0}+B_{\omega}+B_{N}$ , (11)

where

$B_{\omega}=\{\begin{array}{lllll}0 -\omega 0 0 0\omega 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0\end{array}\}, B_{N}=\{\begin{array}{lllll}0 0 0 0 00 0 0 0 00 0 0 N 00 0 -N 0 00 0 0 0 0\end{array}\}.$
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Since $B_{\omega},$ $B_{N}$ are anti-symmetric bounded operators, then it is sufficient to prove the skew-

selfadjointness for the operator $M_{0}$ with the domain

$D(M_{0})=D(M_{1})$ .

Let $\tilde{u},\tilde{v}\in D(M_{0})$ . Integrating by parts, we obtain

$(M_{0}\tilde{u},\overline{v})=-(\tilde{u},M_{0}\tilde{v})$ .

Now, let $\tilde{v}\in D(M_{0})$ . Thus, $\tilde{v}\in L_{2}(\Omega)$ and there exists $\tilde{f}\in L_{2}(\Omega)$ such that

$(M_{0}\tilde{u},\tilde{v})=(\tilde{u},\tilde{f})$ for all $\tilde{u}\in D(M_{0})$ .

Take $\tilde{u}=(0,0,0,0,u_{5})$ , $u_{5}\in W_{2}^{1}(\Omega)$ . Then, we will have
$(\nabla u_{5},\overline{v})=(u_{5},f_{5})$ .

For $\tilde{u}=(u,,u_{2},u_{3},0,0)$ we obtain

$(div\overline{u},\nu_{5})=(\overline{u},\tilde{f})$ .

From the last two relations we conclude that $v_{5}$ has a weak gradient from $L_{2}(\Omega)$ and $v_{5}\in W_{2}^{\ovalbox{\tt\small REJECT}}(\Omega)$ .

Since $M_{0}$ is not acting on the fourth component ofthe vector $\tilde{u}$ , we may consider $u_{4}=v_{4}=f_{4}=0.$

In this way, we have verified that
$D(M_{0})\subset D(M_{0})$ .

The reciprocal inclusion can be proved analogously and thus the theorem is proved.

Theorem 2.

Let $a= \min\{\omega,N\},$ $A= \max\{\omega,N\}$ . Then, the essential spectrum of $M$, is the following

symmetrical set ofthe imaginary axis:

$\{0\}\cup[-iA,-ia]\cup[ia,u].$

Proof 1.

According to [23], [24], for operator $M$ in (6), we can choose the numbers $s_{f}=t_{j}=0$ for

$i,j=1,2,3,4$ and $s_{5}=t_{5}=1$ . In this way, the main symbol $\tilde{L}(\xi)$ takes the following form:

$\tilde{L}(\xi)=[_{\frac{1}{\alpha}\xi_{1}}^{-\omega}-\lambda 00 \frac{1}{\alpha}\xi_{2}-\omega-\lambda 00 \frac{1}{\alpha}\xi_{3}-N-\lambda 00 N_{0}^{0}00-\lambda \frac{}{}\xi_{2}\frac{1}{\frac{}{},a\alpha\alpha 11}\xi_{I}00\xi_{3}]$

and thus

$\det\tilde{L}(\xi)=\frac{\lambda}{\alpha^{2}}[(\lambda^{2}+N^{2})(\xi_{1}^{2}+\xi_{2}^{2})+(\lambda^{2}+af)\xi_{3}^{2}]$ . (12)

We can see from (12) that if
$\lambda\not\in[\{0\}\cup(-iA,-ia)\cup(ia,iA)],$
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then the operator $L$ is elliptic in sense ofDouglis-Nirenberg. Now, let us prove that the boundary
condition (3) satisfies Lopatinski conditions.
If we write the conditions (3) in form

$G\tilde{u}|_{\partial\Omega}=0,$

we obtain immediately that
$G=(n_{1},n_{2},n_{3},0,0)$

and $G$ is a vector row. It can be easily seen that $\hat{L}(\tilde{\zeta},\tau)$ is a matrix whose size is $5x5$ , and that $G\hat{L}$

is a non-zero row with five components. In other terms, the Lopatinski condition is satisfied, which
completes the proof.

Proof2. (construction of an explicit Wevl sequence)

From theorem 1 we know that the spectrum ofthe operator $M_{1}$ belongs to the imaginary axis.

Taking into account (12), we consider $\lambda_{r}\in\pm(ia,iA)\backslash \{O\}$ and choose a vector $\xi\neq 0$ such that

$(4^{2}+N^{2})(\xi_{1}^{2}+\xi_{2}^{2})+(\lambda_{0}^{2}+\omega^{2})\xi_{3}^{2}=0.$

Therefore, there exist the vector $\eta$ such that

$\tilde{L}(\xi)\eta=0$ . (13)

Solving (13) with respect to $\eta$ , we obtain one ofpossible solutions:

$\{\begin{array}{l}\eta_{1}=\frac{\lambda_{0}\xi_{1}-\omega\xi_{2}}{\alpha(\lambda_{0}^{2}+\omega^{2})}, \eta_{2}=\frac{\lambda_{0}\xi_{2}+\omega\xi_{1}}{\alpha(\lambda_{0}^{2}+\omega^{2})},\eta_{3}=\frac{\lambda_{0}\xi_{3}}{\lambda^{2}+N^{2}}, \eta_{4}=\frac{-N\xi_{3}}{\alpha(\lambda_{0}^{2}+N^{2})}, \eta_{5}=1.\end{array}$

We observe that $\eta_{i}\neq 0,$ $i=1,2,3,4,5$ . Now, let us choose a function $\psi_{0}\in C_{0}^{\infty}(\Omega)$ ,
$\int_{\Vert x\Vert\leq 1}\psi_{0}^{2}(x\mu x=1.$

We fix $x_{0}\in\Omega$ and define

$\psi_{k}(x)=k^{\frac{3}{2}}\psi_{0}(k(x-x_{0})) , k=1,2,\ldots$

We define the Weyl sequence $\tilde{v}^{k}$ as follows:

$\{\begin{array}{l}v_{J}^{k}(x)=\eta,e^{1}k^{3}\langle x.\xi\rangle(\psi_{k}+\frac{i\partial\psi_{k}}{k^{3}\xi_{j}\partial x_{j}}) , j=1,2,3v_{4}^{k}(x)=\eta_{4}\psi_{k}e^{\iota k\langle x_{b^{Z}}\rangle} (14)v_{5}^{k}(x)=-\frac{i}{k^{3}}\psi_{k}e^{\prime k^{3}\langle x,\zeta\rangle}\langle x,\xi\rangle=x_{1}\xi_{1}+x_{2}\xi_{2}+x_{3}\xi_{3}, k=1,2,\ldots\end{array}$

It can be easily seen that the sequence (14) satisfies the conditions (10) and thus the Theorem is
proved.

We note that the limit points $\pm ia,\pm iA$ belong to the essential spectrum due to the fact that an
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essential spectrum is a closed set. We would like to observe as well that the sequence (14), being an
explicit solution of the system (5) for $\lambda$ belonging to the essential spectrum, serves as an example
of non-uniqueness ofthe solution, due to the arbitrary election ofthe function $\psi_{0}.$

Theorem 3

The essential spectrum ofthe operator $M_{2}$ is composed ofthree real isolated points

$\sigma_{ess}(M^{2})=\{0,\frac{1}{v\alpha^{2}(\beta+1)},\frac{1}{v\alpha^{2}(\beta+2)}\}.$

Proof.

We observe that, due to [23], [24], we can choose

$s_{1}=s_{2}=s_{3}=0, s_{4}=s_{5}=-1,$

$t_{1}=t_{2}=t_{3}=2, t_{4}=t_{5}=1,$

so that the main symbol of the operator (5)$-(9)L=M_{2}-\lambda I$ , will be expressed as:

$\overline{L}(\xi)=[ -v\beta\xi_{I}\xi_{2}-v|\xi|^{2}-v\beta\xi_{2}^{2}-v\beta\xi_{2}\xi_{3}-v\beta\xi_{1}\xi_{j}-v\beta\xi_{2}\xi_{3}-v|\xi|^{2}-v\beta\xi_{3}^{2}-v|\xi|^{2}-v\beta\xi_{1}^{2}-v\beta\xi,\xi_{2}-v\beta\xi_{1}\xi_{3}\frac{1}{\alpha}\xi,\frac{1}{\alpha}\xi_{2}\frac{1}{\alpha}\xi_{3}0000-\lambda 000\frac{}{\frac{}{},aa1}\xi_{2}\frac{1}{a,1}\xi_{1}-\lambda\xi_{3}0 ]$

We calculate the determinant ofthe last matrix:

$\det(\overline{M_{2}-\lambda I})(\xi)=\frac{\lambda v^{2}}{a^{2}}|\xi|^{6}(v\lambda a^{2}(\beta+1)-1)$ ,

and thus we can see that for two points

$\lambda=0$ and $\lambda=\frac{1}{va^{2}(\beta+1)}$

the operator $L=M_{2}-\lambda I$ is not elliptic in sense of Douglis-Nirenberg. It is easy to see,

additionally, that for the point $\lambda=/1_{v\alpha^{2}(\beta+2)}$ the condition ofLopatinski is not satisfied, which

concludes the proof of the Theorem.

Theorem 4.

Let $A= \max\{\omega,N\}$ . Then, the spectrum of operator $M_{2}$ is symmetrical with respect to the real

axis, and all the eigenvalues of operator $M_{2}$ are in the following sector ofthe complex plane:

$Z= \{\lambda\in C:{\rm Re}\lambda\geq 0, |{\rm Im}\lambda|\leq A+\frac{({\rm Re}\lambda)}{v\alpha^{2}\beta A}\}.$
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Proof.

Let us denote $v^{*}=(v_{1},v_{2},v_{3},v_{4})$ and take notations for the matrices $B_{\omega},$ $B_{N}$ from (11).

Then, the system $(M_{2}-\lambda I)\{v,v_{5}\}=0$ can be written in the form

$\{\begin{array}{l}-\lambda v^{*}+B_{\omega}v+B_{N}v-v\Delta\vec{v}-v\beta div\overline{v}+\frac{1}{\alpha}\nabla v_{5}=0-\lambda v_{5}+^{\underline{1}}div\vec{v}=0\alpha\end{array}$

Now we multiply the last system by $\overline{\{v,v_{5}\}}$ and then integrate by parts in $\Omega$ . In this way, we

obtain the following equations:

$-\lambda\Vert v^{*}\Vert^{2}+(B_{\omega}\nu’,v^{s})+(B_{N}v^{*},v^{l})+$

$+v \sum_{k=1}^{3}\Vert\nabla v_{k}\Vert^{2}+v\beta\Vert div\overline{v}\Vert^{2}-\frac{1}{\alpha}(v_{5},div\overline{v})=0$

$- \lambda\Vert v_{5}\Vert^{2}+\frac{1}{\alpha}($divv, $v_{5})$ $=0.$

We sum up these two equations and then separate the real and the imaginary parts, keeping in mind

the fact that for a skew-symmetric matrix $B$ the expression $(Bv,v)$ is imaginary.

$v \sum\Vert\nabla v_{k}\Vert^{2}+v\beta\Vert div\overline{v}\Vert^{2}3$

${\rm Re} \lambda=\frac{k=1}{\Vert \mathcal{V}\Vert^{2}+\Vert t_{5}^{1\Vert^{2}}}\geq 0,$

$|{\rm Im} \lambda|=-i\frac{(B_{\omega}\mathcal{V}^{*},\mathcal{V}^{*})+(B_{N}\mathcal{V}^{*},\mathcal{V}^{*})+\frac{1}{\alpha}[(djvV,v_{5})-(v_{5},div\overline{v})]}{\Vert \mathcal{V}^{*}\Vert^{2}+\Vert \mathcal{V}_{5}\Vert^{2}},$

from which we have $|{\rm Im} \lambda|\leq A+\frac{({\rm Re}\lambda)}{v\alpha^{2}\beta A}.$

It remains to prove now that the spectrum is symmetrical with respect to the real axis. For that
purpose, we apply the complex-conjugation to the original system of $M_{2}-\lambda I=0$ :

$\{\begin{array}{l}-\overline{\lambda}\overline{v}+B_{\omega}\overline{v}^{*}+B_{N}\overline{v}-v\Delta\overline{\overline{v}}-v\beta div\overline{\vec{v}}+\frac{1}{\alpha}\nabla\overline{v}_{5}=0-\overline{\lambda}\overline{\nu}_{5}+^{\underline{1}}di_{V\mathcal{V}}^{=}=0\alpha\end{array}$

and thus we can see that, if $\lambda$ is an eigenvalue of $M_{2}$ , then $\overline{\lambda}$ is also an eigenvalue of operator

$M_{2}$ , which concludes the proof ofthe theorem.
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4 Conclusions and discussion

For the inviscid case of compressible rotating stratified fluid, as we have seen, the essential
spectrum of inner oscillations is the symmetrical bounded set ofthe imaginary axis

$\{0\}\cup[-iA,-ia]\cup[ia,iA].$

Comparing these results with the compressible viscous case, we can conclude that the considered
problems and the results of Theorems 2 and 3, are remarkable and interesting due to the special
property that, for the viscous fluid, the two points ofthe essential spectrum

$\frac{1}{v\alpha^{2}(\beta+1)},\frac{1}{v\alpha^{2}(\beta+2)}$

move to infinity for $v,\betaarrow 0$ ; while the essential spectrum ofthe inviscid fluid contains an interval
ofthe imaginary axis.

Additionally, we can see, that the results obtained for the inviscid fluid in theorem 2 correspond, in
a certain way, to the statement oftheorem 3 ifwe put

${\rm Re}\lambda=0:({\rm Re}\lambda=0, |{\rm Im}\lambda|\leq A)$ .

Finally, we would like to observe that, ifwe put, for example, $N=0$ in (2), then, according to

theorem 2, the essential spectrum will be the interval ofthe imaginary axis $[-i\omega,i\omega]$ , the result

which was proved for rotating (non-stratified) compressible fluid in [24].
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