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Abstract

We consider the Schr\"odinger operator with magnetic fields given as the sum of
randomly distributed $\delta$ functions with random coefficients. We give a brief review
about the recent results on the integrated density of states (IDS) $N(\lambda)$ for this
model, particularly about (i) the Lifshitz tail (the exponential decay of $N(\lambda)$ near
the bottom of the spectrum), and the asymptotics of the Laplace transform $\mathcal{L}(t)$

of the density of states $dN$ as $tarrow 0$ in the case of the Poisson configuration.

1 Introduction

We shall consider the magnetic Schr\"odinger operator on the Euclidean plane $\mathbb{R}^{2}$

玩 $=(-i\nabla-A_{\omega})^{2}$

Here $A_{\omega}=(A_{\omega,1}, A_{\omega,2})$ is the magnetic vector potential, and the corresponding magnetic

field $B_{\omega}$ is given by
$B_{\omega}=$ curl A $=\partial_{x_{1}}A_{\omega,2}-\partial_{x_{2}}A_{\omega,1}$ . (1)

We assume
$B_{\omega}= \sum_{\gamma\in\Gamma_{\omega}}2\pi\alpha_{\gamma}(\omega)\delta_{\gamma)}$

(2)

where $\omega$ is a random parameter belonging to some probability space $\Omega,$ $\Gamma_{\omega}$ is a discrete
set without accumulation point in $\mathbb{R}^{2},$ $\alpha_{\gamma}(\omega)$ is a real number satisfying $0\leq\alpha_{\gamma}(\omega)<1,$

and $\delta_{\gamma}$ is the Dirac delta function supported on the point $\gamma$ . It is known that there exists
a vector potential $A_{\omega}\in C^{\infty}(\mathbb{R}^{2}\backslash \Gamma_{\omega};\mathbb{R}^{2})\cap L_{1oc}^{1}(\mathbb{R}^{2};\mathbb{R}^{2})$ satisfying (1) and (2) for any
given $\Gamma_{\omega}$ and $\alpha_{\gamma}(\omega)$ (see [Ge-St, section 4

We introduce the integrated density of states (IDS) as follows. For a bounded open
set $\mathcal{D}$ in $\mathbb{R}^{2}$ , let $H_{\omega,\mathcal{D}}^{N}$ be the operator $H_{\omega}$ restricted to the region $\mathcal{D}$ with the Neumann
boundary conditions. For $\lambda\in \mathbb{R}$ , let $N_{\omega_{)}D}^{N}(\lambda)$ be the number of the eigenvalues of $H_{\omega,\mathcal{D}}^{N}$

less than or equal to $\lambda$ counted with multiplicity. We define the IDS $N(\lambda)$ by

$N( \lambda)=\lim_{\mathcal{D}arrow \mathbb{R}^{2}}\frac{N_{\omega,\mathcal{D}}^{N}(\lambda)}{|\mathcal{D}|}$ , (3)

where $|\mathcal{D}|$ is the Lebesgue measure of $\mathcal{D}$ . Under some stationarity condition on $B_{\omega}$ and

regularity condition on the boundary of $\mathcal{D}$ , it is well-known that the limit (3) exists for

almost every $\lambda$ and independent of the random parameter $\omega$ almost surely.
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There are numerous study about the Lifshitz tail for the random Schr\"odinger opera-
tors, that is, the exponential decay of $N(\lambda)$ as $\lambda$ tends to the boundary of the essential
spectrum (see e.g. [Ca-La, Ki, St] and references therein). The Lifshitz tail for the
Schr\"odinger operators with random magnetic fields is proved by some authors (see e.g.
[Gh, Nal, Na2, Uel, Mi-Nol] and references therein). There is also a detailed Japanese
review [Ue2] about the Lifshitz tail. In the present paper, we briefly report on the fol-
lowing subjects; (i) the Lifshitz tail for our $H_{\omega}$ , (ii) the stochastic representation of the
Laplace transform $\mathcal{L}(t)$ of the density of states $dN$ (J. L. Borg’s result), (iii) the behavior
of $\mathcal{L}(t)$ as $tarrow 0$ for the case $\Gamma_{\omega}$ is the Poisson configuration. In most cases we give only
an idea of the proof, and the detail will be given in our forthcoming paper [Mi-No2] or
elsewhere.

2 Lifshitz tail

The Lifshitz tail for the random $\delta$ magnetic field is already established in authors’ earlier
proceedings paper [Mi-Nol]. Here we report our recent progress given in [Mi-No2]. Before
stating our assumptions, we prepare some notations. For $S\subset \mathbb{R}^{2},$ $x\in \mathbb{R}^{2}$ , and $r>0$ , let
$S+x=\{s+x|s\in S\}$ and $rS=\{rs|s\in S\}$ . For $k\geq 0$ , let

$Q_{k}= \{(x_{1}, x_{2})\in \mathbb{R}^{2}|-k-\frac{1}{2}\leq x_{j}<k+\frac{1}{2}(j=1,2)\},$

which is a square with edge length $2k+1$ centered at the origin. Especially $Q_{0}$ is a unit
square centered at the origin. The boundary of a set $S$ is denoted by $\partial S$ . The open ball
of radius $r$ centered at $x$ is denoted by $B_{x}(r)$ , that is,

$B_{x}(r)=\{y\in \mathbb{R}^{2}||y-x|<r\}.$

Assumption 2.1. Let $(\Omega, \mathbb{P})$ be a probability space, $\Gamma_{\omega}$ a discrete set in $\mathbb{R}^{2}$ dependent
on $\omega\in\Omega$ without accumulation points in $\mathbb{R}^{2}$ , and $\alpha(\omega)=\{\alpha_{\gamma}(\omega)\}_{\gamma\in\Gamma_{\omega}}$ a sequence of real
numbers with $0\leq\alpha_{\gamma}(\omega)<1$ dependent on $\omega\in\Omega$ . For a Borel set $E$ in $\mathbb{R}^{2}$ , put

$\Phi_{\omega}(E)=\sum_{\gamma\in\Gamma_{\omega}\cap E}\alpha_{\gamma}(\omega)$
.

We assume the following conditions $(i)-(vi)$ .

(i) For any Borel set $E$ in $\mathbb{R}^{2}$ , the random variable $\Phi(E):\omega\mapsto\Phi_{\omega}(E)$ is measurable
with respect to $\omega\in\Omega.$

(ii) For any finite distinct points $\{n_{j}\}_{j=1}^{J}$ with $n_{j}\in \mathbb{Z}^{2}$ , and for any Borel sets $\{E_{j}\}_{j=1}^{J}$

with $E_{j}\subset n_{J}\prime+Q_{0}$ , the random variables $\{\Phi(E_{j})\}_{j=1}^{J}$ are independent.

(iii) For any Borel set $E\subset Q_{0}$ , the random variables $\{\Phi(E+n)\}_{n\in \mathbb{Z}^{2}}$ are identically
distributed.

(iv) The mathematical expectation $E[\Phi(Q_{0})]$ is positive and finite. The variance $V[\Phi(Q_{0})]$

is finite.
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(v) $\Phi_{\omega}(\partial Q_{0})=0$ almost surely.

(vi) One of the following two conditions (a) or (b) holds.

(a) There exists a positive constant $c$ with $0<c\leq 1$ independent of $\omega$ such that
the probability of the event ‘both of the following two conditions (4) and (5)

hold’ is positive for any $\epsilon>0.$

$\Phi_{\omega}(Q_{0})=\sum_{\gamma\in\Gamma_{\omega}\cap Q_{0}}\alpha_{\gamma}<\epsilon$
, (4)

$B_{\gamma}(c\sqrt{\alpha_{\gamma}})\cap B_{\gamma’}(c\sqrt{\alpha_{\gamma’}})=\emptyset, B_{\gamma}(c\sqrt{\alpha_{\gamma}})\cap\partial Q_{0}=\emptyset$

for every $\gamma,$
$\gamma’\in\Gamma_{\omega}\cap Q_{0}$ with $\gamma\neq\gamma’$ . (5)

(b) The probability of the event

$\sum_{\gamma\in\Gamma_{\omega}\cap Q_{0}}\sqrt{\alpha_{\gamma}}<\epsilon$

(6)

is positive for any $\epsilon>0.$

The assumptions $(i)-(v)$ mean the $\mathbb{Z}^{2}$-stationarity of the random magnetic field $B_{\omega}$ . The
assumption (vi) is improved compared with authors’ former result [Mi-Nol]. It accepts

the case the number of the lattice points in $Q_{0}$ is unlimited (in [Mi-Nol], the authors have
assumed there is only one lattice point in $Q_{0}$ with positive probability). The assumption
(4) means the magnetic flux through $Q_{0}$ can be arbitrarily small, and (5) means the
points $\Gamma_{\omega}$ are separated farther than a constant multiple of the magnetic length $\sqrt{\alpha_{\gamma}}$ as
the flux tends to O. The assumption (6) is independent of the positions of the points
$\Gamma_{\omega}$ , but the restriction on the flux is stronger than (4), since $0\leq\alpha_{\gamma}\leq\sqrt{\alpha_{\gamma}}\leq 1$ . If the
number of $\Gamma_{\omega}\cap Q_{0}$ is bounded by a constant independent of $\omega$ , then (4) implies (6) by
the Schwarz inequality.

Let $L_{\omega}=(-i\nabla-A_{\omega})^{2}$ with the domain $D(L_{\omega})=C_{0}^{\infty}(\mathbb{R}^{2}\backslash \Gamma_{\omega})$ , then $L_{\omega}$ is a non-
negative operator. We denote the Friedrichs extension of $L_{\omega}$ by $H_{\omega}$ , which is a self-adjoint
operator on $L^{2}(\mathbb{R}^{2})$ . Our result is as follows.

Theorem 2.2. Suppose Assumption 2.1 holds. Then,

(i) $\sigma(H_{\omega})=[0, \infty)$ almost surely.

(ii) There exist positive constants $C$ and $E_{0}$ independent of $\omega$ and $E$ , such that

$N(E)\leq e^{-\frac{C}{E}}$

for any $E$ with $0<E<E_{0}.$

For the proof of (i), we construct the approximating eigenfunctions of $H_{\omega}$ for every
$\lambda>0$ , that is, the sequence $\{u_{n}\}_{n=1}^{\infty}\subset D(H_{\omega})$ such that $\Vert u_{n}\Vert=1$ and $\Vert(H_{\omega}-\lambda)u_{n}\Vertarrow 0.$

This method is rather standard (see e.g. [Ki-Ma]), but here we have to take care the
operator domain of $H_{\omega}$ depends on $\omega$ ; if $u\in D(H_{\omega})$ and $0<\alpha_{\gamma}(\omega)<1$ , then $u(\gamma)=0.$
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The proof of (ii) is essentially the same as in our earlier work [Mi-Nol], summarized
as follows. We use the Laptev-Weidl inequality [La-We]

$\int_{\pi}2|(-i\nabla-A_{\alpha})u|^{2}dx\geq(\min(\alpha, 1-\alpha))^{2}\int_{\pi}2\frac{|u|^{2}}{|x|^{2}}dx$ (7)

for every $u\in C_{0}^{\infty}(\mathbb{R}^{2}\backslash \{0\})$ , where $0<\alpha<1$ and $A_{\alpha}$ is the vector potential for the
single solenoid

$A_{\alpha}(x)= \alpha(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}})$ . (8)

By (7) and the diamagnetic inequality $|(-i\nabla-A)u|\geq|\nabla|u||$ , we can construct a random
scalar potential $V_{\omega}$ such that

$\int_{\mathcal{D}}|(-i\nabla-A_{\omega})u|^{2}dx\geq\frac{1}{2}\int_{\mathcal{D}}(|\nabla|u||^{2}+V_{\omega}|u|^{2})dx$

for every square region $\mathcal{D}$ and $u\in Q(H_{\omega,\mathcal{D}}^{N})$ (the form domain of $H_{\omega,\mathcal{D}}^{N}$ ). By this inequality
and the min-max principle, we know that the lowest eigenvalue of $H_{\omega,\mathcal{D}}^{N}$ is bounded from
below by the lowest eigenvalue of $\frac{1}{2}(-\triangle_{\mathcal{D}}^{N}+V_{\omega})$ , where $\triangle_{\mathcal{D}}^{N}$ is the Neumann Laplacian on
$\mathcal{D}$ . This estimate is enough to reduce the proof of (ii) to the case of the random scalar
potential (a similar argument is used in Nakamura’s papers [Nal, Na2 For the detail,
see [Mi-No2].

3 James L. Borg’s result

Here we review some results obtained in the Ph. D. Thesis of James L. Borg [Bo]. Let $\Gamma$

be a discrete set in $\mathbb{R}^{2}$ without accumulation points in $\mathbb{R}^{2}$ Let $\{\alpha_{\gamma}\}_{\gamma\in\Gamma}$ be a sequence
of real numbers satisfying $0<\alpha_{\gamma}<1$ . Let $A$ be the vector potential satisfying

$B=$ curl A
$= \sum_{\gamma\in\Gamma}2\pi\alpha_{\gamma}\delta_{\gamma},$

and let
$L(A)=(-i\nabla-A)^{2}, D(L(A))=C_{0}^{\infty}(\mathbb{R}^{2}\backslash \Gamma)$ .

Let $H(A)$ be the Friedrichs extension of $L(A)$ .
The first result is about the Feynman-Kac-It\^o formula

$e^{-tH(A)}(x, x’)$

$= \frac{1}{4\pi t}\exp(-\frac{|x-x’|^{2}}{4t})\mathbb{E}_{0,x,t,x’}[\exp(-i\int_{0}^{t}A(w_{s})\cdot dw)]$ , (9)

where the left hand side denotes the integral kernel of the heat semigroup $e^{-tH(A)},$ $\mathbb{E}_{0,x,t,x’}$

the expectation with respect to the Brownian bridge process starting from $x$ at time $0$ and
ending at $x’$ at time $t$ , and $w$ a sample path of the Brownian bridge process. The integral
is interpreted in the sense of It\^o stochastic integral. It is well-known that the formula (9)
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holds if the vector potential $A$ is locally square integrable, but our vector potential does
not satisfy this condition, since it behaves like $O(|x-\gamma|^{-1})$ around $x=\gamma\in\Gamma$ (see (12)

and (13) below). Borg proves that (9) also holds in this case, if we choose the Friedrichs
extension as the self-adjoint realization.

In order to formulate the result, we introduce some terminology in the theory of the
Wiener process. Let $x\in \mathbb{R}^{2}$ and $w$ a sample path of the Wiener process starting from
$x$ . For a Borel set $S$ in $\mathbb{R}^{2}$ , let $T_{S}$ be the hitting time

$T_{S}= \inf\{t>0|w_{t}\in S\}.$

We call $S$ a polar set if

$\mathbb{P}_{x}(T_{S}<\infty)=0$ for every $x\in \mathbb{R}^{2},$

where $\mathbb{P}_{x}$ denotes the probability with respect to the Wiener process starting from $x.$

Theorem 3.1 ([Bo, Theorem 3.1.1]). Let $S$ be a polar set in $\mathbb{R}^{2}$ and suppose the vector
potential $A$ satisfies $A\in L_{1oc}^{2}(\mathbb{R}^{2}\backslash S;\mathbb{R}^{2})$ and $\nabla\cdot A=0$ in $\mathbb{R}^{2}\backslash S$ . Let $H(A)$ be the

Friedrichs extension of $L(A)=(-i\nabla-A)^{2}$ with the domain $D(L(A))=C_{0}^{\infty}(\mathbb{R}^{2}\backslash S)$ .

Then, the formula (9) holds for any $t>0.$

The main idea of the proof consists of approximating the singular vector potential $A$

by a sequence of bounded vector potentials, obtained by truncating the singularities of
$A$ . The formula (9) immediately implies the diamagnetic inequality

$|e^{-tH(A)}(x, x \leq e^{-tH(0)}(x, x$ (10)

From this point of view the choice of the Friedrichs extension is natural; since the dia-
magnetic inequality (10) never holds if we choose another self-adjoint extensions.

Borg also obtains an interesting representation for the IDS by using the formula (9),

and the result also holds in our case. For simplicity, we assume there exists $C>0$ such
that

$\#(\Gamma\cap\{|x|\leq R\})\leq CR^{2}$ (11)

for every $R>1$ . Then, the vector potential $A$ is explicitly given by

$A(x)=({\rm Im}\zeta(x), {\rm Re}\zeta(x))$ , (12)

$\zeta(x)=\frac{\alpha_{0}}{x}+\sum_{\gamma\in\Gamma\backslash \{0\}}\alpha_{\gamma}(\frac{1}{x-\gamma}+\frac{1}{\gamma}+\frac{x^{2}}{\gamma^{2}})$ , (13)

where we identify $x=(x_{1}, x_{2})$ with the complex number $x_{1}+ix_{2}$ in the right hand side
(we sometimes use this convention also in the sequel). Then, for the Brownian bridge

process $w_{t}=(w_{1,t}, w_{2,t})$ whose starting point and ending point are the same point $x$ , we
can formally calculate as

$\int_{0}^{t}A(w_{s})\cdot dw_{s}$

$= \sum_{\gamma\in\Gamma}\alpha_{\gamma}\int_{0}^{t}\frac{-(w_{2,s}-\gamma_{2})dw_{1}+(w_{1,s}-\gamma_{1})dw_{2}}{|w_{s}-\gamma|^{2}}$

$= \sum_{\gamma\in\Gamma}\alpha_{\gamma}\Theta_{t,\gamma}(w)$
, (14)
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where $\Theta_{t,\gamma}(w)$ is the winding angle of the path $w$ around the point $\gamma$ , that is,

$\Theta_{t,\gamma}(w)=\arg(w_{t}-\gamma)-\arg(w_{0}-\gamma)$ .

The formula (14) is rigorously justified by using the It\^o-formula and the fact $\triangle\arg(x-$

$\gamma)=0$ . Notice that only a finite number of $\Theta_{t,\gamma}(w)$ take non-zero values in the sum (14),
since $\Theta_{t,\gamma}(w)=0$ for $| \gamma|>\max_{0\leq s\leq t}|w_{s}|$ . Thus the formula (9) for $x=x’$ is rewritten as

$e^{-tH(A)}(x, x)= \frac{1}{4\pi t}\mathbb{E}_{0,x,t,x}[\exp(-i\sum_{\gamma\in\Gamma}\alpha_{\gamma}\Theta_{t,\gamma}(w))]$ (15)

Let us return to the case of the random magnetic field. We can prove that (11)
almost surely holds under Assumption 2.1, so we can apply the above argument for our
operator $H_{\omega}$ . Moreover, if $B_{\omega}$ has the $\mathbb{Z}^{2}$-stationarity, it is well-known that the Laplace
transform $\mathcal{L}(t)$ of the density of state $dN$ is represented as

$\mathcal{L}(t)=\int_{0}^{\infty}e^{-t\lambda}dN(\lambda)=\int_{Q_{0}}e^{-tH_{\omega}}(x, x)dx$

for almost every $\omega$ , by the Ergodic theorem. Substituting (15) into this formula, we
obtain the representation of $\mathcal{L}(t)$ via the winding number of the Brownian bridge.

Theorem 3.2 ([Bo, Theorem 4.4.1]). Under Assumption 2.1, we have

$\mathcal{L}(t)=\frac{1}{4\pi t}\int_{Q_{0}}\mathbb{E}_{0,x,t,x}[\exp(-i\sum_{\gamma\in\Gamma}\alpha_{\gamma}(\omega)\Theta_{t,\gamma}(w))]dx$ . (16)

Another interesting result of Borg is kind of trace formula, formulated as follows.3

Theorem 3.3 ([Bo, Theorem 3.3.2]). Let $0<\alpha<1$ . Let $A_{\alpha}$ be the vector potential for
the single solenoid given in (8). Then,

$\lim_{\Lambdaarrow \mathbb{R}^{2}}\int_{\Lambda}(e^{-tH(A_{\alpha})}(x, x)-e^{-tH(0)}(x, x))dx=-\frac{\alpha(1-\alpha)}{2}$ . (17)

Borg calls (17) the depletion of states. The formula (17) can be interpreted as a kind
of the diamagnetic inequality, since it means the eigenvalues of $H(O)$ are raised in some
averaged sense by the the Aharonov-Bohm magnetic potential $A_{\alpha}$ . Borg gives two proofs
of (17). (i) By adding the harmonic oscillator potential $\omega_{0}x^{2}$ to both operators $H(A_{\alpha})$

and $H(O)$ , calculating two traces, and taking the limit $\omega_{0}arrow 0$ . (ii) By using the known
probability distribution of the winding angle, and calculate the left hand side of (17)
directly. Both methods rely on the formula (15).

30riginally Borg considers the difference of the traces of the two Dirichlet realizations. The above
result can be proved by almost the same argument.
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4 IDS for the Poisson model

Let us consider the case $\Gamma_{\omega}$ is the Poisson configuration and $\alpha_{\gamma}(\omega)$ is a constant sequence,

that is, we assume the following.

Assumption 4.1. (i) For any Borel set $E$ in $\mathbb{R}^{2}$ , the random variable $\#(E\cap\Gamma_{\omega})$ is
measurable with respect to $\omega\in\Omega$ , where $\# S$ is the number of elements in a set $S.$

(ii) For any disjoint Borel sets $\{E_{j}\}_{j=1}^{n}$ in $\mathbb{R}^{2}$ , the random variables $\{\#(E_{j}\cap\Gamma_{\omega})\}_{j=1}^{n}$

are independent.

(iii) There exists a positive constant $\rho$ (called the intensity) such that

$\mathbb{P}(\#(E\cap\Gamma_{\omega})=k)=\frac{(\rho|E|)^{k}}{k!}e^{-\rho|E|} (k=0,1,2, \ldots)$

for any Borel set $E$ with $|E|<\infty$ , where $|E|$ is the Lebesgue measure of $E.$

(iv) There exists a constant $\alpha$ with $0<\alpha<1$ such that $\alpha_{\gamma}(\omega)=\alpha$ for every $\gamma\in\Gamma_{\omega}.$

Especially, Assumption 4.1 implies Assumption 2.1, so the Lifshitz tail holds in this

case. By the Tauberian theorem, this fact implies the Laplace transform

$\mathcal{L}(t)=\int_{0}^{\infty}e^{-t\lambda}dN(\lambda)$

of the density of states $dN$ decays exponentially as $tarrow\infty$ . Moreover, recently we found
the asymptotic behavior of $\mathcal{L}(t)$ as $tarrow 0$ up to the constant term.

Proposition 4.2. Suppose Assumption 4.1 holds.

(i) The Laplace transform $\mathcal{L}(t)$ of $dN$ is represented as

$\mathcal{L}(t)=\frac{1}{4\pi t}\mathbb{E}_{0,0,t,0}[\exp(\rho\int_{\mathbb{R}^{2}}(\exp(-i\alpha\Theta_{t,\gamma}(w))-1)d\gamma)]$ , (18)

where $d\gamma$ denotes the Lebesgue measure with respect to $\gamma\in \mathbb{R}^{2}.$

(ii) The asymptotics of $\mathcal{L}(t)$ as $tarrow 0$ is given by

$\mathcal{L}(t)=\frac{1}{4\pi t}-\frac{\rho\alpha(1-\alpha)}{2}+O(t)$ . (19)

We remark that formulas similar to (18) are found in various contexts; see e.g.
[Do-Va], [Na3].

Outline of Proof. (i) Since the system has the $\mathbb{R}^{2}$-stationarity, $\mathcal{L}(t)$ is represented as

$\mathcal{L}(t)=\frac{1}{4\pi t}\mathbb{E}_{P}[\mathbb{E}_{0,0,t,0}[\exp(-i\alpha\sum_{\gamma\in\Gamma_{\omega}}\Theta_{t,\gamma}(w))]]$ , (20)
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where $\mathbb{E}_{P}$ denotes the expectation with respect to the probability space of the Poisson
configuration. We approximate the Poisson configuration on $\mathbb{R}^{2}$ by the Poisson config-
uration on the finite square A centered at the origin. The probability space $\Omega^{\Lambda}$ for the
Poisson configuration on $\Lambda$ is the disjoint sum of the space of $k$-point configuration $\Lambda^{k},$

that is,

$\Omega^{\Lambda}=\sum_{k=0}^{\infty}\Lambda^{k},$

where $\Lambda^{k}$ is the direct product of $k-\Lambda$ ’s ( $\Lambda^{0}$ is a one-point set). The probability on $\Omega^{\Lambda}$ is
given by

$\mathbb{P}(\Lambda^{0})=e^{-\rho|\Lambda|}$

and for $k\geq 1$

$d \mathbb{P}|_{\Lambda^{k}}=\frac{\rho^{k}}{k!}e^{-\rho|\Lambda|}d\gamma_{1}\ldots d\gamma_{k},$

where $\gamma=(\gamma_{1}, \ldots, \gamma_{k})\in\Lambda^{k}$ and $d\gamma_{1}\ldots d\gamma_{k}$ is the Lebesgue measure on $\Lambda^{k}$ . So

$\mathbb{E}_{P}[\exp(-i\alpha\sum_{\gamma\in\Gamma_{\omega}}\Theta_{t,\gamma}(w))]$

$= \lim_{\Lambdaarrow\pi^{2}}\mathbb{E}_{\Omega^{\Lambda}}[\exp(-i\alpha\sum_{\gamma\in\Gamma_{\omega}}\Theta_{t,\gamma}(w))]$

$= \lim_{\Lambdaarrow\pi 2}\sum_{k=0}^{\infty}\frac{\rho^{k}}{k!}e^{-\rho|\Lambda|}\int_{\Lambda^{k}}\exp(-i\alpha\sum_{j=1}^{k}\Theta_{t,\gamma_{j}}(w))d\gamma_{1}\ldots d\gamma_{k}$

$= \lim_{\Lambdaarrow \mathbb{R}^{2}}e^{-\rho|\Lambda|}\sum_{k=0}^{\infty}\frac{\rho^{k}}{k!}(\int_{\Lambda}\exp(-i\alpha\Theta_{t,\gamma}(w))d\gamma)^{k}$

$= \lim_{\Lambdaarrow \mathbb{R}^{2}}\exp(\rho\int_{\Lambda}(\exp(-i\alpha\Theta_{t,\gamma}(w))-1)d\gamma)$

$= \exp(\rho\int_{\mathbb{R}^{2}}(\exp(-i\alpha\Theta_{t,\gamma}(w))-1)d\gamma)$ .

Notice that the last integral converges since

$\Theta_{t,\gamma}(w)=0$ for $| \gamma|>\max_{0\leq s\leq t}|w_{s}|$ . (21)

Thus, changing the order of the expectation in (20), we have (18).
(ii) We consider the Taylor expansion of the first exponential function in (18)

$\exp(\rho\int_{\pi}2(\exp(-i\alpha\Theta_{t,\gamma}(w))-1)d\gamma)$

$= 1+ \sum_{n=1}^{\infty}\frac{1}{n!}(\rho\int_{\pi}2(\exp(-i\alpha\Theta_{t,\gamma}(w))-1)d\gamma)^{n}$ (22)
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By (21), we have

$| \rho\int_{\mathbb{R}^{2}}(\exp(-i\alpha\Theta_{t,\gamma}(w))-1)d\gamma|^{n}\leq(2\pi\rho_{0}\max_{\leq s\leq t}|w_{s}|^{2})^{n}$ (23)

Here we review some formulas on the Brownian motion. The representation of the
Brownian bridge by the Brownian motion [Na3, (3.1)]

$w_{s}=b_{s}-(s/t)b_{t} (0\leq s\leq t)$ , (24)

where $b_{t}=(b_{1,t}, b_{2,t})$ is the 2-dimensional Brownian motion starting from $0$ at time O.
The Doob inequality [Fu, Teiri 3.11]

$\mathbb{E}[\max_{0\leq s\leq t}|b_{j,s}|^{2}]^{1/2}\leq 2\mathbb{E}[|b_{j_{)}t}|^{2}]^{1/2} (j=1, 2)$ . (25)

The moments of the Brownian motion [Fu, section 2.3]

$\mathbb{E}[|b_{j,t}|^{2p}]=(2p-1)!!t^{p} (j=1,2, p=0,1,2, . .$ (26)

where $(2p-1)!!=(2p)!/(2^{p}p!)$ . By using (23), (24), (25) and (26), we can prove that
there exist positive constants $C$ and $t_{0}$ independent of $\rho,$

$t$ and $n$ such that

$\mathbb{E}_{0,0,t,0}[\frac{1}{n!}|\rho\int_{R^{2}}(\exp(-i\alpha\Theta_{t,\gamma}(w))-1)d\gamma|^{n}]\leq C(\rho t)^{n}$

for $0\leq t\leq t_{0}$ and $n=1$ , 2, . . .. So the substitution of the expansion (22) into (18) is
justified for sufficiently small $t$ . The n-th term in the resulting expansion is

$\frac{\rho^{n}}{4\pi tn!}\mathbb{E}_{0,0,t,0}[(\int_{\mathbb{R}^{2}}(\exp(-i\alpha\Theta_{t,\gamma}(w))-1)d\gamma)^{n}]$

$= \frac{\rho^{n}}{4\pi tn!}\mathbb{E}_{0,0,1,0}[(\int_{\mathbb{R}^{2}}(\exp(-i\alpha\Theta_{1,\sqrt{t}\gamma},(\sqrt{t}w’))-1)td\gamma’)^{n}]$

$= \frac{(\rho t)^{n}}{4\pi tn!}\mathbb{E}_{0,0,1,0}[(\int_{N^{2}}(\exp(-i\alpha\Theta_{1,\gamma’}(w’))-1)d\gamma’)^{n}],$

where we used the change of variable $\gamma=\sqrt{t}\gamma’,$ $w=\sqrt{t}w’$ , and the scaling property

of the 2-dimensional Brownian motion. Thus the n-th term is proportional to $t^{-1+n}.$

Moreover, the constant term $(n=1)$ is calculated as follows.

$\frac{\rho}{4\pi t}\mathbb{E}_{0,0,t,0}[\int_{R^{2}}(\exp(-i\alpha\Theta_{t,\gamma}(w))-1)d\gamma]$

$= \frac{\rho}{4\pi t}\int_{\mathbb{R}^{2}}\mathbb{E}_{0,x,t,x}[(\exp(-i\alpha\Theta_{t,0}(w))-1)]dx$

$= \rho\int_{\mathbb{R}^{2}}(e^{-tH(A_{\alpha})}(x, x)-e^{-tH(0)}(x, x))dx$

$= - \frac{\rho\alpha(1-\alpha)}{2},$

where we used Theorem 3.3 in the last equality. $\square$
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Proposition 4.2 (ii) means the energy is raised in some averaged sense by randomly

distributed Aharonov-Bohm solenoids; one solenoid causes the decrease of ‘heat trace’
by $\alpha(1-\alpha)/2$ , so the solenoids distributed with intensity $\rho$ causes the decrease of ‘heat

trace’ by $\rho\alpha(1-\alpha)/2$ in spatial average. This consideration suggests us the formula (19)

could be generalized to $\mathcal{L}(t)$ for other stationary $\delta$ magnetic fields. We will argue this

subject in the future work.
Of course, the most interesting problem is to obtain the detailed asymptotics of $\mathcal{L}(t)$

as $tarrow\infty$ , which is equivalent to obtain the optimal decaying order of the Lifshitz tail

(actually, Borg seems to consider this problem in the case $\Gamma_{\omega}=\mathbb{Z}^{2}$ , but not to succeed
yet). In the case of the random scalar potential of the Poisson type, this subject is well-

studied with the aid of the large deviation theory (see [Do-Va, Na3, Ue2 In our case, it

seems to require deep knowledge about the winding angle of the Brownian bridge, which

is also interesting subject in itself. We hope the formulas (16) and (18) would give us an
opportunity to develop the study of these subjects.
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