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Abstract

Disorder induced metal-insulator transition, the Anderson transition, usually occurs in the region
where the density of states is smooth and shows no singularity. In the semimetal to metal transition,
however, the density of states is critical. This phenomenon is attracting new interests in relation to
the topological insulator where Dirac and Weyl semimetals undergo semimetal to metal transition.
In this paper, we review the recent progress of the scaling behavior of the density of states and
conductance at this semimetal to metal transition.

1 Introduction

Disorder induced metal-insulator transition, the Anderson transition, is characterized by the vanishing
conductivity $\sigma(x)$ and the diverging length scale $\xi,$

$\sigma\sim(x-x_{c})^{s_{A}}\rangle\xi\sim\frac{1}{|x-x_{c}|^{\nu_{A}}}, s_{A}=(d-2)\nu_{A}$ (1)

where $x$ is a parameter such as strength of disorder $W$ , Fermi energy $\epsilon$ , and pressure. $d$ is the dimension-
ality and the last equation is called Wegner’s relation[l]. Here we have assumed that $x>x_{c}$ is the metal
phase. At the Anderson transition, the density of states $\rho(\epsilon)$ is smooth and shows no singularity at the
transition.

In the case of semimetal where the Fermi energy is located at Dirac/Weyl node, or at the band edge,
the density of states at energy $\epsilon=0$ is vanishing. As we change the parameter, $e.g.$ , as we increase the
disorder, the vanishing density of states becomes finite at finite disorder $W_{c}[2],$

$\rho(0)\sim(W-W_{c})^{\beta})$ (2)

which is called semimetal to metal transition. Here we have neglected the exponentially small tails, which
becomes important for the case of long ranged randomness [3].

In the standard parabolic dispersion $\epsilon=\hslash^{2}k^{2}/2m$ , however, this is difficult to observe. To show this
intuitively, we follow the argument by Syzranov et al. [4]. For long wave length, the impurity potentials
are averaged over the wave length $\lambda$ , and the effective impurity strength $W_{eff}$ for the wave function with
the wave number $k$ is estimated to be

$W_{eff}(k) \sim\frac{W}{\sqrt{\lambda^{d}}}\sim\sqrt{k^{d}}$ . (3)
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Assuming the dispersion $\epsilon(k)=A|k|^{a}$ where the density of states is

$\rho(\epsilon)\sim\epsilon^{d/a-1}$ , (4)

we compare the potential energy $W_{eff}$ with the kinetic energy $\epsilon(k)$ , and obtain

$\frac{W_{eff}(k)}{\epsilon(k)}\sim k^{(d-2a)/2}$ (5)

This means for $d>2a$ , the effect of randomness vanishes for low energy (large wave length), and
randomness is irrelevant up to certain strength of disorder, i.e., $W_{c}[5]$ . Since most of the three dimensional
(3D) material shows parabolic dispersion $a=2$ , the disorder induced semimetal to metal transition can
not be observed; the density of states becomes finite once $W$ is finite. Recent discovery of $3D$ material with
linear dispersion (Dirac electron) in topological insulators makes this situation experimentally possible.
In this case, $d=3$ and $a=1$ , and the disorder is irrelevant for small $W.$

2 Model for $3D$ Dirac system

The $3D$ Dirac electrons emerge in Wilson-Dirac Hamiltonian,

$H= \sum_{\vec{r}}\sum_{\mu=x,y,z}[|\vec{r}+\vec{e}_{\mu}\rangle(\frac{it}{2}\gamma_{\mu}-\frac{m}{2}z_{\gamma_{0}})\langle r\gamma+h.c.]$

$+ \sum_{\vec{r}}|r\gamma[(m_{0}+3m_{2})\gamma 0+V_{\vec{r}}1_{4}]\langle\overline{r}|$ , (6)

where $\vec{e}_{\mu}$ is a unit vector in the $\mu$-direction, and $1_{4}$ represents the $4\cross 4$ identity matrix. $\gamma_{\mu}$ and $\gamma_{0}$ form
a set of $\gamma$-matrices in a $4\cross 4$ representation,

$\gamma_{\mu}=(\begin{array}{ll}0 \sigma_{\mu}\sigma_{\mu} 0\end{array}))\gamma_{0}=(\begin{array}{ll}1_{2} 00 -l_{2}\end{array})$ , (7)

where $\sigma_{\mu}$ ’s are Pauli matrices and $1_{2}$ is $2\cross 2$ identity matrix. $m_{0},$ $m_{2}$ and $t$ are mass and hopping
parameters. For $W=0$ , the energy is expressed by

$\epsilon(k)=\pm\sqrt{[m_{0}+m_{2}(3-(\cos k_{x}+\cos k_{y}+\cos k_{z}))}\overline{]^{2}+t^{2}(\sin^{2}k_{x}+\sin^{2}k_{y}+\sin^{2}k_{z})}$ , (8)

and the gap closes at $m_{0}/m_{2}=0,$ $-2$ for $\vec{k}=(0,0,0)$ and $\vec{k}=(\pi, 0,0)$ , $(0, \pi, 0)$ , $(0,0, \pi)$ . For $-2<$
$m_{0}/m_{2}<0$ the system is in the strong topological insulator phase, while for $-4<m_{0}/m_{2}<-2$ the
system is in the weak topological insulator phase. ( $m_{0}/m_{2}>0$ corresponds to the ordinary insulator.)
$V_{\vec{r}}$ represents a potential disorder distributed uniformly and independently between $-W/2$ and $W/2.$

By tuning the gap parameter $m_{0}/m_{2}$ , the band gap closes, and the Dirac/Weyl nodes appear with
$\epsilon=\hslash vk,$ $v=t$ . At this point, the low energy density of states is

$\rho(\epsilon)\sim\epsilon^{2}/v^{3},$

In the presence of disorder, similar parabolic dependence on energy is seen with $m_{0}$ and $v$ renormalized.
It should be noted that the ordinary insulator region is invaded by the topological insulator phase, which
is contrary to the intuition that disorder destroys order. This enhancement of the topological phase
due to disorder is dubbed topological Anderson insulator, and has been discovered theoretically in $2D$

[6, 7, 8, 9], and $in3D[10$ , 11 $].$
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3 Scaling behavior

To describe the scaling behavior, we follow the discussion by Kobayashi et al. [12], and begin with a

dimensionless quantity, the number of states $N(\epsilon, L)$ below the energy $\epsilon$ in the cubic system of size $L,$

and assume that it is a function of dimensionless parameters $L/\xi$ and $\epsilon/\epsilon_{0},$

$N(\epsilon, L)=F(L/\xi, \epsilon/\epsilon_{0})$ , (9)

where $\xi$ and $\epsilon_{0}$ are the characteristic length and energy scales, respectively. They are related by the
dynamical exponent $z,$

$\epsilon_{0}\propto\xi^{-z}$ (10)

Since $N(\epsilon, L)$ is proportional to $L^{d}$ for large $L$ , the above scaling form should be

$N(\epsilon, L)=(L/\xi)^{d}f(\epsilon\xi^{z})$ . (11)

From $N(\epsilon, L)$ , the DOS per volume $\rho(\epsilon)$ is calculated as

$\rho(\epsilon)=\frac{1}{L^{d}}\frac{dN(\epsilon,L)}{d\epsilon}$ , (12)

and we obtain its scaling form,
$\rho(\epsilon)=\rho(-\epsilon)=\xi^{z-d}f’(|\epsilon|\xi^{z})$ . (13)

We introduce the distance from the critical point $\delta=|W-W_{c}|/W_{c}$ , and assume that $\xi$ diverges near
the critical point $W_{c}$ as,

$\xi\sim\delta^{-\nu}$ , (14)

where $\nu$ is the critical exponent. Close to the critical point, we thus obtain from Eq. (13)

$\rho(\epsilon)\sim\delta^{(d-z)\nu}f’(|\epsilon|\delta^{-z\nu})$ . (15)

Let us examine the consequence of this scaling form in the semimetal and metal phases.

3.1 Semimetal phase

If the system has Dirac node, the DOS is expected to be proportional to $|\epsilon|^{d-1}$ for $|\epsilon|\ll\epsilon_{0}$ , so

$\rho(\epsilon)\sim\delta^{(d-z)\nu}(|\epsilon|\delta^{-zv})^{d-1}=|\epsilon|^{d-1}\delta^{-(z-1)d\nu}$ (16)

Since the prefactor $\delta^{-(z-1)d\nu}$ should be proportional to $1/v(W)^{d}$ , the renormalization of the velocity

should read
$v(W)\sim\delta^{(z-1)\nu}$ (17)

3.2 Metal phase

On the other hand, $\rho(\epsilon)$ is finite at $\epsilon=0$ in the metal phase, and

$\rho(0)\sim\delta^{(d-z)\nu}(|\epsilon|\delta^{-z\nu})^{0}=\delta^{(d-z)\nu}$ , (18)

and from Eq. (2), we obtain
$\beta=(d-z)\nu$ . (19)

3.3 Critical point

Right at the critical point $\delta=0,$ $\xi$ dependencies should cancel, and

$\rho(\epsilon)\sim\delta^{(d-z)\nu}(|\epsilon|\delta^{-z\nu})^{(d-z)/z}=|\epsilon|^{(d-z)/z}$ (20)
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3.4 Diffusion and conductivity

The general scaling arguments imply interesting transport properties as well. Consider, for example, the
wave packet dynamics [13]. We assume the mean square displacement $\langle\vec{r}^{2}(t, \epsilon)\rangle$ of the state with energy
$\epsilon$ at time $t$ , where $\langle\cdots\rangle$ represents both quantal and ensemble averages to be of the form

$\langle\vec{r}^{2}(t, \epsilon)\rangle\sim\xi_{9}^{2}(t\xi^{-z})|\epsilon|\xi^{z})$ . (21)

In the metal phase, one expects $\langle\vec{r}^{2}(t, \epsilon)\rangle=2dD(\epsilon)t$ for large $t$ with $D(\epsilon)$ the diffusion coefficient at
energy $\epsilon$ . We focus only on the state with $\epsilon=0$ and obtain the scaling form,

$\langle r^{2}(t, \epsilon=0)\rangle\sim\xi^{2-z}t$ , (22)

and the diffusion constant $D(\epsilon=0)$ scales with

$D(\epsilon=0)\sim\xi^{2-z}\sim\delta^{-(2-z)\nu}$ , (23)

which diverges towards the critical point (as will be discussed in Section 5, the estimate of $z$ for $3D$

Dirac/Weyl systems is 1.5, well below 2). Combined with the density of states, the conductivity $\sigma$ is
obtained as

$\sigma(\epsilon=0)\sim\rho(\epsilon=0)D(\epsilon=0)\sim\delta^{(d-2)_{1ノ}}$ (24)

and the Wegner’s relation is recovered. Note, however, that $\nu\neq\nu_{A}$ (see Eq. (1)).

4 Density of state scaling in other systems

The novel scaling of the density of states is now predicted in several different systems, and we now turn
our attention to the cases of $2D,$ $d>4$ and $d=1.$

4.1 $2D$ case (surface disorder)

When we have a bulk gap, the topological insulator shows surface states with linear dispersion, $e.g.,$

$\epsilon=\hslash v\sqrt{k_{x}^{2}+k_{y}^{2}}$ on the surface perpendicular to $z$-direction. When the surface is disordered while bulk

of the system is clean, we observe the surface states are robust against disorder, and the density of states
remains to be linear in $\epsilon$ , while the slope gets steeper, which means again the renormalization of the
velocity. Velocity renormalization is also seen for $2D$ topological insulator with edge disorder [14].

Once the strength of disorder exceeds critical value, $\rho(O)$ becomes finite. This behavior is similar to
what we have observed for the $3D$ Dirac semimetal.

We demonstrate this behavior by using the above Wilson-Dirac Hamiltonian, Eq. (6), and by assuming
that the randomness exists only at the surfaces [15]. In Figure 1, we show the density of states for a
rectangular parallelepiped of size $400\cross 400\cross 20$ (in units of lattice constant). Periodic boundary conditions
are imposed in x- and $y$-directions, while open boundary condition is imposed in $z$-direction. The gap
parameter $m_{0}/m_{2}$ is $-1$ , so the bulk is a strong topological insulator. Randomness exists only at the top
and the bottom layers. Kernel polynomial method is used for the actual numerical calculation [16].

4.2 High and low dimensional cases of orthogonal universality class

The scaling of the density of states has been generalized in ref.[4] for high dimensional systems belonging to
the Wigner-Dyson orthogonal class [17, 18, 19]. The one dimensional case with small $a(\epsilon\sim|k|^{a} , a<1/2)$

is also discussed in [20]. They all show similar scaling behavior of the density of states. (See figure 2 of
ref.[12], figure 1 of this article, and figure 1 of ref.[20].)
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Figure 1: Density of states for surface states in the $3D$ topological insulator with surface disorder. The
system is a rectangular parallelepiped of size $400\cross 400\cross 20$ . The strength of surface disorder $W$ is varied
from 0.05 to 0.7. At small disorder $W\leq 4.5$ the dispersion is linear in $\epsilon$ , which means the surface Dirac
electron states are robust against disorder. The increase of the slope corresponds to the renormalization
of the velocity with $W$ . Once $W$ exceeds critical value $4.5<W_{c}<5.5$ , the zero energy density of states
becomes finite.

5 Estimate of exponents

By calculating the density of states for the cubic system of size $200\cross 200\cross 200,$ $\nu$ and $z$ for $3D$ Dirac/Weyl
systems are estimated as $v=0.9\pm 0.2$ and $z=1.5\pm 0.1[12]$ . These values are to be compared with the
values for $3D$ Anderson transition of symplectic universality class, $\nu_{A}=1.375\pm 0.08$ and $z_{A}=3[21$ , 22$],$

which are significantly different from the cases of semimetal to metal transition.
The single parameter scaling, Eq. (15), predicts that when we plot $\rho(\epsilon)/\delta^{(d-z)\nu}$ against $|\epsilon|\delta^{-z\nu}$ , all

the plots of the density of states with various $W$ are on two branches, i.e., the semimetal branch and the
metal branch. This has also been verified numerically.

Analytic estimate of $v$ and $z$ by one-loop renormalization group analysis is successful for the $3D$

Dirac/Weyl fermions (Wigner-Dyson symplectic universality class [17,18,19 In ref. [10], $\nu$ and $z$

are estimated to be 1 and 3/2, respectively, which are in excellent agreement with the above numerical
estimate. The self-consistent Born approximation (SCBA) gives the estimate $\beta=1[23]$ . Combined with
$z\approx 1.5$ and Eq. (18) the estimate $\nu\approx 2/3$ , which is close to the lower bound of $\nu,$ $2/d=2/3[24]$ . From
SCBA, we can also estimate the conductivity exponent $s=1$ , which is close to the numerical estimate
$s=(d-2)\nu=0.9\pm 0.2.$

In the case of orthogonal universality class, we can estimate $\nu=1/(d-2a)$ and $z=1+(d-2a)/4$
by one-loop renormalization group analysis [4]. This should be check by numerics in the future.

6 Summary

In summary, the semimetal to metal transition at the Dirac/Weyl nodes and at band edge are well
described by the scaling of the density of states, which is supported by the numerical evidence. From
the metal side, the density of states vanishes while the diffusion constant diverges as we decrease the
disorder. The conductivity, however, still behaves the same way as in the Anderson transition, and the

94



Wegner’s relation holds. Further numerical as well as analytical studies are needed to clarify this novel
phase transition quantitatively.
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