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1 Introduction

In [1], Dumitriu and Edelman constructed a random real symmetric tri-diagonal

matrix, and proved that its spectrum is exactly the finite point process called the

beta-ensemble. Later, Ram\’irez, Rider and Vir\’ag [7] proved that as the size of

this random matrix tends to infinity, its spectrum, if suitably scaled, converges in

distribution to the spectrum of the random ($\zeta$

differential operator “ (the stochastic

Airy operator)

$\mathcal{H}=-\frac{d^{2}}{dt^{2}}+t+\frac{2}{\sqrt{\beta}}B_{\omega}’(t) , t\geq 0,$

considered under the Dirichlet boundary condition at $t=$ O. Here $B_{\omega}’(t)$ is the

formal derivative of the standard Brownian motion namely the white noise. In

[7], the stochastic Airy operator $\mathcal{H}$ is interpreted as a random linear mapping

sending absolutely continuous functions into the space of Schwartz distributions.

The present author showed that the operator $\mathcal{H}$ can be realized as a generalized

Sturm-Liouville operator, which is symmetric in the Hilbert space $L^{2}(0, \infty)$ , and

is self-adjoint with probability one [5].

Now a real tri-diagonal operators is regarded as second order difference op-

erator, which in turn is a special case of generalized Sturm-Liouville operators

(see e.g. [2], [3] or [6]). Hence, if we could set up a class of generalized Sturm-
Liouville operators which is vast enough to include both tri-diagonal matrices and

the stochastic Airy operator, in such a way that a suitable convergence theorem

for spectral measures holds in that class, then we would obtain a natural interpre-

tation of the “continuum limit theorem due to Ram\’irez, Rider and Vir\’ag. This

note is an intermediate report of a still ongoing work toward this goal.

2 A class of generalized Sturm-Liouville opera-

trors

Let the following objects are given:
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(i) $m=m(x)$ is a non-decreasing, right-continuous function on $[0, \infty]$ with val-

ues in $[0, \infty]$ , such that $m(O)=0$ and $m(\infty)=\infty$ . We call $l(m):=$

$\sup\{x;m(x)<\infty\}$ the endpoint of $m$ . (Such an $m$ is called a ‘string’by

M.G. Krein.)

(ii) $Q=Q(x)$ is a real-valued function defined on $[0, l(m)$ ) with $Q(O)=0$ which is

right-continuous and has limits from the left, and such that $Q(x)$ is constant

on every subintervals of the set $[0, l(m)$ ) $\backslash \{supp(dm)\}$ . Here $dm$ is the

Lebesgue-Stieltjes measure on $[0, l(m)$ ) corresponding to the function $m.$

Given a pair $(m, Q)$ as above, we define the function space $C(m, Q)$ and the

generalized Sturm-Liouville operator $L_{m,Q}$ in the following manner:

Definition 1. A function $u=u(t)$ , defined on $[0, l(m)$ ) belongs to $C(m, Q)$

if and only if it is absolutely continuous and differentiable from the right, and if

there exists a function $v\in L_{loc}^{1}([0, l(m));dm)$ such that the equation

$u^{+}(t)=u^{+}(0)+Q(t)u(t)- \int_{0}^{t}Q(y)u^{+}(y)dy-\int_{(0,t]}v(y)dm(y)$

holds. Here $u^{+}(t)$ is the right-derivative of $u$ at $t$ . The function $v$ is uniquely

determined from $u$ up to on a set of $dm$-measur zero. We define the generalized

Sturm-Liouville operator $L_{m,Q}$ , defined on $C(m, Q)$ , by letting

$v=L_{m,Q}u$

From the assumption on $Q$ , it is easy to see that every function $u$ belonging to

$C(m, Q)$ has constant slope on every subinterval of $[0, l(m)$ ) $\backslash \{supp(dm)\}.$

Kotani [2] considered the Sturm-Liouville operator of the type

$L \varphi=-\frac{d\varphi^{+}+\varphi dQ}{dm},$

where $m$ is as above, but $Q$ is of bounded variation on every compact interval.

In the case of $Q=0$ , the spectral theory of $L$ was thoroughly studied by M.G.

Krein. See [3] for a summary of Krein’s theory.

3 Examples.

When $m(t)=t$ and $Q(t)=(t^{2}/2)+(2/\sqrt{\beta})B_{\omega}(t)$ , then $L_{rn,Q}$ is the stochastic

Airy operator.

On the other extreme, let $m(x)$ be a step function

$m(x)= \sum_{j=1}^{n}m_{j}1_{[x_{j},\infty)}(x)+\infty\cdot 1_{\{\infty\}}(x)$ ,
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where $m_{j}>0$ and $0<x_{1}<\cdots<x_{n}<l(m)=\infty$ . If we consider $L_{m,Q}$ under
the boundary conditions $u(O)=0$ and $u^{+}(x_{n})=0$ , then by Definition 1, we have

$u^{+}(x_{j})-u^{+}(x_{j-1})=\triangle Q(x_{j})u(x_{j})-m_{j}v(x_{j}) , j=1, \rangle n,$

where we let $\triangle Q(x)=Q(x)-Q(x-O)$ . By setting $x_{0}=0,$ $x_{n+1}=\infty$ , we get

for $j=1$ , . . . , $n,$

$u^{+}(x_{j-1})= \frac{u(x_{j})-u(x_{j-1})}{x_{j}-x_{j-1}};u^{+}(x_{j})=\frac{u(x_{j+1})-u(x_{j})}{x_{j+1}-x_{j}}$

Hence for $v=L_{m,Q}u$ , we have

$v(x_{j})= \frac{1}{m_{j}}[\{\triangle Q(x_{j})+\frac{1}{x_{j+1}-x_{j}}+\frac{1}{x_{j}-x_{j-1}}\}u(x_{j})-\frac{u(x_{j-1})}{x_{j}-x_{j-1}}-\frac{u(x_{j+1})}{x_{j+1}-x_{j}}]$

In this case, $L_{m,Q}$ reduces to the tridiagonal matrix

where
$a_{j}= \frac{1}{m_{j}}\{\triangle Q(x_{j})+\frac{1}{x_{j+1}-x_{j}}+\frac{1}{x_{j}-x_{j-1}}\}$ ;

$b_{j}=- \frac{1}{m_{j}}\frac{1}{x_{j+1}-x_{j}}$ ; $c_{j}=- \frac{1}{m_{j}}\frac{1}{x_{j}-x_{j-1}}$

The matrix $\tilde{H}$ is symmetric with respect to the weight $\{m_{j}\}$ in the sense that
$m_{j}c_{j}=m_{j-1}b_{j-1}$ for $j=2$ , . . . , $n.$

4 Limit point vs limit circle.

Let $\varphi_{\lambda}(x)$ and $\psi_{\lambda}(x)$ be solutions of $L_{m,Q}u=\lambda u$ such that $\varphi_{\lambda}(0)=\psi_{\lambda}^{+}(0)=1,$

$\varphi_{\lambda}^{+}(0)=\psi_{\lambda}(0)=$ O. For each $\lambda\in C$ and $b\in[0, l(m)$ ), we consider the linear

fractional transformation

$l_{b,\lambda}(z)=- \frac{\varphi_{\lambda}(b)z+\varphi_{\lambda}^{+}(b)}{\psi_{\lambda}(b)z+\psi_{\lambda}^{+}(b)}$
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If ${\rm Im}\lambda\neq 0,$ $l_{b,\lambda}(\cdot)$ maps $R$ into a circle $C_{b}(\lambda)$ of finite radius

$r_{b}( \lambda) :=[2|{\rm Im}\lambda|\int_{(0,b]}|\psi_{\lambda}(x)|^{2}dm(x)]^{-1}$

We shall say that the endpoint $l(m)$ is of limit point type if for some $\lambda$ with
${\rm Im}\lambda\neq 0$ , the intersection of circles $\bigcap_{0<b<l(m)}C_{b}(\lambda)$ shrinks to a singleton, in which

case

(i) $\int_{(0,l(m))}|\psi_{\lambda}(x)|^{2}dm(x)=\infty$ ;

(ii) $L_{m,Q}$ with Dirichlet boundary condition at $t=0$ defines a self-adjoint op-

erator in $L^{2}((0, l(m));dm)$ . Hence $l(m)$ being of limit point type does not

depend on the choice of $\lambda\in C\backslash R.$

(iii) The function $h(\lambda)$ $:=- \lim_{b\uparrow l(m)}\varphi_{\lambda}(b)/\psi_{\lambda}(b)$ is holomorphic on $C\backslash R$ , and

the integral kernel with respect to $dm$ of $(L_{m,Q}-\lambda)^{-1}$ is given by

$G_{\lambda}(x, y)=\psi_{\lambda}(x\wedge y)\{\varphi_{\lambda}(x\vee y)+h(\lambda)\psi_{\lambda}(x\vee y)\}$

Otherwise, $l(m)$ is said to be of limit circle type.

5 A continuity theorem.

In order to formulate the “continuum limit”suggested in the introduction, we

need to define a suitable topology in the space of $(m, Q)$ . The following definition

is still provisional.

Definition 2. A sequence $(m_{n}, Q_{n})$ converges to $(m_{\infty}, Q_{\infty})$ if and only if

(a) $l(m_{n})\uparrow l(m_{\infty})$ ;

(b) $m_{n}(x)arrow m_{\infty}(x)$ for every continuity point $x$ of $m_{\infty}$ ;

(c) $Q_{n}(x)arrow Q_{\infty}(x)$ uniformly on every compact subinterval of $[0, l(m_{\infty})$ )

Let $L_{m_{n},Q_{n}}$ and $L_{m_{\infty},Q_{\infty}}$ be the generalized Sturm-Liouville operators obtained

from $(m_{n}, Q_{n})$ and $(m_{\infty}, Q_{\infty})$ respectively, and let $\varphi_{n,\lambda}(x)$ , $\psi_{n,\lambda}(x)$ , $\varphi_{\infty,\lambda}(x)$ and
$\psi_{\infty,\lambda}(x)$ be the solutions of $L_{m_{n},Q_{n}}u=\lambda u$ and $L_{m_{\infty)}Q_{\infty}}u=\lambda u$ with the same

initial conditions as before. If $(m_{n}, Q_{n})arrow(m_{\infty}, Q_{\infty})$ in the sense just described,

then for each $\lambda\in C$ , the convergences $\varphi_{n,\lambda}(x)arrow\varphi_{\infty,\lambda}(x)$ and $\psi_{n_{\}}\lambda}(x)arrow\psi_{\infty,\lambda}(x)$

hold uniformly on every compact subintervals of $[0, l(m_{\infty})$ ).

For the time being, we have only the following partial result, which is analogous

to Lemma 3 of [4].
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Propsition 1. Suppose that $l(m_{n})=l(m_{\infty})=\infty$ are of limit point type, and

that $(m_{n}, Q_{n})arrow(m_{\infty}, Q_{\infty})$ . Then for any $\lambda\in C\backslash R$ and for any $u\in C_{0}([0,$ $\infty$

one has
$((L_{m_{n)}Q_{n}}-\lambda)^{-1}u, u)_{m_{n}}arrow((L_{m_{\infty},Q_{\infty}}-\lambda)^{-1}u, u)_{m_{\infty}}$

where $)_{m}$ denotes the inner product in $L^{2}([0, l(m));dm)$

Proof. It suffices to show that for each $\lambda\in C\backslash R$ , one has $h(\lambda;m_{n}, Q_{n})arrow$

$h(\lambda;m_{\infty}, Q_{\infty})$ . On the other hand, this assertion is equivalent to saying that for

each $\lambda\in C\backslash R$ , the function $h(\lambda;\cdot)$ is continuous on the compact set

$K:=\{(m_{n}.Q_{n});n=1, 2, . . . , \infty\}$

Now when $l(m)=\infty$ is of limit point type, then $h(\lambda;m, Q)$ is the limit of
$-\varphi_{\lambda}(b)/\psi_{\lambda}(b)$ as $b\uparrow\infty$ , which is, for fixed $\lambda\in C\backslash R$ and $b>0$ , a continu-

ous function of $(m.Q)$ on $K$ . Moreover

$|- \frac{\varphi_{\lambda}(b)}{\psi_{\lambda}(b)}-h(\lambda;m, Q)|$

is bounded by $r_{b}(\lambda;m_{n}, Q_{n})$ , which is also a continuous function of $(m, Q)$ on $K,$

and tends to $0$ monotonically as $b\uparrow\infty$ . Hence by Dini’s lemma, $h(\lambda;m, Q)$ is a
uniform limit of $-\varphi(b)/\psi_{\lambda}(b)$ on $K$ , and is continuous on $K.$

The tri-diagonal matrices considered in \S 3, viewed as generalized Sturm-Liouville
operators, are not of limit point type. Hence, unfortunately, Proposition 1 cannot

be applied to the question of continuum limit of beta-ensemble mentioned in the

introduction.
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