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Abstract

We will summarize and analyze some finite element methods for analysis of nearly
or completely incompressible media including linearly elastic solids and viscous New-
tonian fluids. Numerical analysis of such problems is difficult especially in selecting ap-
propriate finite element models, and the mixed FEM and discontinuous Galerkin FEM
(DG FEM) are often effective to obtain reliable numerical solutions.

1 Introduction

We will present some finite element methods for analysis of nearly (or completely) incom-
pressible media including elastic solids and viscous fluids. Numerical analysis of such prob-
lems is difficult especially in selecting appropriate finite element models. Especially, the
genuine methods based on displacements or velocities only usually suffer from volumet-
ric locking in the nearly incompressible range, so that various attempts have been made.
Among them, the mixed and the stabilization methods are known to be effective in this re-
spect. Nowadays, the discontinuous Galerkin methods combined with the mixed methods
become to be realized to be more effective to obtain reliable numerical solutions. In this
note, we will summarize some known results as well as our own ones.

Acknowledgment: The present author expresses his sincere thanks to Dr. Daisuke Koyama
of University of Electro-Communications as ajoint worker of this report for the section on
plain strain problems.

2 Nearly incompressible media

We will mainly discuss the solid cases below. Let $x=\{x_{1}, x_{N}\}(N=2,3)$ denote the
Cartesian coordinates, and $\Omega\subset \mathbb{R}^{N}$ be a bounded domain occupied by the solid. We will use
the notation of small displacements of solids as $u=\{u_{i}\}_{1\leq i\leq N}$ , and the associated small or
linearized strains as

$e_{ij}(u)=(\partial_{j}u_{i}+\partial_{i}u_{j})/2 (\partial_{i}=\partial/\partial x_{i};1\leq i, j\leq N)$ , (1)
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which can be regarded as a second-order symmetric tensor. The diagonal components $e_{ii}$

are normal stretching strains, while the off-diagonal ones $e_{ij}(i\neq])$ are shearing strains.
Moreover, the volumetric strain is given by $divu=\sum_{i=1}^{N}e_{ii}(u)$ , which plays important roles

in nearly incompressible cases.

Remark 1 For $N=2$, we assume that thefunctions do not depend on $x_{3}$ and also that $u_{3}=0$

(in the $3D$ notations), so that $e_{33}=e_{i3}=e_{i3}=0(i=1,2)$ .

The stresses $s_{ij}(1\leq i, j\leq 3)$ are also treated as a second-order symmetric tensor, and we
assume the following generalized Hooke’s law for isotropic solids:

$s_{ij}(u)=\lambda(divu)\delta_{ij}+2\mu e_{ij}(u)$ $(\lambda>0, \mu>0 : Lam\’{e}$ ’s parameters) . (2)

Notice that $s_{33}$ may not vanish under the above relation. We will assume in addition that the

solid is homogeneous, that is, $\lambda$ and $\mu$ do not depend on $x.$

The static pressure is defined by the minus of mean normal stress, that is,

$p:=- \frac{1}{3}\sum_{i=1}^{3}s_{ii}=-(\lambda+\frac{2\mu}{3})divu\Rightarrow$ $s_{ij}=- \frac{\lambda}{\lambda_{B}}p+2\mu e_{ij}(u)(\lambda_{B}:=\lambda+2\mu/3)$ , (3)

where $\lambda_{B}$ is called the bulk modulus, and, as was noted, the term $s_{33}$ is necessary. The above

suggests that $divuarrow 0$ as $\lambdaarrow+\infty$ . (Under appropriate settings, we can also show $parrow p_{\infty}$

for some $p_{\infty}.$ ) In some mathematical literatures, $p$ is simply defined by $p=-\lambda divu$ . Such
a nonphysical definition may be more convenient for pure mathematical analysis.

The static equilibrium of stresses is expressed by the following Cauchy equations:

$- \sum_{j=1}^{N}\partial s_{ij}/\partial x_{j}=f_{i} (1\leq i\leq N)$ , (4)

where $f=\{f\}_{1\leq i\leq N}$ is the distributed body force vector. Substituting (1) and (2) into (4), we
have Navier’s equations for isotropic homogeneous solids:

$- \lambda\partial_{i}divu-\mu\sum_{j=1}^{N}\partial_{j}(\partial_{j}u_{i}+\partial_{i}u_{j})=f(1\leq i\leq N)$ , (5)

(by (3)) $\Rightarrow$ $\frac{\lambda}{\lambda_{B}}\partial_{i}p-\mu\sum_{j=1}^{N}\partial_{j}(\partial_{j}u_{i}+\partial_{i}u_{j})=f_{i}(1\leq i\leq N)$ . (6)

3 Weak formulations

For simplicity, we will consider the pure homogeneous Dirichlet boundary conditions, and

use the usual Hilbertian Sobolev spaces $H^{1}(\Omega)$ and $H_{0}^{1}(\Omega)$ . We will also denote the inner

products of $L^{2}(\Omega)$ or $L^{2}(\Omega)^{N}$ by $)_{\Omega}$ and their associated norms by $||\cdot||_{\Omega}$ . Below we will

present two fundamental formulations for the present problem.
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3.1 Displacement formulation in $u$ only

The most fundamental weak formulation for finite $\lambda>0$ is the following one using the
displacement only.
[DF] Given $f\in L^{2}(\Omega)$ , find $u\in H_{0}^{1}(\Omega)^{N}$ that satisfies

$\lambda(divu, divv)_{\Omega}+2\mu\sum_{i,j=1}^{N}(e_{ij}(u), e_{ij}(v))_{\Omega}=(f, v)_{\Omega}(\forall v\in H_{0}^{1}(\Omega)^{N})$ . (7)

For mathematical analysis of the above formulation, Korn’s inequalities are essential,

and a typical example of them is: There exists a domain constant $C>0$ such that

$\sum_{i,j=1}^{N}||e_{ij}(v)||_{\Omega}^{2}+\Vert v\Vert_{\Omega}^{2}\geq C||v\Vert_{H^{1}(\Omega)^{N}}^{2}(\forall v\in H^{1}(\Omega)^{N})$ . (8)

The present result is generalized to the Sobolev space $W^{1,p}(\Omega)$ with $1<p<\infty$ for $N=2$

[17]. For $v\in H_{0}^{1}(\Omega)^{N}$ , the above becomes $\sum_{i,j=1}^{N}||e_{ij}(v)||_{\Omega}^{2}\geq C||v||_{H^{1}(\Omega)^{N}}^{2}$ with possible change
of $C>0$ , from which we can conclude the existence and uniqueness of the weak solution $u$

of [DF]. Moreover, keeping $\mu$ constant, we have $\lambda||divu||_{\Omega}^{2}\leq C||f\Vert_{\Omega}^{2}$ , so that $divuarrow 0$ in
$L^{2}(\Omega)$ as $\lambda$ tends to $+\infty.$

3.2 Mixed formulation in $u$ and $p$

To deal with the nearly and completely incompressible cases, it is natural to add $p$ as an
independent unknown function.
[MF] Given $f\in L^{2}(\Omega)$ , find $\{u, p\}\in H_{0}^{1}(\Omega)^{N}\cross L^{2}(\Omega)$ that satisfies

$\{\begin{array}{ll}2\mu\sum_{i,j=1}^{N}(e_{ij}(u), e_{ij}(v))_{\Omega}-\frac{\lambda}{\lambda_{B}}(p,divv)_{\Omega}=(f, v)_{\Omega} (\forall v\in H_{0}^{1}(\Omega)^{N}) ,- \frac{\lambda}{\lambda_{B}}[(divu, q)_{\Omega}+\lambda_{B}^{-1}(p, q)_{\Omega}]=0 (\forall q\in L^{2}(\Omega)) .\end{array}$ (9)

We can see formally that $p$ is the Lagrange multiplier for the linear constraint $p+\lambda_{B}divu=0.$

Also, by the Gauss formula, we find that $p\in L_{0}^{2}(\Omega)$ for $L_{0}^{2}(\Omega)=\{q\in L^{2}(\Omega);(q, 1)_{\Omega}=0\}.$

To deal with [MF], it is essential to use the following inf-sup condition: There exists $a$

constant $K>0$ such that

$inf\sup \underline{(divv,q)_{\Omega}}\geq K$ . (10)
$v\in H_{0}^{1}(\Omega)^{N}\backslash \{0\}_{q\in L_{0}^{2}(\Omega)\backslash \{0\}}||v||_{H^{1}(\Omega)^{N}}\cdot||q||_{\Omega}$

This condition is related to the solvability of $divv=g\in L_{0}^{2}(\Omega)$ for $v\in H_{0}^{1}(\Omega)^{N}.$

Using the above, we can conclude the existence and uniqueness of $\{u,p\}$ with

$||u\Vert_{H^{1}(\Omega)^{N}}+||p||_{\Omega}\leq C||f||_{\Omega}$ uniformly in $\lambda\geq\lambda_{0}=$ positive constant. (11)

Moreover, as $\lambda$ tends to $\infty,$ $\{u,p\}$ converges strongly in $H_{0}^{1}(\Omega)^{N}\cross L^{2}(\Omega)$ to a $\{u_{\infty}, p_{\infty}\}\in$

$H_{0}^{1}(\Omega)^{N}\cross L_{0}^{2}(\Omega)$ , which satisfies [MF] formally with $\lambda/\lambda_{B}=1$ and $\lambda_{B}^{-1}=0$ :

$\{\begin{array}{l}2\mu\sum_{i,j=1}^{N}(e_{ij}(u_{\infty}), e_{ij}(v))_{\Omega}-(p_{\infty},divv)_{\Omega}=(f, v)_{\Omega}(\forall v\in H^{1}(\Omega)^{N}) ,-(divu_{\infty}, q)_{\Omega}=0(\forall q\in L^{2}(\Omega)) \cdots\cdots incompressibility condition.\end{array}$ (12)

Notice that $u_{\infty}$ is unique but $p_{\infty}\in L_{0}^{2}(\Omega)$ is not so when considered over the whole $L^{2}(\Omega)$ .
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For Frierdrichs-Keller meshes,

kernel of $div|_{(V_{0}^{h})^{2}}$ for $k=1$ is $\{0\}.$

Figure 1: Triangular meshes of Frierdrichs-Keller type for a square domain

4 FEM based on [DF]

The most standard FEM are based on the $N$-simplexes and the piecewise polynomial spaces
$P^{k}(k\in \mathbb{N})$ . More specifically, we consider $a$ (regular) family of triangulations $\{\mathcal{T}^{h}\}_{h>0}$ of $\Omega$

by $N$-simplexes $(K’ s)$ , and introduce the finite element spaces

$V^{h}=\{v\in H^{1}(\Omega);v|K\in P^{k}(\forall K\in \mathcal{T}^{h} V_{0}^{h}=V^{h}\cap H_{0}^{1}(\Omega)$ . (13)

Then our discrete problem based on [DF] for each $\mathcal{T}^{h}$ is to find $u_{h}\in(V_{0}^{h})^{N}$ that satisfies

$[DF]_{h}$ $\lambda(divu_{h},divv_{h})_{\Omega}+2\mu\sum_{i,j=1}^{N}(e_{ij}(u_{h}), e_{ij}(v_{h}))_{\Omega}=(f, v_{h})_{\Omega}(\forall v_{h}\in(V_{0}^{h})^{N})$ . (14)

Unfortunately, such finite element models usually behave very poorly when $\lambda$ becomes

larger (Locking). In fact, for some meshes such as the Friedrichs-Keller ones (Fig. 1), $u_{h}$

obtained by the piecewise linear $(P^{1})$ triangular elements tends to zero to keep the divergence
term small, since we have the estimation $\lambda||divu_{h}||_{\Omega}^{2}\leq C||f||_{\Omega}^{2}$ and the condition $divu_{h}=0$

implies $u_{h}=0$ under the pure homogeneous Dirichlet condition.

5 FEM based on [MF]

This approach uses $p$ besides $u$ as independent unknown functions, so that we must also
prepare a finite element element space $W^{h}\subset L_{0}^{2}(\Omega)$ for each $\mathcal{T}^{h}.$

$[MF]_{h}$ Given $f\in L^{2}(\Omega)$ , find $\{u_{h}, p_{h}\}\in(V_{0}^{h})^{N}\cross W^{h}$ that satisfies

$\{\begin{array}{ll}2\mu\sum_{i,j=1}^{N}(e_{ij}(u_{h}), e_{ij}(v_{h}))_{\Omega}-\frac{\lambda}{\lambda_{B}}(p_{h},divv_{h})_{\Omega}=(f, v_{h})_{\Omega} (\forall v_{h}\in(V_{0}^{h})^{N}) ,-\frac{\lambda}{\lambda_{B}}[(divu_{h}, q_{h})_{\Omega}+\lambda_{B}^{-1}(p_{h}, q_{h})_{\Omega}]=0 (\forall q_{h}\in W^{h}) .\end{array}$ (15)

But for this approach to behave nicely, we should take full care of the combination of
$u_{h}$ and $p_{h}$ to satisfy the discrete inf-sup condition. A typical approach is to use $(V_{0}^{h})^{N}$ based
on $P^{k}$ for $u_{h}$ and also $W^{h}$ based on continuous or discontinuous $P^{k_{p}}$ for $p_{h}$ . Usually, we
choose $k_{p}$ to be smaller than $k$ , but the validity of such approximations depends strongly on
the arrangement of nodes as well. For example, the $P^{1}-P^{0}$ triangle (continuous $P^{1}$ for $u_{h}$

and discontinuous $P^{0}$ for $p_{h}$ ) is not appropriate, while $P^{2}-P^{0}$ triangle works. Moreover,
$P^{2}$ -cont. $P^{1}$ works, while $P^{2}$ -discont. $P^{1}$ behaves badly. See Fig.2 for a few typical combi-
nations, and Boffi-Brezzi-Fortin[6] for more examples.
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$P^{1}$ for $u$
$P^{0}$ for $p$

$P^{2}$ for $u$
$\mu$ for $p$

$P^{2}$ for $u$ discont.Pl for $p$
$P^{2}$ for $u$ cont.Pl for $p$

Figure 2: Some combinations of $u$ and $p$ for triangles

To analyze $[MF]_{h}$ , it is essential to show the following discrete inf-sup condition: There
exists a constant $K>0$ such that, $\forall h>0,$

$inf\sup \underline{(divv_{h},q_{h})_{\Omega}}\geq K$ . (16)
$v_{h}\in(V_{0}^{h})^{N}\backslash \{0I_{q_{h}\in W_{0}^{h}\backslash \{0\}}\Vert v_{h}\Vert_{H_{0}^{1}(\Omega)^{N}}\cdot\Vert q_{h}\Vert_{\Omega}$

A typical approach to show the above is to construct a Fortin operator $\Pi_{h}^{F}$ : $H_{0}^{1}(\Omega)^{N}arrow$

$(V_{0}^{h})^{N};\forall v\in H_{0}^{1}(\Omega)^{N},$

$||\Pi_{h}^{F}v||_{H^{1}(\Omega)^{N}}\leq C||v||_{H^{1}(\Omega)^{N}}, (div(\Pi_{h}^{F}v-v), q_{h})_{\Omega}=0;\forall q_{h}\in W^{h}$ . (17)

A number of trials have been made to find such $\Pi_{h}^{F}[6]$ , though it is not so easy a task.

6 Hybrid discontinuous Galerkin FEM

We can also use discontinuous, more flexible approximate displacements based on the hybrid
discontinuous Galerkin FEM (HDG FEM). In this case, we use discontinuous element-wise
polynomial functions for $u$ (and p) and also the so-called fluxes $\hat{u}$ (inter-element displace-
ments) as independent unknown functions [8, 13]. On the other hand, in the original discon-
tinuous Galerkin (DG) FEM, fluxes are calculated from $v[2].$

We will consider only the 2-D cases $(N=2)$, and assume that $\Omega$ is a bounded polygonal
domain with boundary $\partial\Omega$ . Moreover, we will also use (possibly fractional) Sobolev spaces
$W^{s,p}(\Omega)$ and $W_{0}^{s,p}(\Omega)$ for $1\leq p\leq\infty,$ $s\geq 0$ , whose norm and standard semi-norm are denoted
by $||\cdot||_{s,p,\Omega}$ and $|\cdot|_{s,p,\Omega}$ , respectively. Moreover, $s$ is omitted when $s=0$. When $p=2$, they
are also written by $H^{s}(\Omega)$ and $H_{0}^{s}(\Omega)$ , and the the subscript $p$ in the norms and semi-norms is
omitted. We will essentially deal with the Hilbertian cases $(p=2)$ , but sometimes consider
more general cases. To take the consistency between the case $p=2$ and others $(p\neq 2)$ for
(semi-)norms, we for example define $\Vert\nabla u||_{p,\Omega}$ by $|| \nabla u||_{p,\Omega}^{p}=\sum_{i=1}^{2}||\partial u\int\partial x_{i}\Vert_{p,\Omega}^{p}$ for $1\leq p<\infty$

with the usual modification for $p=\infty.$
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6.1 Triangulations by finite elements

We will use $\{\mathcal{T}^{h}\}_{h>0}$ as a “regular family of triangulations of $\Omega$ . The precise meaning of
“regular” is omitted here (see e.g. [3, 12 roughly speaking, it means that the shapes of
finite elements (see below) are not too much distorted and their sizes are comparable. In
the present settings, each triangulation $\mathcal{T}^{h}$ consists of finite number of bounded $m$-polygonal
finite elements $K’ s$ , where $m$ is an integer such that $3\leq m\leq M$ ($M\geq 3$ is a constant) and
can differ with $K$ . The boundary of $K\in \mathcal{T}^{h}$ is a closed simple polygonal line and denoted by
$\partial K$ . Notice here that each finite element (or element, in short) $K$ is not necessarily convex
and vertexes with the flat angle are allowed. The number $h_{K}$ stands for the diameter of $K,$

and the mesh parameter $h$ of the triangulation is defined by $h= \max_{K\in \mathcal{T}^{h}}h_{K}$ . An (open) edge
of $K$ is designated by $e$ , and its length by $|e|$ . We define $S^{K}$ and $S^{h}$ as the sets of all edges in
$K\in \mathcal{T}^{h}$ and $\mathcal{T}^{h}$ , respectively. Moreover, $\Gamma^{h}=\bigcup_{e\in S^{h}}\overline{e}$ is called the skeleton of $\mathcal{T}^{h}$ . Almost
everywhere on $\partial\Omega$ and $\partial K$, we can define the unit outward normal vector $n=\{n_{1},n_{2}\}.$

As duality pairings or inner products related to each element $K\in \mathcal{T}^{h}$ , we will use:

$)_{K}$ : duality pairing between $L^{p}(K)^{\ell}$ and $L^{q}(K)^{\ell}(\ell=1, 2, 1/p+1/q=1)$ as the extension
of the inner product of $L^{2}(K)^{\ell}$ , i. e., for example for $\ell=1,$ $(u, v)_{K}= \int_{K}$ uvdx $(u\in L^{p}(K)$ ,

$v\in L^{q}(K))$ ,

$]_{\partial K},$ $]_{e}$ , resp.) : duality pairing between $L^{p}(\partial K)^{\ell}$ ($L^{p}(e)^{\ell}$ for edge $e\in S^{K}$ , resp.) and
$L^{q}(\partial K)^{\ell}$ ($L^{q}(e)^{f}$ , resp.) $(\ell=1,2,1/p+1/q=1)$ as the extension of the inner product
of $L^{2}(\partial K)^{\ell}$ ($L^{2}(e)^{\ell}$ , resp.).

Moreover, $L^{p}$ type norms related to $K$ are denoted by:

$||\cdot||_{p,K}$ : norm of $L^{p}(K)^{\ell}(\ell=1,2)$ ,
$|\cdot|_{p,\partial K}$ $(|\cdot|_{p,e},$ resp. $)$ : norm of $L^{p}(\partial K)^{f}$ ($L^{p}(e)^{\ell}$ , resp.) $(\ell=1,2)$ .

We will often omit the suffix $p$ of norms and inner products for $p=2.$

Figure 3: $K,$ $K’,$ $e,$ $u$ and $\hat{u}$

6.2 Function spaces dependent on $\mathcal{T}^{h}$

For our purposes, it is essential to use the broken (or piecewise) Sobolev space $\Pi_{K\in \mathcal{T}^{h}}W^{s,p}(K)$

$(1\leq p\leq\infty, s>0)$ on $\mathcal{T}^{h}$ , which is identified with

$W^{s,p}(\mathcal{T}^{h})=\{v\in L^{p}(\Omega);v|_{K}\in W^{s,p}(K)(\forall K\in\mathcal{T}^{h})\}, H^{s}(\mathcal{T}^{h})=W^{s,2}(\mathcal{T}^{h})$ . (18)
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I is to be noted that, for $v\in W^{1/p+\gamma,p}(\mathcal{T}^{h})(\gamma>0)$ , the trace v $|_{\partial K}$ of $v|_{K}(K\in \mathcal{T}^{h})$ to $\partial K$ belongs
to $L^{p}(\partial K)$ , and may be double-valued on an inter-element edge $e$ shared by two elements $K$

and $K’:(v|_{K})|_{e}$ may not coincide with $(v|_{K’})|_{e}.$

In HDG FEM, we also use $U$ functions on the skeleton $\Gamma^{h}$ , which are called numerical

fluxes. It is important that each $\hat{v}\in L^{p}(\Gamma^{h})$ is single-valued on $\Gamma^{h}$ , unlike the traces of
$v\in Hz^{\iota_{+\gamma}}(\mathcal{T}^{h})(\gamma>0)$ to $\Gamma^{h}$ . To account for the homogeneous Dirichlet condition, we also

introduce the following space on $\Gamma^{h}$ :

$L_{D}^{p}(\Gamma^{h})=\{\hat{v}\in L^{p}(\Gamma^{h});\hat{v}=0 on \partial\Omega\}$ (19)

In the HDG methods, the numerical flux $\hat{v}$ is independent of the function $v$ taken for

example from $W^{1,p}(\mathcal{T}^{h})$ . On the other hand, in the original DG methods, the flux is rather

a subsidiary function, and, when necessary, it is derived from $v$ . We will only consider the

most typical derivation of $\hat{v}$ : if $e\in S^{h}$ is shared by two elements $K$ and $K’,$ $\hat{v}|e$ is given by

$\hat{v}|_{e}=\frac{1}{2}((v|_{K})|_{e}+(v|_{K’})|_{e})$ , (20)

while if $e\subset\partial\Omega,$ $\hat{v}|_{e}$ is taken as either $0$ or $v|_{e}$ in accordance with the homogeneous Dirichlet

condition is considered or not [2]. The spaces thus induced are also denoted by $0^{h}$ and $O_{D}^{h}.$

Over $W^{1,p}(\mathcal{T}^{h})\cross L^{p}(\Gamma^{h})$ , define $W^{1,p}$ -type semi-norm and norm for $\{v, \hat{v}\}\in W^{1,p}(\mathcal{T}^{h})\cross$

$L^{p}(\Gamma^{h})$ respectively by

$| \{v, \hat{v}\}|_{1,p,h}^{p}=||\nabla_{h}v||_{p,\Omega}^{p}+\sum_{K\in \mathcal{T}^{h}}\sum_{e\in S^{K}}\frac{1}{|e|^{p-1}}|v-\hat{v}|_{p,e}^{p},$ $||\{v, \hat{v}\}||_{1,p,h}^{p}=\{v, \hat{v}\}|_{1,p,h}^{p}+||v||_{p,\Omega}^{p}$ , (21)

where $\nabla_{h}v\in W^{1,p}(\mathcal{T}^{h})^{2}$ is characterized by $(\nabla_{h}v)|K=\nabla(v|K)\in L^{p}(K)(\forall K\in \mathcal{T}^{h})$ . The
last term in $|\{v, \hat{v}\}|_{1,p,h}^{p}$ is used as a measure of discontinuity of $v$ along the inter-element
boundaries together with the discrepancy of $v$ from the Dirichlet condition on $\partial\Omega$ . A similar
term with some coefficients will be used later as the interior penalty term.

6.3 Finite element spaces for HDG FEM

For $k\in N$ , let us prepare the following finite dimensional spaces:

$U^{h}=\Pi_{K\in \mathcal{T}^{h}}P^{k}(K)\subset W^{2,\infty}(\mathcal{T}^{h})$ , (22)

$\hat{U}^{h}=\Pi_{e\in\epsilon}hP^{k}(e) (or \Pi_{e\in\epsilon^{h}}P^{k}(e)\cap C(\Gamma^{h}))\subset L^{\infty}(\Gamma^{h}) , \hat{[Ucirc]}_{D}^{h}=\hat{U}^{h}\cap L_{D}^{\infty}(\Gamma^{h})$ , (23)

where $P^{k}(K)$ and $P^{k}(e)$ are polynomial spaces on $K$ and $e$ of degree $\leq k$ , respectively. For
$\hat{U}^{h}$ , the case $0_{h}\subset C(\Gamma^{h})$ (space of continuous numerical fluxes) is in a sense natural as the
space of traces from $W^{1,p}(\Omega)$ to $\Gamma^{h}$ at least when $p\geq 2$ . However, $0^{h}$ whose elements can be
discontinuous at vertexes is also used and may be sometimes superior to the continuous one.

Now typical examples of finite element spaces used for approximating scalar functions
in $W^{1,p}(\Omega)$ and $W_{0}^{1,p}(\Omega)$ are, respectively,

$V^{h}=U^{h}\cross 0^{h}\subset W^{2,\infty}(\mathcal{T}^{h})\cross L^{\infty}(\Gamma^{h})$ , $V_{D}^{h}=U^{h}\cross O_{D}^{h}\subset W^{2,\infty}(\mathcal{T}^{h})\cross L_{D}^{\infty}(\Gamma^{h})$ . (24)

As was already noted, the approximate flux $\hat{v}$ is derived from $v\in U^{h}$ in the original DG
FEM, so that $0^{h}$ and $0_{D}^{h}$ are not explicitly defined but determined from $U^{h}$ implicitly.
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6.4 Lifting operators

In DG FEM, various functions on edges and $\Gamma^{h}$ appear and play essential roles. To associate
them with some functions on $K’ s$ , we often use the so-called lifting operators, whose typical
examples are introduced below.

For $K\in \mathcal{T}^{h}$ and the former $k\in \mathbb{N}$ , let us introduce $Q^{K}\subset L^{\infty}(K)$ as

$Q^{K}=P^{k}(K)$ or $P^{k-1}(K)$ . (25)

Then the local lifting operators $R_{Ki}(i=1,2)$ : $g\in L^{p}(\partial K)\mapsto\xi_{j}\in Q^{K}$ are defined by

$(\xi_{i}, \eta)_{K}=[g, \eta n_{i}]_{\partial K}(\forall\eta\in Q^{K})$ , (26)

where $n=\{n_{1}, n_{2}\}$ is the outward unit normal on $\partial K$ . Clearly, $\xi_{i}=R_{Ki}g$ exists uniquely for
each $i(=1,2)$ .

The global lifting operators $R_{hi}(i=1,2)$ are given, roughly speaking, by assembling the
local ones element by element. More precisely, with $Q^{h}:=\Pi_{K\in \mathcal{T}^{h}}Q^{K}\subset L^{\infty}(\Omega)$ , $R_{hi}$ for each
$i\in\{1$ , 2 $\}$ is defined by

$R_{hi}:\tilde{g}=\{g_{\partial K}\}_{K\in \mathcal{T}^{h}}\in\Pi_{K\in \mathcal{T}^{h}}L^{p}(\partial K)\mapsto\{R_{Ki}g_{\partial K}\}_{K\in \mathcal{T}^{h}}\in Q^{h}$ (27)

The lifting operators of the present form are used to approximate such a boundary integral
$[g, n_{i}\partial u/\partial x_{i}]_{\partial K}(i\in\{1,2\})$ by an integral over $K$ . If $u$ is approximated by a $P^{k}$ function $u_{h}$ in
$K,$ $\partial u_{h}/\partial x_{j}|_{K}$ is a $P^{k-1}$ function, so that $(\xi_{i}, \eta)=[g, n_{i}\eta]_{\partial K}(\xi_{i}=R_{Ki}g, \eta\in P^{k} or P^{k-1})$ gives

$(R_{Ki}g, \partial u_{h}/\partial x_{i})_{K}=[g, n_{j}\partial u_{h}/\partial x_{j}]_{\partial K}(i=1,2)$ . (28)

Moreover, when $k=1$ and $Q^{K}=P^{0}(K)$ , any $P^{1}$ function $v_{h}$ in $K$ satisfies $(\partial v_{h}/\partial x_{j}, \eta)_{K}=$

$[v_{h}, n_{i}\eta]_{\partial K}$ by the Gauss formula, so that the relation $(R_{Ki}v_{h}, \eta)_{K}=[v_{h}, n_{i}\eta]_{\partial K}$ recovers $\partial v_{h}/\partial x_{i},$

i.e.,
$R_{Ki}(v_{h}|_{\partial K})=\partial v_{h}/\partial x_{i}(k=1, Q^{K}=P^{0}(K))$ . (29)

It is to be noted that the present flux $\hat{v}\in L^{p}(\Gamma^{h})$ is single-valued on $e\in S^{h}$ , and is
considered an element of $\Pi_{K\in \mathcal{T}^{h}}L^{p}(\partial K)$ . On the other hand, the trace of $v\in W^{1,p}(\mathcal{T}^{h})$ to $e$

can be double-valued. To use $R_{hi}$ to such $v$ , let us introduce the operator:

$S_{h}:v\in W^{1,p}(\mathcal{T}^{h})\mapsto\{v|_{\partial K}\}_{K\in \mathcal{T}^{h}}\in\Pi_{K\in \mathcal{T}^{h}}L^{p}(\partial K)$ . (30)

By using $S_{h}$ , we can apply $R_{hi}(i=1,2)$ to an element such as $S_{h}v-\hat{v}$ , which belongs to
$\Pi_{K\in \mathcal{T}^{h}}L^{p}(\partial K)$ (also to $\Pi_{K\in \mathcal{T}^{h}}L^{\infty}(\partial K)$ in the present choice of $V^{h}$ in (24) and $Q^{K}$ in (25)), the
domain of definition of $R_{hi}.$

7 Some theoretical results for DG FEM

In this section, we will present some theoretical results for DG FEM. In the former parts, the
functions are essentially scalar ones, while vector functions will be also considered later. We
will essentially consider the cases for $1<p<\infty$ , although some results may also hold for
$p=1$ and/or $p=\infty.$
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7.1 Regularization of discontinuous functions

7.1.1 Assumptions on the family of triangulations

To derive various theoretical results for HDG FEM, we must impose some assumptions on
$\{\mathcal{T}^{h}\}_{h>0}$ . We have already stated that the number of elements in $\mathcal{T}^{h}$ is finite, and the number
of edges of each bounded polygonal finite element $K\in \mathcal{T}^{h}$ is bounded from above by a
positive integer $M$ independently of $h$ and $K[3$ , 12$].$

We add a geometrical assumption called the chunkiness condition due to Deny-Lions and
Brenner-Scott [3]. That is, for any $h>0$ and $K\in \mathcal{T}^{h}$ , there exists an open disk $D_{K}$ of radius
$\rho_{K}>0$ inscribed to $K$ such that $K$ is star-shaped with respect to any points in $D_{K}$ and

$\rho_{K}/h_{k}\geq\eta$ , (31)

where $\eta$ is a positive constant common to all the elements in the family $\{\mathcal{T}^{h}\}_{h>0}.$

For the above $D_{K}$ of $K$, let us denote its center by $C^{K}$ . For each edge $e\in S^{K}$ , define by
$\theta_{e}$ the interior angle at $C^{K}$ of the triangle composed of $C^{K}$ and $e$ . Then, we further assume,

for a positive constant $\theta_{0},$

$\theta_{e}\geq\theta_{0}(\forall h>0, \forall K\in \mathcal{T}^{h}, \forall e\in S^{K})$ . (32)

From this assumption, we can conclude the finiteness of number of edges of $K$ but also that
the edge length $|e|$ is bounded from below by a constant times $h_{K}.$

7.1.2 Evaluation of lifting operators by interior penalty terms

For analyzing the DG method using lifting operators, we must evaluate them in terms of the
interior penalty terms. To do this, we can use the duality operators from $L^{p}(K)$ to $L^{q}(K)$

$(1<p<\infty, q=p/(p-1))[5$ , 7 $]$ , and then we have the following results.

Lemma 1 For $h>0,$ $K\in \mathcal{T}^{h}$ and $i=1$ , 2, it holds for $g\in L^{p}(\partial K)$ that

$||R_{Ki}g||_{p,K} \leq C_{p}[\sum_{e\in\epsilon^{\kappa}}\frac{1}{|e|p-1}|g|_{p,e}^{p}]^{\iota/p}$ (33)

where $C_{p}>0$ is dependent on $p$ but independent of $g,$ $h,$ $K$ and $i.$

7.1.3 Vertex averaging operator

Let us first consider the vertex averaging operator for the numerical fluxes. Essentially the
same idea was introduced by Brenner [4] for the original DG FEM, and has been used in
many literatures. In the HDG FEM, such averaging process is unnecessary if $\hat{[Ucirc]}^{h}\subset C(\Gamma^{h})$ ,

while it is effective in general HDG and original DG FEM where numerical fluxes may be
discontinuous at vertexes.

Let us consider the numerical flux $\hat{v}_{h}\in 0^{h}$ , where $O^{h}$ is either independent of $U^{h}$ in the
present HDG FEM or derived from $U^{h}$ in the original (non-hybrid) DG FEM. In any cases,

they are piecewise polynomials on $\Gamma^{h}$ . Then for each vertex $p\in\Gamma^{h}$ , define $(\ovalbox{\tt\small REJECT}_{h}v_{h})(p)$ by

$( \ovalbox{\tt\small REJECT}_{h}\hat{v}_{h})(p)=\frac{1}{|T_{p}|}\sum_{e\in^{\backslash }f_{p}}\lim_{q\in earrow q}\hat{v}_{h}(q)$ , (34)
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where $T_{p}$ is the set of edges that have $p$ as an endpoint, i.e., $T_{p}=\{e\in S^{h};p\in\overline{e}\}$ , and $|Y_{p}|$

is the number of edges in $T_{p}$ , which is finite and bounded from above by a positive constant
under appropriate regularity conditions on $\{\mathcal{T}^{h}\}_{h>0}$ . For a continuous flux, it clearly holds
that $(\ovalbox{\tt\small REJECT}_{h}\hat{v}_{h})(p)=\hat{v}_{h}(p)$ for any vertex $p\in\Gamma^{h}.$

As Lemma 2.1 of [4], the following lemma holds.

Lemma 2 There exists a positive constant common to $\{\mathcal{T}^{h}\}_{h>0}$ such that, for any $\{v_{h}, \hat{v}_{h}\}\in$

$U^{h}\cross O^{h}$ , any vertex $p\in\Gamma^{h}$ and any $e\in Y_{p},$

$| \lim_{q\in earrow p}\hat{v}_{h}(q)-(\ovalbox{\tt\small REJECT}_{h}\hat{v}_{h})(p)|\leq C\sum_{e\in T_{p}}\sum_{K\in \mathcal{T}^{e}}|\lim_{q\in Karrow p}v_{h}(q)-\lim_{q\in earrow p}\hat{v}_{h}(q^{*})|$
, (35)

where $\mathcal{T}^{e}$ is the set of elements that have $e\in S^{h}$ as their edge, i. e., $\mathcal{T}^{e}=\{K\in \mathcal{T}^{h};e\subset\partial K\}.$

7.1.4 Discrete inverse trace theorems

We will introduce a $2D$ discrete inverse trace, or trace lifting, operator, which maps continu-
ous numerical fluxes in $\hat{U}^{h}\subset C(\partial K)$ to functions in $W^{1,p}(K)$ .

Let us state the trivial ID discrete trace theorem, which is shown by using the linear
interpolation functions with two end-points used as the sampling points.

Lemma 3 Let $I=[0, L]$ for $L>0$, and $a,$
$b\in \mathbb{R}$ . Then there exists a unique linear polyno-

mialfunction $\hat{v}\in C(I)$ such that $\hat{v}(O)=a,$ $\hat{v}(L)=b$, and

$| \hat{v}|_{pJ}\leq(\frac{2^{p-1}L}{p+1})^{1/p}(|a|^{p}+|b|^{p})^{1/p}(1\leq p<\infty)$ , $| \hat{v}|_{\infty J}\leq\max\{|a|, |b|\}(p=\infty)$ , (36)

$where|\cdot|_{pJ}$ denotes the norm over $L^{p}(I)$ .

The following lemma is a discrete analog of the inverse trace theorem, but in the orig-
inal inverse trace theorem, functions on $\partial K$ are taken from $W^{1-1/p,p}(\partial K)$ , the trace space
of $W^{1,p}(K)$ . The assumption $\hat{v}\in C(\partial K)$ below is essential for $\hat{v}$ to belong to $W^{1-1/p,p}(\partial K)$

especially when $p\geq 2.$

Lemma 4 Let $h>0,$ $K\in \mathcal{T}^{h},$ $k\in \mathbb{N},$ $1<p<\infty$ and $\hat{v}\in\Pi_{e\in S^{K}}P^{k}(e)\cap C(\partial K)$ . Then there
exists a function $v\in W^{1,p}(K)$ such that $v|_{\partial K}=\hat{v}$ and

$|v|_{1,p,K}+h_{K}^{-1}||v||_{p,K}\leq C_{p}h_{K}^{1/p-1}|\hat{v}|_{p,\partial K}$ , (37)

where $h_{K}$ is the diameter of $K$, and $C_{p}$ is a positive constant depending only on $p$ under the
present regularity conditions on $\{\mathcal{T}^{h}\}_{h>0}.$

7.1.5 Regularization of discontinuous functions in $U^{h}$

By Lemmas 2 and 3, we can construct a continuous flux from the original one, and the
difference between them is bounded by the interior penalty. Then using Lemma 4 and the
above continuous flux, we obtain a $W^{1,p}(\Omega)$ function, whose difference from the original
$W^{1,p}(\mathcal{T}^{h})$ function is again evaluated by the interior penalty term.

The present process is essentially the same as the use of the reconstruction presented by
Brenner [4], and we have the following results.
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Lemma 5 Let us consider $\{\mathcal{T}^{h}\}_{h>0}$ and $\{v_{h}, \hat{v}_{h}\}\in U^{h}\cross\hat{U}^{h}$ associated with a $\mathcal{T}^{h}$ . Then there
exists a function $v^{h}\in W^{1,p}(\Omega)$ such that

$|| \nabla v^{h}-\nabla_{h}v_{h}||_{p,\Omega}+h^{-1}||v^{h}-v_{h}\Vert_{p,\Omega}\leq C_{p}(\sum_{K\in \mathcal{T}^{h}}\sum_{e\in S^{K}}\frac{1}{|e|^{p-1}}|v_{h}-\hat{v}_{h}|_{p,e}^{p})^{1/p}(h=\max_{K\in \mathcal{T}^{h}}h_{K})$ , (38)

where $C_{p}>0$ depends only on $p$ under the present regularity conditions on $\{\mathcal{T}^{h}\}_{h>0}.$

Using the above results, we can derive the discrete versions of the Poincar\’e-Friedrichs

inequalities, the Rellich-Kondrashov theorem, the Kom inequalities etc., which are all im-
portant tools in numerical functional analysis.

7.2 $2D$ discrete Rellich-Kondrashov theorem

Since $W^{1,p}(\mathcal{T}^{h})$ is much wider than $W^{1,p}(\Omega)$ , we must prove various discrete versions of the-
orems related to the Sobolev spaces such as the Rellich-Kondrashov compactness theorem.
The author derived the Rellich-type theorem $(p=2)[12$, 14$]$ , and here give its extension
to more general cases, i.e., discrete Rellich-Kondrashov theorem by using the discrete trace

lifting theorem and Lemma 1. It is to be noted that the strong convergence in $L^{p}(\Omega)$ below
is generalized to more general values other than $p$ depending on the value of $p$ , although we
omit the detail here.

Theorem 1 Under the regularity conditions [3, 12] of $\{\mathcal{T}^{h}\}_{h>0}$ , consider anyfamily $\{\{u_{h}, \hat{u}_{h}\}\in$

$V^{h}\}_{h>0}$ $(\{\{u_{h},\hat{u}_{h}\}\in V_{D}^{h}\}_{h>0},$ respectively) associated to $\{\mathcal{T}^{h}\}_{h>0}$ such $that|\{u_{h}, \hat{u}_{h}\}|_{1,p,h}^{p}+||u_{h}||_{p,\Omega}^{p}\leq$

$1$ . Then there exist $u_{0}\in W^{1,p}(\Omega)$ ($u_{0}\in W_{0}^{1,p}(\Omega)$, respectively) and a sub-family, again denoted
by $\{\{u_{h}, \hat{u}_{h}\}\}_{h>0}$ , such that as $h\downarrow 0$

$u_{h}arrow u_{0}$ strongly in $L^{p}(\Omega)$ , $u_{h}|_{\partial\Omega}arrow 0$ strongly in $L^{p}(\partial\Omega)$ if $\{u_{h}, \hat{u}_{h}\}\in V_{D}^{h}$ , (39)

$\nabla_{h}u_{h}+R_{h}(\hat{u}_{h}-S_{h}u_{h})arrow\nabla u_{0}$ weakly in $L^{p}(\Omega)^{2}$ with $R_{h}=\{R_{h1},R_{h2}\}$ . (40)

7.3 Approximate derivatives in DG FEM

In view of the former theorem, the lifting term in $\nabla_{h}u_{h}+R_{h}(\hat{u}_{h}-S_{h}u_{h})$ is essential, and
is related to the jumps on the inter-element boundaries: even when this term is not used,

something more or less alike is necessary as an alternative.
As an approximation of usual derivative $\partial v/\partial x_{j}(i=1,2)$ for $v\in H^{1}(\Omega)$ , we will use the

following $\partial_{h,i}\{v, \hat{v}\}$ for $\{v, \hat{v}\}\in H^{1}(\mathcal{T}^{h})\cross L^{2}(\Gamma^{h})$ based on the lifting operator $R_{Ki}$ :

$(\partial_{h,i}\{v,\hat{v}\})|_{K}=\partial(v|_{K})/\partial x_{i}+R_{Ki}(\hat{v}|_{\partial K}-(v|_{K})|_{\partial K})(i=1,2)$ .

In the present HDG FEM, we will use such approximate derivatives instead of the usual ones
in the classical FEM.
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8 $2D$ plain strain problem

8.1 Preparations for HDG FEM

As the $2D$ displacement in our approach, we will use $\tilde{u}=\{u, \hat{u}\}\in H^{1}(\mathcal{T}^{h})^{2}\cross L^{2}(\Gamma^{h})^{2}$ with
$u=\{u_{1}, u_{2}\}$ and \^u $=$ $\{\hat{u}_{1}, \hat{u}_{2}\}$ . Then, as approximate derivatives to be used for approximate
strains, we adopt $\partial_{h,i}\{v, \hat{v}\}(i=1,2)$ for $\{v, \hat{v}\}\in H^{1}(\mathcal{T}^{h})^{2}\cross L^{2}(\Gamma^{h})^{2}$ as proposed in the

preceding subsection. Thus the approximate strains $e_{h,ij}(\tilde{u})(1\leq i, j\leq 2)$ and divergence are
expressed by

$e_{h,ij}( \tilde{u})|_{K}=\frac{1}{2}(\partial_{h,j}\{u_{j},\hat{u}_{i}\}+\partial_{h,i}\{u_{j},\hat{u}_{j}\}) , div_{h}\tilde{u}=\sum_{i=1}^{2}e_{h,ii}(\tilde{u})$ , (41)

while the stresses are derived from the strains by the generalized Hooke law:

$s_{h,ij}(\tilde{u})=\lambda\delta_{ij}div_{h}\tilde{u}+2\mu e_{h,ij}(\tilde{u})$ $(1\leq i, j\leq 2)$ with $p_{h}(\tilde{u})=-\lambda_{B}div_{h}\tilde{u}$ . (42)

We will essentially use the following bilinear form for $\tilde{u},$
$\tilde{v}\in H^{\frac{3}{2}+\gamma}(\mathcal{T}^{h})^{2}\cross L^{2}(\Gamma^{h})^{2}$ with

$\gamma>0$ :

$a_{h,\sigma}( \tilde{u},\tilde{v})=\sum_{i,j=1}^{2}\{[\sum_{K\in \mathcal{T}^{h}}(e_{ij}(u), e_{ij}(v))_{K}+[\hat{u}_{i}-u_{i}, e_{ij}(v)n_{j}]_{\partial K}+[\hat{v}_{j}-v_{i}, e_{ij}(u)n_{j}]_{\partial K}]$

$+ \frac{1}{4}(R_{hj}(\hat{u}_{i}-S_{h}u_{j})+R_{hi}(\hat{u}_{j}-S_{h}u_{j}),R_{hj}(\hat{v}_{i}-S_{h}v_{i})+R_{hi}(\hat{v}_{j}-S_{h}v_{j}))_{\Omega}\}$

$+ \sigma\sum_{K\in \mathcal{T}^{h}}\sum_{e\in S^{K}}\sum_{i=1}^{2}\frac{1}{|e|}[u_{i}-\hat{u}_{i}, v_{i}-\hat{v}_{i}]_{e}$ , (43)

$d_{h}( \tilde{u},\tilde{v})=\sum_{K\in \mathcal{T}^{h}}[(divu, divv)_{K}+\sum_{i=1}^{2}([\hat{u}_{j}-u_{i}, (divv)n_{i}]_{\partial K}+[\hat{v}_{i}-v_{i},(divu)n_{i}]_{\partial K})]$

$+ \sum_{i,j=1}^{2}(R_{hi}(\hat{u}_{i}-S_{h}u_{i}),R_{hi}(\hat{v}_{i}-S_{h}v_{i}))_{\Omega}$ , (44)

where the assumption $\gamma>0$ is required to assure the existence of some traces, the last term
in $a_{h,\sigma}(\cdot, \cdot)$ is the interior penalty one, and $\sigma\geq 0$ is the penalty parameter which is usually
chosen to be 0(1). Moreover, the terms involving $R_{hi}$ ’s are omitted in some primitive DG
and HDG FEM [13], but then $\sigma$ must be chosen sufficiently large to assure the positivity of
the above bilinear forms.

8.2 Basic HDG FEM in $\tilde{u}$ only

We will use the $P^{k}$ finite element spaces (22) and (23) for $\tilde{u}=\{u,$ $u$

$\tilde{V}^{h}=(U^{h})^{2}\cross(\hat{U}^{h})^{2}, \tilde{V}_{D}^{h}=(U^{h})^{2}\cross(\hat{U}_{D}^{h})^{2}$ (45)
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Then a typical FE formulation is, for a given $f\in L^{2}(\Omega)^{2}$ , to find $\tilde{u}_{h}=\{u_{h},\hat{u}_{h}\}\in\tilde{V}_{D}^{h}s.t.$

$2\mu a_{h,\sigma}(\tilde{u}_{h},\tilde{v}_{h})+\lambda d_{h}(\tilde{u}_{h},\tilde{v}_{h})_{\Omega}=(f, v_{h})_{\Omega}(\forall\tilde{v}_{h}=\{v_{h},\hat{v}_{h}\}\in\tilde{V}_{D}^{h})$ , (46)

where we can rewrite the approximate bilinear forms by

$a_{h,\sigma}( \tilde{u}_{h},\tilde{v}_{h})=\sum_{i.j=1}^{2}(e_{h,ij}(\tilde{u}_{h}), e_{h,ij}(\tilde{v}_{h}))_{\Omega}+\sigma\sum_{K\in \mathcal{T}^{h_{e}}}\sum_{\epsilon^{K}}\sum_{i=1}^{2}\frac{1}{|e|}[u_{i}-\hat{u}_{i}, v_{i}-\hat{v}_{i}]_{e}$ , (47)

$d_{h}(\tilde{u}_{h},\tilde{v}_{h})=(div_{h}\tilde{u}_{h}, div_{h}\tilde{v}_{h})_{\Omega}$ . (48)

The unique solvability of the above problem is straightforward provided that the Kom-
type inequalities (see the subsequent subsection) are established together with some standard
requirements in DG FEM[2]. However, its behaviors as $\lambdaarrow\infty$ is not clear at present. More-
over, under appropriate regularity conditions on the exact solution, we can derive various
error estimates as routine works.

8.3 A discrete $2D$ Korn’s inequality

For the validity of the present approximation, it is again essential to show discrete versions
of Kom’s inequalities. We have shown, for $\mu/\mu$ approximation $(P^{k}(K)$ for $u_{i},$

$P^{k}(e)$ for
$\hat{u}_{j})[15]$ for $p=2$, which can be generalized for $1<p<\infty$ :

Lemma 6 There exists a constant $C_{p.\Omega}>0$ (dependent on $p(1<p<\infty)$ and $\Omega$ ), $s.t.$ , for
any small $h(0<h\leq h)$ and any $\tilde{v}_{h}=\{v_{h}, \theta_{h}\}=\{\{v_{h1}, v_{h2}\}, \{\hat{v}_{h1}, \hat{v}_{h2}\}\}\in\tilde{V}^{h},$

$\sum_{K\in \mathcal{T}^{h}}\sum_{i,j=1}^{2}\Vert\frac{1}{2}(\partial_{j}v_{hi}+\partial_{i}v_{hj})\Vert_{p,K}^{p}+\sum_{i=1}^{2}\sum_{\kappa er^{h}}\sum_{e\in8^{K}}\frac{1}{|e|^{p-1}}|v_{hi}-\hat{v}_{hi}|_{p,e}^{p}+||v_{h}||_{p,\Omega}^{p}\geq C_{p}||\tilde{v}_{h}||_{1,p,h}^{p}(49)$

where the $tenn||v||_{p,\Omega}^{p}$ can be omittedfor $\tilde{v}\in\tilde{V}_{D}^{h}.$

Remark 2 For the non-conforming $P^{1}$ triangle of Crouzeix-Raviart, $Kom$-type inequalities
do not hold. If the mesh contains the patch in Fig. 4 and $u_{h}=\{u_{h1}, u_{h2}\}$ is zero outside
$it$, this non-confonning displacement cannot satisfy Korn-type inequalities [11], although it
certainly doesfor the completely incompressible case where the divergence-free condition is
imposed element-wise, see [1]. Notice that this triangularfinite element method is the most
elementary DG FEM.

8.4 Mixed type HDG FEM in $\tilde{u}$ and $p$

It is also possible to add $p$ as an independent unknown function, and such an approach is an
mixed type HDG FEM. We introduce a space $W^{h}$ for $p$ such as $\Pi_{K\not\in\Gamma^{h}}P^{k_{p}}(K)$ with $0\leq k_{p}\leq k,$

and also use $W_{0}^{h}=W^{h}\cap L_{0}^{2}(\Omega)$ . Then a mixed HDG FEM is to find $\{\tilde{u}_{h},p_{h}\}\in\tilde{V}_{D}^{h}\cross W^{h}s.t.$

$\{\begin{array}{ll}2\mu a_{\sigma,h}(\tilde{u}_{h},\tilde{v}_{h})+\frac{\lambda}{\lambda_{B}}(p_{h},div_{h}\tilde{v}_{h})_{\Omega}=(f, v_{h})_{\Omega} ; \forall\tilde{v}_{h}\in\tilde{V}_{D}^{h} ,\frac{\lambda}{\lambda_{B}}[(div_{h}\tilde{u}_{h}, q_{h})_{\Omega}+\lambda_{B}^{-1}(p_{h}, q_{h})_{\Omega}]=0 ; \forall q\in W^{h}\end{array}$ (50)
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Figure 4: Example of patch of triangular elements

Remark3 Since $\hat{u}_{h}\in O_{D}^{h}$, we can show that $(div_{h}\tilde{u}_{h}, 1)_{\Omega}=0$ by the Green formula. Thus
the present $p_{h}$ necessarily belongs to $W_{0}^{h}$ . If $div_{h}\tilde{V}_{D}^{h}\subset W^{h}$ and $\lambda$ is finite, we have $p_{h}=$

$-\lambda_{B}div_{h}\tilde{u}_{h}$ , so that the presentformulation coincides with the one in $u$ only. Such a situation
is realized ifwe choose $k_{p}=k-1(k\geq 1)$ .

8.5 An inf-sup condition for mixed HDG FEM

For the validity of the present mixed HDG FEM, it is again essential to show some inf-sup
conditions such as: There exists a constant $K>0s.$ $t.$ , for all $h(0<h\leq h_{0})$ ,

$inf\sup \underline{(div_{h}\tilde{v},q)_{\Omega}}\geq K$ . (51)
$\tilde{v}\in v_{D^{\backslash \{\tilde{0}\}_{q\in W_{0}^{h}\backslash \{0\}}}}h||\tilde{v}||_{1,h}\cdot\Vert q||_{\Omega}$

To show the above, it is again effective to construct a Fortin operator $\Pi_{h}^{F}^{\sim}$ : $H_{0}^{1}(\Omega)^{2}arrow\tilde{V}_{D}^{h},$

which is characterized as follows: There exists a positive constant $C$ such that, for all $v\in$

$H_{0}^{1}(\Omega)^{2},$

$||\Pi_{h}^{F}v\Vert_{1,h}\leq C||v||_{H^{1}(\Omega)^{2}}\sim,$ $((div_{h}II_{h}^{F}-div)v, q_{h})_{\Omega}=0$ ; $\forall q_{h}\in W^{h}$ (52)

Although it is in general difficult to find a nice Fortin operator, it is now known that its
existence is assured in the arbitrary choice of $0\leq k_{p}\leq k$ for the polygona12D elements with
discontinuous numerical fluxes $(0^{h}=\Pi_{e\in S^{h}}P^{k_{p}}(e))[9]$ . This is in a sense an amazing result
compared with the classical mixed FEM using $u$ and $p.$

For some finite element spaces with (discontinuous) $P^{k-1}$ approximation for $W^{h}$ , the

present mixed HDG FEM give identical results to the displacement HDG FEM for finite
$\lambda$ by eliminating $p$ using the relation $p=-\lambda_{B}div_{h}\tilde{u}$ , cf. Remark 3.

On the other hand, if we add the continuity condition on the numerical fluxes $at$ vertexes
$(\hat{U}^{h}\subset C(\Gamma^{h}))$ , we can at present conclude the existence of the Fortin operators for $0\leq k_{p}\leq$

$k-2(k\geq 2)$ .
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8.6 Reduced-order numerical fluxes

In [16], Oikawa proposed the use of $P^{k-1}$ discontinuous numerical fluxes together with the
$P^{k}$ interior functions. As for the interior penalty term, the trace ($v|_{K})|_{e}$ of $v\in P^{k}(K)(K\in$

$\mathcal{T}^{h},$ $e\in S^{K})$ is replaced with its $L^{2}(e)$ projection to $P^{k-1}(e)$ . He also pointed out its relation
with the Crouzeix-Raviart $P^{1}$ nonconforming triangular element when $k=1$ and $K$ ’s are
triangles. Except for $k=1$ where Kom type inequalities may not hold, such approximations
work well for the finite element analysis of nearly incompressible media.

8.7 Initial stress problems

We have considered the case where the linear elastic media are free from the initial stresses
or strains. However, if the media are pre-stressed before further forces are applied, there may
remain initial stresses. In modeling such phenomena, we often add some linear forms to the
weak form (7). An example of such modified weak forms is given as follows:

$[DF]_{IS}$ Given $f\in L^{2}(\Omega)$ and $\{s_{ij}^{0}\}\in L^{2}(\Omega)^{4}(1\leq i, j\leq 2;s_{12}^{0}=s_{21}^{0})$, find $u\in H_{0}^{1}(\Omega)^{2}s.t.$

$\lambda(divu,divv)_{\Omega}+2\mu\sum_{i,j=1}^{N}(e_{ij}(u), e_{ij}(v))_{\Omega}=(f, v)_{\Omega}-\sum_{i,j=1}^{2}(s_{ij}^{0}, e_{ij}(v))_{\Omega}(\forall v\in H_{0}^{1}(\Omega)^{N})$ . (53)

It is clear that the solution $u$ exists uniquely in $H_{0}^{1}(\Omega)^{2}$ , but it may not be sufficiently smooth,

so that the usual error estimation in terms of $h$ may be difficult to derive.
In DG FEM for the present problem, it is a serious problem to express the right-hand

side that is valid for $\tilde{V}^{h}$ or $\tilde{V}_{D}^{h}$ . One possible remedy is to replace the strain terms $e_{ij}$ ’s in
the right-hand side with their approximations $e_{h,ij}’ s$ . Then (46) should modified as, for all
$\tilde{v}_{h}=\{v_{h}, \hat{v}_{h}\}\in\tilde{V}_{D}^{h},$

$2 \mu a_{\sigma,h}(\tilde{u}_{h},\tilde{v}_{h})+\lambda(div_{h}\tilde{u}_{h}, div_{h}\tilde{v}_{h})_{\Omega}=(f, v_{h})_{\Omega}-\sum_{i,j=1}^{2}(s_{ij}^{0}, e_{h,ij}(\tilde{v}_{h}))_{\Omega}$ (54)

We can show the strong $L^{2}$ convergence of $u_{h}$ and $\partial_{hi}\tilde{u}_{h}$ respectively to the exact $u$ and $\partial_{i}u$

by using the discrete Rellich theorem, the discrete Kom-type inequalities as well as the lower
semi-continuity of the $L^{2}$ norm, cf. [12].

9 Numerical Examples

We show some numerical results for a test problem, where the domain $\Omega$ is a unit square
defined by $\{x=\{x_{1}, x_{2}\};0<x_{1}<1, 0<x_{2}<1\}$ and the exact solution is given by

$\phi(s):=s^{2}(s-1)^{2},$ $\Phi(x)=-\frac{1}{2}\phi(x_{1})\phi(x_{2})$ , $u=rot\Phi+t\lambda^{-1}$ grad $\Phi$ , (55)

where $t\geq 0$ is a parameter. In the present calculations, we take $\lambda,$
$\mu$ and $t$ as 5000, 1 and

1, respectively. Then the boundary condition associated with the above is the homogeneous
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Dirichlet one, and $f$ is specified by applying the operator of the Navier equations to the
above $u.$

In the numerical calculations, we choose $\sigma$ unity and consider four triangulations num-
bered as $j=1$ , 2, 3, 4, which are obtained by using Gmsh [10] and by dividing each side of
the square domain into $10\cross 2^{j-1}$ segments with equal length.

As finite element methods, we considered three types of $P^{1}$ -based ones:

1. CG: Classical conforming $P^{1}$ triangular element.

2. DG-D: Hybrid DG triangular element based on discontinuous $P^{1}$ -u and discontinuous
$P^{1}-\hat{u}$ , where the pressure can be calculated element-wise by the relation $p=-\lambda_{B}divu.$

3. DG-C: Hybrid DG triangular element based on discontinuous $P^{1}-u$ and continuous
$P^{1}-\hat{u}.$

The results are shown in Fig. 5 through 8, and we can observe that the results may
strongly depend on element types. That is, when triangulations are coarser, the results based
on CG and DG-C are very poor: the displacements are much smaller than the exact one,
which is very close to the ones based on DG-D in graphical level. The results are improved
as the triangulations become finer, but we need much more computational costs than using
the DG-D method. On the contrary, the results based on DG-D are robust to the fineness of
triangulations as is expected theoretically. It is to be noted that, for smaller $\lambda$ (not shown
here), the difference is not so severe and sometimes $CG$ may give better results.

Triangulation 1 Displacement by CG

Displacement by DG-D Displacement by DG-C

Figure 5: Triangulation 1 and computed displacements
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Triangulation 2 Displacement by CG

Displacement by DG-D Displacement by DG-C

Figure 6: Triangulation 2 and computed displacements

Triangulation 3 Displacement by CG

Displacement by DG-D Displacement by DG-C

Figure 7: Triangulation 3 and computed displacements
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Triangulation 4 Displacement by CG

Displacement by DG-D Displacement by DG-C

Figure 8: Triangulation 4 and computed displacements

10 Concluding remarks

We have surveyed fundamental finite element methods for nearly incompressible media. As
a whole, the mixed methods using the pressure $p$ as well are superior to the methods in
displacements (or velocities) only, but it is not so easy to find nice finite element models.

As alternatives, the hybrid DG FEM and their mixed variants may be promising to de-
rive more flexible finite element models that behave nicely in nearly incompressible cases,

although their practical feasibility (cost, size of discretized problems, etc.) must be carefully
tested. Finally, we have essentially omit the proofs of theoretical results, which must be
completed as soon as possible.
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