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1. INTRODUCTION

This article is a resume of the recent work [21, 22] by the authors.
We are interested in the algebraic and topological structure of the space

of solenoidal vector fields in a domain $\Omega\subset \mathbb{R}^{n},$ $n\geq 2$ . Under suitable
conditions on $\Omega$ and its boundary $\partial\Omega$ the solenoidal vector field, which is a
fundamental object in the analysis of incompressible flows, is characterized
as a vector field $u=(u_{1}, \cdots, u_{n})$ satisfying

(1.1) $divu=0in\Omega, u\cdot n=0on\partial\Omega,$

where $n$ is the unit exterior normal vector to $\partial\Omega$ . Since (1.1) is consid-
ered as a boundary value problem of one partial differential equation, it is
heuristically expected that the degree of freedom is $n-1$ for the space of
solenoidal vector fields. The aim of the study here is to describe this natural
observation with a mathematically rigorous setting. To be precise, it will
be convenient to set up our problem in an abstract manner. Let $\Omega$ be a
domain in $\mathbb{R}^{n}$ and let $X(\Omega)$ be a Banach space of functions in $\Omega$ satisfying
$C_{0}^{\infty}(\Omega)\subset X(\Omega)\subset L_{loc}^{1}(\Omega)$ . The space of solenoidal vector fields in $(X(\Omega))^{n},$

denoted by $X_{\sigma}(\Omega)$ , is defined as

(1.2) $X_{\sigma}(\Omega)=\overline{\{u\in(C_{0}^{\infty}(\Omega))^{n}|divu=0}$in $\Omega\}^{\Vert u\Vert_{X(\Omega)}}$

Here we have written $\Vert u\Vert_{X(\Omega)}$ for $\Vert u\Vert_{(X(\Omega))^{n}}$ to simplify the notation. We
call two Banach spaces $X$ and $Y$ isomorphic if there is a bounded and
bijective linear operator $L:Xarrow Y$ . We write $X\simeq Y$ when $X$ and $Y$ are
isomorphic. Then our problem is to show that $X_{\sigma}(\Omega)\simeq(X(\Omega))^{n-1}.$

In the following paragraph we assume that $\Omega=\mathbb{R}^{n}$ or

(1.3) $\Omega=\{(x’, x_{n})\in \mathbb{R}^{n-1}\cross \mathbb{R}|x_{n}>\eta(x’)\},$

数理解析研究所講究録

第 1971巻 2015年 47-58 47



where $\eta\in L_{loc}^{1}(\mathbb{R}^{n-1})$ is a given Lipschitz function, i.e., $\Vert\nabla’\eta\Vert_{L}\infty<\infty.$

When $\Omega$ is of the form (1.3) we introduce the anisotropic Lebesgue spaces

$\mathbb{R}_{+}^{n}:Y^{q_{)}r}(\Omega)$

as in [20] by using the homeomorphism $\Phi$ : $\Omega\ni x\mapsto y=\Phi(x)\in$

(1.4) $\Phi_{j}(x)=\{\begin{array}{l}x_{j}, 1\leq j\leq n-1,x_{n}-\eta(x’) , j=n.\end{array}$

That is, for $1<q,$ $r<\infty$ the Banach space $Y^{q,r}(\Omega)$ is defined as

(1.5)
$Y^{q,r}(\Omega)=\{f\in L_{loc}^{1}(\Omega)|\Vert f\Vert_{Y^{q,r}(\Omega)}=\Vertf\circ\Phi^{-1}\Vert_{L_{y_{n}}^{q}(\mathbb{R}+;L_{y’}^{r}(\mathbb{R}^{n-1}))}<\infty\}$

with the norm $\Vert$ $\Vert_{Y(\Omega)}q,r$ . The space $Y^{q,r}(\Omega)$ can be naturally defined also
for $\Omega=\mathbb{R}^{n}$ as

(1.6) $Y^{q,r}(\mathbb{R}^{n})=\{f\in L_{loc}^{1}(\mathbb{R}^{n})|\Vert f\Vert_{Y^{q,r(\mathbb{R}^{n})}}=\Vert f\Vert_{L_{x_{n}}^{q}(\mathbb{R};L_{x’}^{r}(\mathbb{R}^{n-1}))}<\infty\}.$

We note that $Y^{q_{)}q}(\Omega)$ coincides with $L^{q}(\Omega)$ . Our result is stated as follows.

Theorem 1.1 ([21, Theorem 1.1]). Let $1<q,$ $r<\infty$ and assume that $\Omega$ is

of the form (1.3) with some $\eta\in L_{loc}^{1}(\mathbb{R}^{n-1})$ satisfying $\Vert\nabla’\eta\Vert_{L}\infty<\infty$ . Then
$Y_{\sigma}^{q,r}(\Omega)\simeq(Y^{q,r}(\Omega))^{n-1}$

The isomorphism in Theorem 1.1 is constructed explicitly in terms of the
Riesz transform $\nabla’(-\triangle’)^{-1/2}$ and the Poisson semigroup $\{e^{-x_{n}(-\Delta’)^{1/2}}\}_{x_{n}\geq 0}$

in $L^{r}(\mathbb{R}^{n-1})$ , where the idea is motivated by Ukai [29] on the formula of
the Stokes semigroup in the half space. Indeed, in the case $\Omega=\mathbb{R}^{n},$ $\mathbb{R}_{+}^{n}$

this isomorphism from $Y_{\sigma}^{q.r}(\Omega)$ to $(Y^{q,r}(\Omega))^{n-1}$ has a special structure; it is
a restriction of a bounded linear operator $W$ : $(Y^{q,r}(\Omega))^{n}arrow(Y^{q,r}(\Omega))^{n-1}$

which enjoys the property

(1.7) $\{\nabla p\in(Y^{q,r}(\Omega))^{n}|p\in L_{l\circ c}^{1}(\Omega), \triangle p=0in \Omega\}$

$\subset KerW=\{f\in(Y^{q,r}(\Omega))^{n}|Wf=0\}.$

In fact, the kernel property such as (1.7) plays an important role in the
analysis of the Stokes operator in [29]. Unfortunately, for general case $\Omega\neq$

$\mathbb{R}^{n},$
$\mathbb{R}_{+}^{n}$ , the isomorphism in Theorem 1.1 is not $a$ . restriction of the operator

satisfying (1.7). Therefore, a natural question is whether we can construct
an operator $W:(Y^{q,r}(\Omega))^{n}arrow(Y^{q,r}(\Omega))^{n-1}$ so that (1.7) holds and its
restriction to $Y_{\sigma}^{q,r}(\Omega)$ defines an isomorphism from $Y_{\sigma}^{q,r}(\Omega)$ to $(Y^{q,r}(\Omega))^{n-1}.$

Our next result is as follows.

Theorem 1.2 ([21, Theorem 1.2]). Let $1<q<\infty$ and assume that $\Omega$ is

of the form (1.3) with some $\eta\in L_{loc}^{1}(\mathbb{R}^{n-1})$ satisfying $\Vert\nabla’\eta\Vert_{L}\infty<\infty$ . Then
there is a bounded linear operator $W$ : $(Y^{q,2}(\Omega))^{n}arrow(Y^{q_{)}2}(\Omega))^{n-1}$ enjoying
the following properties.
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(i) $Wsatisfie\mathcal{S}(1.7)$ for $r=2.$

(ii) The restriction $W|_{Y_{\sigma}^{q,2}(\Omega)}$
’ : $Y_{\sigma}^{q,2}(\Omega)arrow(Y^{q,2}(\Omega))^{n-1}i_{\mathcal{S}}$ an isomorphism.

When $\Omega=\mathbb{R}^{n},$ $\mathbb{R}_{+}^{n}$ the above assertion holds for $Y^{q,r}(\Omega)$ with $1<q,$ $r<\infty.$

In Theorem 1.2 so far we need a strong condition $r=2$ for the space
$Y^{q,r}(\Omega)$ except for the case $\Omega=\mathbb{R}^{n},$ $\mathbb{R}_{+}^{n}$ . This is because the regularity of
$\eta$ assumed here is rather mild, and moreover, $\eta$ in Theorem 1.2 is allowed
to behave wildly at infinity. For example, the boundary need not to be
asymptotically flat (this means $|\nabla’\eta(x)|arrow 0$ as $|x’|arrow\infty$ ) and $\eta$ may even
grow linearly as $|x’|arrow\infty$ . It seems that the existence of $W$ in Theorem
1.2 is closely related with the validity of the Helmholtz decomposition in
$(Y^{q,r}(\Omega))^{n}$ for $r=2$ (cf. [20]), and therefore, the assertion as in Theorem
1.2 might fail for some $r\neq 2$ if one does not impose any other condition
than $\Vert\nabla’\eta\Vert_{L}\infty<\infty$ ; see, e.g., [4] for a counterexample of the Helmholtz
decomposition in $L^{p}(\Omega)$ when $\Omega$ is of the form (1.3).

In these theorems we concretely construct an isomorphism in terms of
the Poisson semigroup and the Dirichlet-Neumann map associated with the
Laplace equations: $\triangle u=0$ in $\Omega,$ $u=9$ on $\partial\Omega$ . This construction is par-
ticularly nontrivial when the boundary function $\eta$ in (1.3) is not identically
zero. The key tool here is a factorization of divergence form elliptic oper-
ators in [18, 19], which is considered as an operator theoretical description
of the classical Rellich identity [27].

Thanks to (1.7), the isomorphism obtained in Theorem 1.2 is useful in the
analysis of fluid equations. Indeed, it reduces the equations describing the
motion of incompressible flows, which usually consists of $n+1$ equations
due to the unknowns of the solenoidal velocity $u=(u_{1}, \cdots, u_{n})$ and the
scalar pressure $p$ , into the equations of $n-1$ dependent variables. As a
typical example, let us consider the Stokes equations

(s) $\{\begin{array}{l}\partial_{t}u-\nu\triangle u+\nabla p=0, t>0, x\in\Omega,divu=0, t\geq 0, x\in\Omega,u=0, t>0, x\in\partial\Omega,u|_{t=0}=a, x\in\Omega.\end{array}$

Here $v>0$ is a viscosity coefficient and $a$ is a given solenoidal vector field.
By formally introducing the Helmholtz projection $P$ and the Stokes operator
$A=-P\triangle_{D}$ with the homogeneous Dirichlet boundary condition (these are
well-defined at least in the $L^{2}$ functional framework), (S) is written in the
abstract form

(1.8) $\frac{du}{dt}+vAu=0, t>0, u|_{t=0}=a.$

Let V: $(Y^{q,r}(\Omega))^{n-1}arrow Y_{\sigma}^{q,r}(\Omega)$ be an isomorphism. Then by setting

$w(t)=(w_{1}(t), \cdots, w_{n-1}(t))^{T}=V^{-1}u(t)$ ,
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we obtain the reduced equations

(RS) $\frac{dw}{dt}+\nu Bw=0,$ $t>0,$ $w|_{t=0}=V^{-1}a,$

where $B=V^{-1}AV$ . If $V^{-1}$ is a restriction of $W$ on $Y_{\sigma}^{q,r}(\Omega)$ satisfying (1.7)

then we formally have

$B=-WP\triangle_{D}V=-W(\Delta_{D}-Q\triangle_{D})V=-W\triangle_{D}V,$

where $Q=I-P$ and $\triangle_{D}$ is the Laplace operator subject to the homoge-

neous Dirichlet boundary condition. As will be shown in [22], when $\Omega$ is of
the form (1.3) with a smooth $\eta$ our isomorphism provides

(1.9) $B=-\triangle_{D}+$ lower order operators in $(Y^{q,2}(\Omega))^{n-1}$

Furthermore, we have $B=-\triangle_{D}$ in $(Y^{q,r}(\Omega))^{n-1}$ when $\Omega=\mathbb{R}^{n}$ or $\mathbb{R}_{+}^{n}$ ;

see [21]. In any cases, this reduction significantly simplifies the original
equations. The idea to achieve such a reduction is inspired by the derivation
of the solution formula for the Stokes problem in $\mathbb{R}_{+}^{n}$ in [29], although the
characterization of the space of solenoidal vector fields as in Theorems 1.1
and 1.2 is not observed in [29]; see Remark 1.1 (i) below. When $\Omega=\mathbb{R}_{+}^{n}$ (and
$\mathbb{R}^{n})$ , due to the relation $V^{-1}AV=-\triangle_{D}$ , the Stokes semigroup $\{e^{-tA}\}_{t\geq 0}$

associated with -A is expressed as $e^{-tA}=Ve^{t\Delta_{D}}V^{-1}$ . Therefore, we have

Theorem 1.3 ([21, Theorem 1.3]). Let $1<q,$ $r<\infty$ and let $\Omega=\mathbb{R}^{n}$

or $\mathbb{R}_{+}^{n}$ . Then the Stokes semigroup in $Y_{\sigma}^{q,r}(\Omega)$ and the heat semigroup in
$(Y^{q,r}(\Omega))^{n-1}$ are isomorphic. That is,

$(\{e^{-tA}\}_{t\geq 0}, Y_{\sigma}^{q,r}(\Omega))\simeq(\{e^{t\Delta_{D}}\}_{t\geq 0}, (Y^{q,r}(\Omega))^{n-1})$ .

For general $\Omega$ of the form (1.3) we have

Theorem 1.4 ([22]). Let $1<q<\infty$ and let $\Omega$ is of the form (1.3) with
$\Vert\nabla^{k}\eta\Vert_{L}\infty<\infty fork=1$ , 2, 3. Then

$(\{e^{-tA}\}_{t\geq 0}, Y_{\sigma}^{q,2}(\Omega))\simeq(\{e^{-tB}\}_{t\geq 0}, Y^{q,2}(\Omega)^{n-1})$ for $1<q<\infty.$

Here $B=-\triangle_{D}+R$ is the operator with the domain

$D(B)=D(-\triangle_{D})=\{f\in Y^{q,2}(\Omega)^{n-1}|\nabla^{k}f\in Y^{q,2}(\Omega), k=1, 2, f=0on\partial\Omega\},$

where the linear operator $R$ satisfies the estimate

$\sup_{\lambda\gg 1}\lambda^{\epsilon}\Vert R(\lambda-\triangle_{D})^{-1}\Vert_{\mathcal{L}((Yq,2})^{n-1})<\infty, 0<\epsilon<\frac{1}{2}.$
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Remark 1.1. (i) In [29, Theorem 1.1] the solution formula for $u(t)=e^{-tA}a$

in $\mathbb{R}_{+}^{n}$ is given as

(1.10) $u’(t)=e^{t\triangle_{D}}(a’+Sa_{n})-SUe^{t\triangle_{D}}(-S\cdot a’+a_{n})$ ,

(1.11) $u_{n}(t)=Ue^{t\triangle_{D}}(-S\cdot a’+a_{n})$ ,

where

(1.12) $S=\nabla’(-\triangle’)^{-1/2},$

(1.13) $(U \varphi)(x_{n})=(-\triangle’)^{1/2}\int_{0}^{x_{n}}e^{-(x_{n}-y_{n})(-\triangle^{J})^{1/2}}\varphi(\cdot, y_{n})dy_{n}.$

In fact, the map $W:(Y^{q,r}(\mathbb{R}_{+}^{n}))^{n}arrow(Y^{q_{)}r}(\mathbb{R}_{+}^{n}))^{n-1}$ is given as $W=E’+$
$SE_{n}$ , where $E’u:=u’$ and $E_{n}u:=u_{n}$ when $\Omega=\mathbb{R}_{+}^{n}$ . In the argument of
[29] the relation $(E’+SE_{n})e^{-tA}=e^{t\triangle_{D}}(E’+SE_{n})$ is already found and it
is a key to derive (1.10) -(1.11) in [29]. On the other hand, our argument
in Theorem 1.2 reveals that $E’+SE_{n}$ actually defines an isomorphism from
$Y_{\sigma}^{q,r}(\mathbb{R}_{+}^{n})$ onto $(Y^{q,r}(\mathbb{R}_{+}^{n}))^{n-1}$ , and it is also shown that such a description
is generic for a wide class of domains like (1.3) including the whole space.
Moreover, our approach leads to the isomorphic formulation between the
Stokes semigroup in $Y_{\sigma}^{q,r}(\Omega)$ and the heat (or perturbed heat) semigroup in
$(Y^{q,r}(\Omega))^{n-1}$ as in Theorem 1.3 (or in [22]).
(ii) When $\Omega=\mathbb{R}^{n}$ or $\mathbb{R}_{+}^{n}$ , it is not difficult to see that the Laplace operator
generates an analytic semigroup in $(Y^{q,r}(\Omega))^{n-1}$ . Therefore from Theorem
1.3 we see that the Stokes operator also generates an analytic semigroup in
$Y_{\sigma}^{q,r}(\Omega)$ . For the case $r=q$ , this fact has already proved in many literature,
e.g., [28, 23, 12, 29, 8, 5]. In fact, by the same reason, it is proved that
the Stokes operator admits a bounded $H^{\infty}$-calculus in $Y_{\sigma}^{q,r}(\Omega)$ . See [26,
5] for the fact that the Laplace (or Stokes) operator in $L^{p}(\Omega)$ (or $U_{\sigma}(\Omega)$

respectively) admits a bounded $H^{\infty}$-calculus.
(iii) For the case of general domains with graph boundary, unless $\Vert\nabla’\eta\Vert_{L}\infty$

is small, it is not known whether the Stokes operator generates an ana-
lytic semigroup or admits a bounded $H^{\infty}$-calculus even in the space LP $(\Omega$ $)$

$(p\neq 2)[8$ , 24$]$ . Theorem 1.4 addressed this question in the functional
setting $Y_{\sigma}^{q,2}(\Omega)$ by justifying the formula (1.9), since one can show that the
Laplace operator (with the Dirichlet boundary condition) admits a bounded
$H^{\infty}$-calculus in the space $Y_{\sigma}^{q,2}(\Omega)$ ; see [22] for details, where the result of
[19] is essentially used to obtain the estimate of the operator $R$ . We also
refer to [1, 7, 2, 10, 11] for the recent progress of the Stokes problem in
some domains with noncompact boundary. In particular, [1] recently estab-
lished the analyticity of the Stokes semigroup in the $L^{\infty}$ space in a special
two-dimensional unbounded domain such that the Helmholtz decomposition
does not hold.
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(iv) As a byproduct of our construction of the isomorphism, we obtain a
projection onto the space of solenoidal vector fields in the domain of the
form (1.3), which was found in [29, Remark 1.5] for $\Omega=\mathbb{R}_{+}^{n}$ and is different
from the standard Helmholtz projection; see Remark 3.1.

This article is organized as follows. In Section 2 we recall the result of
[18] on the factorization of some class of elliptic operators. In Section 3 we
will show how to construct the isomorphism in Theorem 1.2 without the
details of the proofs.

2. PRELIMINARIES -ELLIPTIC OPERATOR OF DIVERGENCE FORM -

In this section we recall the result of [18] for some class of second order
elliptic operators of divergence form. By the coordinate transform (1.4) the
Laplace operator $\triangle$ is transformed to an elliptic operator of divergence form
whose coefficients are independent of one variable. Taking this into mind,

we consider the second order elliptic operator in $\mathbb{R}^{n}=\{(x’, t)\in \mathbb{R}^{n-1}\cross \mathbb{R}\},$

(2.1) $\mathcal{A}=-\nabla\cdot A\nabla, A=A(x’)=(a_{i,j}(x’))_{1\leq i,j\leq n}$

Here $n\in \mathbb{N},$ $\nabla=(\nabla’, \partial_{n})^{T}$ with $\nabla’=(\partial_{1}, \cdots, \partial_{n-1})^{T}$ , and each $a_{i,j}$ is
always assumed to be $t$ -independent. We further assume that $A$ is a real
symmetric matrix and each component $a_{i,j}$ is a measurable function satis-
fying the uniformly elliptic condition

(2.2) $\langle A(x’)\eta, \eta\rangle\geq\nu_{1}|\eta|^{2}, |\langle A(x’)\eta, \zeta\rangle|\leq\nu_{2}|\eta||\zeta|$

for all $\eta,$
$\zeta\in \mathbb{R}^{n}$ and for some constants $\nu_{1},$ $\nu_{2}$ with $0<\nu_{1}\leq\nu_{2}<\infty$ . Here

$\rangle$ denotes the inner product of $\mathbb{R}^{n}$ , i.e., $\langle\eta,$ $\zeta\rangle=\sum_{j=1}^{n}\eta_{j}\zeta_{j}$ for $\eta,$
$\zeta\in \mathbb{R}^{n}.$

For later use we set $b=a_{n,n}$ , which satisfies $\nu_{1}\leq b\leq v_{2}$ due to (2.2). We
also denote by a the vector $a(x’)=(a_{1,n}(x’), \cdots, a_{n-1,n}(x’))^{T}.$

We write $D_{H}(T)$ for the domain of a linear operator $T$ in a Banach space
$H$ . Under the condition (2.2) the standard theory of sesquilinear forms gives
a realization of $\mathcal{A}$ in $L^{2}(\mathbb{R}^{n})$ , denoted again by $\mathcal{A}$ , such as

$D_{L^{2}}(\mathcal{A})=\{w\in H^{1}(\mathbb{R}^{n})|$ there is $F\in L^{2}(\mathbb{R}^{n})$ such that

(2.3) $\langle A\nabla w,$ $\nabla v\rangle_{L^{2}(\mathbb{R}^{n})}=\langle F,$ $v\rangle_{L^{2}(\mathbb{R}^{n})}$ for all $v\in H^{1}(\mathbb{R}^{n})$ },

and $\mathcal{A}w=F$ for $w\in D_{L^{2}}(\mathcal{A})$ . Here $H^{1}(\mathbb{R}^{n})$ is the usual Sobolev space and
$\langle w,$ $v \rangle_{L^{2}(\mathbb{R}^{n})}=\int_{\mathbb{R}^{n}}w(x’, t)v(x’, t)dx’dt.$

Definition 2.1. (i) For a given $h\in S’(\mathbb{R}^{n-1})$ we denote by $M_{h}:S(\mathbb{R}^{n-1})arrow$

$S’(\mathbb{R}^{n-1})$ the multiplication $M_{h}u=hu.$

(ii) We denote by $E_{\mathcal{A}}$ : $H^{1/2}(\mathbb{R}^{n-1})arrow\dot{H}^{1}(\mathbb{R}_{+}^{n})$ the $\mathcal{A}$-extension operator,
i. e., $w=E_{\mathcal{A}}\varphi$ is the solution to the Dirichlet problem

(2.4) $\{\begin{array}{l}\mathcal{A}w=0 in \mathbb{R}_{+}^{n},w=\varphi on \partial \mathbb{R}_{+}^{n}=\mathbb{R}^{n-1}.\end{array}$
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The one parameter family of linear operators $\{E_{\mathcal{A}}(t)\}_{t\geq 0}$ , defined by $E_{\mathcal{A}}(t)\varphi=$

$(E_{\mathcal{A}}\varphi)(\cdot, t)$ for $\varphi\in H^{1/2}(\mathbb{R}^{n-1})$ , is called the $Pois\mathcal{S}on\mathcal{S}$emigroup associated
with $\mathcal{A}.$

(iii) We denote by $\Lambda_{\mathcal{A}}$ : $H^{1/2}(\mathbb{R}^{n-1})arrow\dot{H}^{-1/2}(\mathbb{R}^{n-1})=(\dot{H}^{1/2}(\mathbb{R}^{n-1}))^{*}$ the
Dirichlet-Neumann map associated with $\mathcal{A}$ , which is defined through the
sesquilinear form
(2.5) $\langle\Lambda_{\mathcal{A}}\varphi, g\rangle_{\dot{H}^{-11}}2,\dot{H}z=\langleA\nabla E_{\mathcal{A}}\varphi, \nabla E_{\mathcal{A}}g\rangle_{L^{2}(\mathbb{R}_{+}^{n})}, \varphi, g\in H^{1/2}(\mathbb{R}^{n-1})$ .

Here $\rangle_{\dot{H}^{-1/2},\dot{H}^{1/2}}$ denotes the duality coupling of $\dot{H}^{-1/2}(\mathbb{R}^{n-1})$ and $\dot{H}^{1/2}(\mathbb{R}^{n-1})$ .

Remark 2.1. (i) Eq. (2.4) is considered in a weak sense; cf. [18, Section
2.1]. The proof of the existence of the extension operator $E_{\mathcal{A}}$ is well known.
As is shown in [18, Proposition 2.4], $\{E_{\mathcal{A}}(t)\}_{t\geq 0}$ is a strongly continuous
and analytic semigroup in $H^{1/2}(\mathbb{R}^{n-1})$ . We denote its generator by $-\mathcal{P}_{\mathcal{A}},$

and $\mathcal{P}_{\mathcal{A}}$ is called a Poisson operator associated with $\mathcal{A}$ . (ii) Since $A$ is
Hermite and satisfies the uniformly elliptic condition (2.2), the theory of
the sesquilinear forms [16, Chapter VI. \S 2] shows that $\Lambda_{\mathcal{A}}$ is extended as a
self-adjoint operator in $L^{2}(\mathbb{R}^{n-1})$ .

The next result plays a fundamental role in our argument.

Theorem 2.1. Let $\mathcal{A}$ be the elliptic operator defined in (2.1) with a real
symmetric matrix $A$ satisfying (2.2). Then $D_{L^{2}}(\Lambda_{\mathcal{A}})=H^{1}(\mathbb{R}^{n-1})$ holds
with equivalent norms, and the Poisson semigroup $\{E_{\mathcal{A}}(t)\}_{t\geq 0}$ in $H^{1/2}(\mathbb{R}^{n-1})$

is extended as a strongly continuous and analytic semigroup in $L^{2}(\mathbb{R}^{n-1})$ ,
where its generator $-\mathcal{P}_{\mathcal{A}}$ satisfies
(2.6)
$D_{L^{2}}(\mathcal{P}_{\mathcal{A}})=H^{1}-(\mathbb{R}^{n-1})$ , $-\mathcal{P}_{\mathcal{A}}\varphi=-M_{1/b}\Lambda_{\mathcal{A}}\varphi-M_{a/b}\cdot\nabla’\varphi,$ $\varphi\in H^{1}(\mathbb{R}^{n-1})$ .

Furthermore, the realization $\mathcal{A}’$ in $L^{2}(\mathbb{R}^{n-1})$ and the realization $\mathcal{A}$ in $L^{2}(\mathbb{R}^{n})$

are $re\mathcal{S}$pectively factorized as

(2.7) $\mathcal{A}’=M_{b}\mathcal{Q}_{\mathcal{A}}\mathcal{P}_{\mathcal{A}}, \mathcal{Q}_{\mathcal{A}}=M_{1/b}(M_{b}\mathcal{P}_{\mathcal{A}})^{*},$

(2.8) $\mathcal{A}=-M_{b}(\partial_{t}-\mathcal{Q}_{\mathcal{A}})(\partial_{t}+\mathcal{P}_{\mathcal{A}})$ .

Here $(M_{b}\mathcal{P}_{\mathcal{A}})^{*}$ is the adjoint of $M_{b}\mathcal{P}_{\mathcal{A}}$ in $L^{2}(\mathbb{R}^{n-1})$ .

For the proof of Theorem 2.1, see, e.g. [18, Theorem 1.3, Theorem 4.2].
The identities (2.7) and (2.8) are considered as an operator-theoretical de-
scription of the classical Rellich identity [27], but when the matrix $A$ is not
real symmetric and possesses a limited smoothness the verification of this
identity becomes a delicate problem. The Rellich type identity is verified
and used by [14] when $A$ is real symmetric and by [3] when $r_{2}=0$ without
any extra regularity condition on $A$ . See also [25, 15, 13] for the study of
the elliptic boundary value problem in relation to the Rellich identity.
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3. ISOMORPHISM IN THEOREM 1.2

In this article we only state how to construct the isomorphism in Theorem
1.2 without proofs. For details and the application to the Stokes problem,
see [21, 22].

When $\Omega$ is of the form (1.3), through the standard transformation

$u=\tilde{u}0\Phi^{-1},$ $g=\tilde{g}0\Phi^{-1},$ $\Phi$ is as in (1.4),

the Laplace equations, $-\triangle\tilde{u}=0$ in $\Omega$ and $\tilde{u}=\tilde{g}$ on $\partial\Omega$ , are transformed to
the elliptic equations in the half space

(3.1) $\mathcal{A}u=0$ in $\mathbb{R}_{+}^{n},$ $u=9$ on $\partial \mathbb{R}_{+}^{n}.$

Here $\mathcal{A}=-\nabla\cdot A\nabla$ and $A$ is a real symmetric and positive definite matrix
with $a=-\nabla’\eta,$ $b=1+|\nabla’\eta|^{2}$ , and $A’=(a_{i,j})_{1\leq i,j\leq n-1}=I’$ (the identity
matrix). Note that each coefficient of $A$ is independent of the $y_{n}$ variable,
and hence we can apply the result of Section 2. It is straightforward to see
that the matrix $A$ is written as $A=B^{T}B$ , where $B=(b_{i,j})_{1\leq i,j\leq n}$ with
$b_{i,j}=\delta_{ij}$ for $1\leq i,$ $j\leq n-1,$ $b_{i,n}=-\partial_{i}\eta$ for $1\leq i\leq n-1,$ $b_{n,j}=0$ for
$1\leq j\leq n-1$ , and $b_{n,n}=1$ . The matrix $B^{T}$ is the transpose of $B$ . The key
point here is that the solenoidal property in the original variables

$div\tilde{u}=0$ in $\Omega,$ $\tilde{u}\cdot n=0$ on $\partial\Omega$

is equivalent with

(3.2) $divB^{T}u=0$ in $\mathbb{R}_{+}^{n},$ $\gamma(B^{T}u)_{n}=0$ on $\partial \mathbb{R}_{+}^{n}$

in the new variables, where $\gamma$ is the trace to the boundary $\partial \mathbb{R}_{+}^{n}$ . Thus it is
natural to introduce the space $Y_{\overline{\sigma}}^{q,r}(\mathbb{R}_{+}^{n})$ as

$Y_{\tilde{\sigma}}^{q,r}(\mathbb{R}_{+}^{n})=\{\tilde{u}0\Phi^{-1}\in(Y^{q,r}(\mathbb{R}_{+}^{n}))^{n}|\tilde{u}\in Y_{\sigma}^{q,r}(\Omega)\}$

(3.3) $=\{u\in(Y^{q,r}(\mathbb{R}_{+}^{n}))^{n}|divB^{T}u=0 in \mathbb{R}_{+}^{n}, \gamma(B^{T}u)_{n}=0 on \partial \mathbb{R}_{+}^{n}\},$

where the characterization (3.3) is due to [21, Lemma 2.1].
For a vector $v=(v’, v_{n})^{T}\in \mathbb{R}^{n-1}\cross \mathbb{R}$ we define the $(n-1)\cross n$ matrix

$E’$ and the $1\cross n$ matrix $E_{n}$ by the relation

(3.4) $E’v=(B^{T}v)’=v’, E_{n}v=(B^{T}v)_{n}=v_{n}-M_{\nabla’\eta}\cdot v’$

Set

(3.5) $S=(\nabla’+M_{\nabla’\eta}\mathcal{P}_{\mathcal{A}})\Lambda_{\mathcal{A}}^{-1},$

and also set

(3.6) $(U \varphi)(\cdot, y_{n})=\Lambda_{\mathcal{A}}\int_{0}^{y_{n}}e^{-(y_{n}-z_{n})\mathcal{P}_{A}}\varphi(z_{n})dz_{n},$
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for a function $\varphi$ $z_{n}$ ) $=\varphi(z’, z_{n})$ . Next we define the operator $Z=$

$(Z’, Z_{n})^{T}:(C_{0}^{\infty}(\mathbb{R}_{+}^{n}))^{n-1}arrow(\mathcal{D}’(\mathbb{R}_{+}^{n}))^{n}$ as

(3.7) $Z’[h]=h+SU\Lambda_{\mathcal{A}}^{-1}\nabla’\cdot h,$

(3.8) $Z_{n}[h]=-U\Lambda_{\mathcal{A}}^{-1}\nabla’\cdot h+M_{\nabla’\eta}\cdot Z’[h].$

The operator $Z$ is shown to be the isomorphism between $Y_{\overline{\sigma}}^{q,2}(\mathbb{R}_{+}^{n})$ and
$Y^{q,2}(\mathbb{R}_{+}^{n})^{n-1}$ as follows.

Proposition 3.1 ([21, Corollary 3.1]). Let $1<q<\infty$ . Then the operator
$Z$ defined by (3.7) $-(3.8)$ is extended as a bounded and bijective operator

from $(Y^{q,2}(\mathbb{R}_{+}^{n}))^{n-1}$ onto $Y_{\overline{\sigma}}^{q,2}(\mathbb{R}_{+}^{n})$ . Moreover, we have $Z^{-1}=E’+SE_{n}.$

For the proof of Proposition 3.1 see [21]. We emphasize here that, in
order to justify the condition $divB^{T}Z[h]=0$ , we need to use the identity
(2.7). Indeed, in the proof of Proposition 3.1 the identity

(3.9) $\nabla’\cdot S=-\Lambda_{\mathcal{A}}\mathcal{P}_{\mathcal{A}}\Lambda_{\mathcal{A}}^{-1}$

was essentially used, which is formally derived from the computation

$\nabla’\cdot S=(\triangle’+\nabla’\cdot M_{\nabla’\eta}P_{\mathcal{A}})\Lambda_{\mathcal{A}}^{-1}$

$=(-M_{b}\mathcal{Q}_{\mathcal{A}}P_{\mathcal{A}}+\nabla’\cdot M_{\nabla’\eta}P_{\mathcal{A}})\Lambda_{\mathcal{A}}^{-1}$

$=(-(\Lambda_{\mathcal{A}}+\nabla’\cdot M_{\nabla’\eta})P_{\mathcal{A}}+\nabla’\cdot M_{\nabla’\eta}P_{\mathcal{A}})\Lambda_{\mathcal{A}}^{-1}$

$=-\Lambda_{\mathcal{A}}P_{\mathcal{A}}\Lambda_{\mathcal{A}}^{-1}$

Here we firstly used the factorization of $-\triangle’$ stated in (2.7) and then used
(2.6). Once (3.9) is derived, we observe that

(3.10) $\nabla’\cdot Z’[h]=\nabla’\cdot h-\Lambda_{\mathcal{A}}\mathcal{P}_{\mathcal{A}}\Lambda_{\mathcal{A}}^{-1}U\Lambda_{\mathcal{A}}^{-1}\nabla’\cdot h,$

while we have from the definition of $E_{n}$ and $U,$

(3.11) $\partial_{n}E_{n}Z[h]=-\partial_{n}U\Lambda_{\mathcal{A}}^{-1}\nabla’\cdot h=-\nabla’\cdot h+\Lambda_{\mathcal{A}}\mathcal{P}_{\mathcal{A}}\Lambda_{\mathcal{A}}^{-1}U\Lambda_{\mathcal{A}}^{-1}\nabla’\cdot h.$

These identities imply $divB^{T}Z[h]=0$ . In order to establish the estimate
in $Y^{q,2}(\mathbb{R}_{+}^{n})$ the following estimates between the Poisson operator and the
Dirichlet-Neumann map are essential:

(3.12)
$\Vert\nabla’f\Vert_{L^{2}(\mathbb{R}^{n-1})}\leq C\Vert\Lambda_{\mathcal{A}}f\Vert_{L^{2}(\mathbb{R}^{n-1})}\leq C’\Vert \mathcal{P}_{\mathcal{A}}f\Vert_{L^{2}(\mathbb{R}^{n-1})}\leq C"\Vert\nabla f\Vert_{L^{2}(\mathbb{R}^{n-1})}$

for all $f\in H^{1}(\mathbb{R}^{n-1})$ . These inequalities are known as variants of the
classical Rellich identity [27, 25, 14, 17]; see also [20, Proposition 2] for a
short proof in relation with the Helmholtz decomposition.

The operator $E’+SE_{n}$ has a special property about its kernel, which
plays an important role in the relation between the Stokes operator and the
Laplace operator.
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Proposition 3.2 ([21, Lemma 3.4]). Let $1<q<\infty.$ $A_{\mathcal{S}}sume$ that $p\in$

$L_{loc}^{1}(\mathbb{R}+;L^{2}(\mathbb{R}^{n-1}))$ satisfies $\nabla p\in(Y^{q,2}(\mathbb{R}_{+}^{n}))^{n}$ and $\mathcal{A}p=0$ in $\mathbb{R}_{+}^{n}$ in the
sense of distributions. Then $(E’+SE_{n})B\nabla p=0.$

From Propositions 3.1, 3.2 the isomorphism in Theorem 1.2 is constructed
as follows. Let us define the bounded linear operators V: $(Y^{q,2}(\Omega))^{n-1}$ $arrow$

$(Y^{q,2}(\Omega))^{n}$ and $W:(Y^{q,2}(\Omega))^{n}arrow(Y^{q,2}(\Omega))^{n-1}$ as

(3.13) $(Vw)(x)=(Z[w\circ\Phi^{-1}])(\Phi(x))$ .

(3.14) $(Wu)(x)=((E’+SE_{n})[uo\Phi^{-1}])(\Phi(x))$ .

Here $Z$ is defined as $(3.7)-(3.8)$ , while $E’,$ $E_{n}$ , and $S$ are defined as (3.4)
$-(3.5)$ . Then by Proposition 3.1 it follows that Ran (V) $=Y_{\sigma}^{q,2}(\Omega)$ and V
is also invertible. In particular, $V^{-1}=W$ on $Y_{\sigma}^{q_{)}2}(\Omega)$ . Finally, $W$ satisfies
(i) of Theorem 1.2 by Proposition 3.2.

Remark 3.1 (Ukai’s projection). Let V and $W$ be the operators given as
(3.13) and (3.14). Theorem 1.2 implies that the operator

(3.15) $P_{0}=VW$ : $(Y^{q,2}(\Omega))^{n}arrow Y_{\sigma}^{q,2}(\Omega)$

is a continuous projection from $(Y^{q,2}(\Omega))^{n}$ onto $Y_{\sigma}^{q_{)}2}(\Omega)$ . In the case $\eta=0$

$(i.e., \Omega=\mathbb{R}_{+}^{n})$ , through a short calculation, this projection coincides with
the one found by [29, Remark 1.5]:

$(P_{0}u)’=u’+Su_{n}-SU(-S\cdot u’+u_{n})$ , $(P_{0}u)_{n}=U(-S\cdot u’+u_{n})$ ,

where $S$ and $U$ are defined as in Remark 1.1 (ii). In the case of general $\eta$

we have used a factorization of the elliptic operators. The projection $P_{0}$ is
different from the well-known Helmholtz projection, which is orthogonal in
$(L^{2}(\Omega))^{n}$ while $P_{0}$ is not, as is observed in [29] for the case $\eta=0.$

When $\Omega=\mathbb{R}^{n}$ or $\mathbb{R}_{+}^{n}$ we can simply take $\Phi(x)=x$ , and hence, the
isomorphism V coincides with $Z$ (which is defined as (3.20)-(3.21) below)
in both cases. Moreover, the matrices $E’,$ $E_{n}$ , and the operators $S,$ $K$ are
respectively defined as

(3.16) $E’v=v’, E_{n}v=v_{n}, v=(v’, v_{n})^{T}\in \mathbb{R}^{n-1}\cross \mathbb{R},$

(3.17) $S=\nabla’(-\triangle’)^{-\frac{1}{2}}, K=-(-\triangle’)^{-\frac{1}{2}}\nabla’\cdot E’+E_{n}.$

When $\Omega=\mathbb{R}^{n}$ the operator $U$ is defined as

(3.18) $(U \varphi)(\cdot, y_{n})=(-\triangle’)^{\frac{1}{2}}\int_{-\infty}^{y_{n}})2,$

while when $\Omega=\mathbb{R}_{+}^{n}$ we set

(3.19) $(U \varphi)(\cdot, y_{n})=(-\triangle’)^{\frac{1}{2}}\int_{0}^{y_{n}})2.$
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With these operators $V=(V’, V_{n})$ is given as in $(3.7)-(3.8)$ , that is,

(3.20) $V’[w]=w+SU(-\triangle’)^{-\frac{1}{2}}\nabla’\cdot w,$

(3.21) $V_{n}[w]=-U(-\triangle’)^{-\frac{1}{2}}\nabla’\cdot w.$

On the other hand, the operator $W$ is given as

(3.22) $W=E’+SE_{n}.$

Note that, when $\Omega=\mathbb{R}_{+}^{n}$ , the Dirichlet-Neumann map and the Poisson

operator coincide with the fractional Laplacian $(-\triangle’)^{1/2}$ . It is classical that
$\nabla’(-\triangle’)^{-1/2}$ and $(-\triangle’)^{-1/2}V’$ define the singular integral operators. Hence,

for any $1<r<\infty$ , the operators $S$ and $K$ are respectively bounded from
$L^{r}(\mathbb{R}^{n-1})$ to $(L^{r}(\mathbb{R}^{n-1}))^{n-1}$ and from $(L^{r}(\mathbb{R}^{n-1}))^{n-1}$ to $L^{r}(\mathbb{R}^{n-1})$ . Moreover,

it is also well known that the Poisson semigroup $\{e^{-t(-\triangle’)^{1/2}}\}_{t\geq 0}$ admits the
maximal regularity estimates in $L^{q}(\mathbb{R}_{+};L^{r}(\mathbb{R}^{n-1}))$ , $1<q,$ $r<\infty$ . Hence we
have

(3.23) $\Vert U\varphi\Vert_{Y(\Omega)}q,r\leq C\Vert\varphi\Vert_{Y(\Omega)}q,r, 1<q, r<\infty, \Omega=\mathbb{R}^{n}or\mathbb{R}_{+}^{n}.$

Then it is easy to see that the counterparts of Propositions 3.1 and 3.2 hold
with $Y^{q,r}(\Omega)$ when $\Omega=\mathbb{R}^{n}$ or $\mathbb{R}_{+}^{n}$ as follows.

Proposition 3.3. Let $1<q,$ $r<\infty$ and let $\Omega=\mathbb{R}^{n}$ or $\mathbb{R}_{+}^{n}$ . Then the oper-
ator V defined as (3.20) -(3.21) is bounded and bijective from $(Y^{q,r}(\Omega))^{n-1}$

onto $Y_{\sigma}^{q,r}(\Omega)$ . Moreover, we have $V^{-1}=W$ , where $W$ is defined as (3.22).

Proposition 3.4. Let $1<q,$ $r<\infty$ . Assume that $p\in L_{loc}^{1}(\mathbb{R}+;L^{r}(\mathbb{R}^{n-1}))$

satisfies $\nabla p\in(Y^{q,r}(\mathbb{R}_{+}^{n}))^{n}$ and $\triangle p=0$ in $\mathbb{R}_{+}^{n}$ in the $\mathcal{S}ense$ of distributions.
Then $(E’+SE_{n})\nabla p=0.$
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