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1 Introduction

We consider the almost sure global solvability of the Cauchy Problem for one
dimensional Zakharov equations with additive noises:

$idu=(-\partial_{x}^{2}u+nu)dt+\Phi_{1}dW_{1}$ , (1)

$d(\partial_{t}n)=\partial_{x}^{2}(n+|u|^{2})dt+\Phi_{2}dW_{2}$ , (2)

$t>0, x\in R,$

$(u, n, \partial_{t}n)(0)=(u_{0}(x), n_{0}(x), n_{1}(x))$ , (3)

where $u$ : $[0, \infty$ ) $\cross Rarrow C$ is the slowly varying envelope of the electiric
field, $n$ : $[0, \infty$ ) $\cross Rarrow R$ is the deviation of the ion density from the
mean background density, and $(\Omega, \mathcal{F}, P, \{\mathcal{F}_{t}\}_{t\geq 0})$ is a probability space with

filtration $\{\mathcal{F}_{t}\}_{t\geq 0}$ . Here, $W_{j}= \sum_{k=1}^{\infty}\beta_{k}^{(j)}e_{k},$ $j=1$ , 2, a sequence $\{e_{k}\}$ is

the CONS in $L^{2}(R)$ , $\{\beta_{k}^{(1)}\},$ $\{\beta_{k}^{(2)}\}$ are mutually independent complex and
real Brownian motions associated with filtration $\{\sqrt{}t\}_{t\geq 0}$ , respectively, and
$\Phi_{j}$ : $L^{2}arrow H^{s_{j}}$ are Hilbert-Schmidt operators for some $s_{j}\in R,$ $j=1$ , 2.
Equations (1) $-(2)$ without additive noises are the mathematical model which
describes the Langmuir turbulence in a plasma.

The Zakharov equations with additive noises have its origin in geophysics.
The system of equations (1) and (2) describes the geophysical phenomenon
called NEIAL (Naturally Enhanced Ion-Acoustic Lines), in which one can ob-
serve spectrum lines of electro-magnetic waves generated by the ion-acoustic
turbulence in plasmas of the ionosphere about 300 km above ground (see
[8]). Because of thermal fluctuations, generally, the spectra scattered from
the ionosphere are braod and noisy. This is why the random effect should
be introduced into the system. These fluctuations contain, among others,
featurs associated with ion-acoustic waves driven by random motions within
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the plasma. In this case, $\Phi_{1}dW_{1}$ is a noise caused by the Cherenkov emission,

and $\Phi_{2}dW_{2}$ is a noise caused by fluctuations of background ion density.

If the external forcing terms vanish, we have two conservation laws for (1)

and (2), which play an important role for the proof of the global existence of
solutions in the deterministic case.

Conservation Laws $(\Phi_{j}=0, j=1,2)$

(Mass Conservation)

$\Vert u(t)\Vert_{L^{2}}=\Vert u_{0}\Vert_{L^{2}}, t>0,$

(Energy Conservation)

$E(u, n, \partial_{t}n)(t)=E(u_{0}, n_{0}, n_{1}) , t>0,$

where

$E(u(t), n(t), \partial_{t}n(t))=\Vert\nabla u\Vert_{L^{2}}^{2}$

$+ \frac{1}{2}(\Vert n\Vert_{L^{2}}^{2}+\Vert(-\Delta)^{-1/2}\partial_{t}n\Vert_{L^{2}}^{2})$

$+ \int_{R}n|u|^{2}dx.$

In the present paper, we consider the almost sure global existence of
solutions for (1)$-(3)$ under proper assumptions on covariance operators $\Phi_{j}.$

Remark 1.1 Let $Ibe$ the identity operator and let $\varphi$ be a cut-off function in
space. If $\Phi_{j}=\varphi I$ , then $\Phi_{j}dW_{j}$ is called the localized space-time white noise.
In this case,

$\Phi_{j}=\varphi I$ : $L^{2}arrow H^{s}$ , Hilbert-Schmidt
$\Leftrightarrow s<-1/2.$

The It\^o integral makes sense in infinite dimensions if the covariance oper-
ators $\Phi_{j}\Phi_{j}^{*}$ are trace class or equivalently $\Phi_{j}$ are Hilbert-Schmidt. We note
$\Phi_{j}$ are often called the covariance operators, though the covariance opera-
tors originally mean $\Phi_{j}\Phi_{j}^{*}$ . In the context of the stochastic one dimensional
Zakharov, in order to handle localized space-time white noises, we need to
construct the solutions $(u, n)\in H^{s_{1}}\cross H^{s_{2}}$ for $s_{1}<-1/2$ and $s_{2}<1/2$

(note that for the solution $n(t)$ of ion-acoustic wave part, one can gain an
additional regularity of one derivative from the external forcing term).
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2 Main Theorem

Before stating the main theorem, we introduce the Fourier restriction spaces.
For $s,$ $b\in R$ , we define spaces $X^{s,b}$ and $Y^{s,b}$ as follows.

$X^{s,b}=\{u\in \mathcal{S}’(R^{2});\Vert u\Vert_{X^{s,b}}=\Vert(1+\xi^{2})^{s/2}(1+|\tau-\xi^{2}|)^{b}\hat{u}\Vert_{L^{2}(R^{2})}<\infty\},$

$Y^{s,b}=\{u\in S’(R^{2});\Vert u\Vert_{Y_{\pm}^{s,b}}=\Vert(1+\xi^{2})^{s/2}(1+|\tau\pm|\xi||)^{b}\hat{u}\Vert_{L^{2}(R^{2})}<\infty\},$

where $\hat{u}$ denotes the Fourier transform in space and time of $u$ . Let $\psi\in$

$C^{\infty}(R\backslash \{O\})$ be a time cut-off function such that $\psi(t)=1(0<t\leq 1)$ ,
$\psi(t)=0(t<0, t\geq 2)$ . We put $\psi_{T}(t)=\psi(t/T)$ for $T>0$ . We denote $[0, \infty$ )
by $R_{+}.$

The main thoerem in the present paper is the following.

Theorem 2.1 Let $\epsilon$ be an arbitrary $p_{0\mathcal{S}}itive$ number. Assume that

(HS) $\Phi_{1}:L^{2}arrow H^{\epsilon},$ $\Phi_{2}:L^{2}arrow H^{-3/2}$ ; Hilbert-Schmidt.

Then, for any $(u_{0}, n_{0}, n_{1})\in L^{2}\cross H^{-1/2}\cross H^{-3/2}$ , there $exi_{\mathcal{S}}t$ unique global
solutions $(u, n)$ of (1)$-(3)a.s$ . such that

$(u, n, \partial_{t}n)\in C(R_{+};L^{2}\cross H^{-1/2}\cross H^{-3/2})$ , (4)
$\psi_{T}u\in X^{0,1/3}, \psi_{T}n\in Y^{-1/2,1/3}, \psi_{T}\partial_{t}n\in Y^{-3/2,1/3}, T>0$ . (5)

The mass conservation law yields the a priori estimate of the Schr\"odinger
part, but we do not have an a priori estimate of the acoustic wave part.
This is because the energy conservation law is not available in our case. The
proof of Theorem 2.1 follows from the argument by [6], which is applied to
the deterministic Zakharov equations (for the wave Schr“dinger equations,
see [1]).

Remark 2.1 (i) The path of Brownian motion $\beta(t)$ barely fails to belong to
$H^{1/2}(0, T)$ for any $T>$ O. Therefore, when $b\geq 1/2$ , even for $s<0$ , we
can not expect that $\psi_{T}u$ belongs to $X^{s,b}$ , where $u$ is a solution of (1). This is
one of the $difficultie\mathcal{S}$ to apply the Foureir restriction method to the stochastic
nonlinear dispersive equations.

(ii) It is not known if one can choose $\epsilon=0$ in Theorem 2.1. The fact
that $\psi(t)\beta(t)\in B_{2,\infty}^{1/2}(R)$ might be helpful (see Roynette [11] for the regularity

of path of the Brownian motion and see de Bouard, Debussche and Tsutsumi
[4] and $Oh[10]$ for the Fourier restriction norms of the Besov type).

Now we show an example of covariance operators $\Phi_{j}$ satisfying (HS) in

Theorem 2.1.
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Example 2.1 Covariance operators $\Phi_{1}$ and $\Phi_{2}$ are defined as follows:

$\Phi_{1}=\varphi(-\partial_{x}^{2})^{s/2} (s<-(1/2+\epsilon \Phi_{2}=\varphi I,$

where $\varphi$ is a spatial cut-off function in $C_{0}^{\infty}(R)$ , $\epsilon$ is defined as in Theorem
2.1 and $I$ is the identity operator. Then, $\Phi_{1}$ and $\Phi_{2}$ satisfy assumption (HS)
in Theorem 2. 1.

It is instructive to recall known results on global solutions of (1)$-(3)$ with-
out additive noises, that is, in the deterministic case. Suppose that $\Phi_{j}=0$

$(j=1,2)$ . In [5], Bourgain and Colliander proved that when the space di-
mensions are less than or equal to three, the global existence of solutions in
the energy space for (1)$-(3)$ . In [7], Ginibre, Tsutsumi and Velo improved
the results on the time local well-posedness of (1)$-(3)$ given by [5]. Espe-
cially, they showed that the Cauchy problem (1)$-(3)$ is locally well-posed in
$L^{2}\cross H^{-1/2}\cross H^{-3/2}$ for the one dimensional case. In [6], Colliander, Holmer
and Tzirakis showed that the Cauchy problem (1)$-(3)$ is globally well-posed
in $L^{2}\cross H^{-1/2}\cross H^{-3/2}$ for the one dimensional case. We extend the argument
by Colliander, Holmer and Tzirakis [6] to the stochastic case.

Few is known about the stochastic case. In [9], B.-L.Guo, Y.Lv and X.-
P. Yang study (1)$-(3)$ on a bounded interval with zero Dirichlet boundary
condition. In [9], they show that if $\Phi_{j}dW_{j}=q_{j}(x)d\beta^{(j)}(t)(j=1,2)$ , $q_{1}\in H_{0}^{1},$

$q_{2}\in H^{2}\cap H_{0}^{1}$ and $(u_{0}, n_{0}, n_{1})\in(H^{2}\cap H_{0}^{1})\cross H_{0}^{1}\cross L^{2}$ , then there exist the
global solutions and the invariant measure. The assumptions in [9] seem to
be too restrictive. Their proof is based on the Galerkin method.

3 Sketch of Proof for Theorem 2.1

We first considr the deterministic equations with external forces $f$ and $g$ in
one dimension.

$i\partial_{t}u+\partial_{x}^{2}u=nu+f, t>0, x\in R$ , (6)
$\partial_{t}^{2}n-\partial_{x}^{2}n=\partial_{x}^{2}(|u|^{2})+g, t>0, x\in R$ , (7)

$(u, n, \partial_{t}n)(0)=(u_{0}(x), n_{0}(x), n_{1}(x))$ (8)
$\in L^{2}\cross H^{-1/2}\cross H^{-3/2}.$

Let $\psi\in C^{\infty}(R\backslash \{O\})$ be a time cut-off function such that $\psi(t)=1(0<t\leq 1)$

and $\psi(t)=0(t<0, t\geq 2)$ . We put $\psi_{T}(t)=\psi(t/T)$ for $T>0.$

We now change the dynamical variables of (6)$-(7)$ into the new ones. We
put

$n_{\pm}=n\pm i\omega^{-1}\partial_{t}n, \omega=(1-\partial_{x}^{2})^{1/2},$

$U(t)=e^{it\partial_{x}^{2}}, V_{\pm}(t)=e^{\mp it\omega}.$
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We define the convolution $U*Rh$ and $V\pm*Rh$ as follows.

$U*Rh=-i \int_{0}^{t}U(t-\tau)h(\tau)d\tau,$

$V \pm*Rh=-i\int_{0}^{t}V_{\pm}(t-\tau)h(\tau)d\tau$

We define the new dynamical variables $v$ and $m_{\pm}$ as follows.

$v=u-w, m_{\pm}=n_{\pm}-w_{\pm},$

where
$w=\psi\tau U*Rf, w_{\pm}=\psi_{T}V*(\omega^{-1}g)$ .

Thus, we obtain the following new systems with respect to $(v, m_{\pm})$ .

$v(t)= \psi_{T}U(t)u_{0}+\psi_{T}U*R [\frac{1}{2}(n_{+}+n_{-})u]$ , (9)

$m_{\pm}(t)= \psi_{T}V_{\pm}(t)n_{\pm 0}\mp\psi_{T}V*R[\omega^{-1}\{\triangle|u|^{2}+\frac{1}{2}(n_{+}+n$ . (10)

We note that we keep the notation $u$ and $n\pm on$ the right hand sides of (9) $-$

(10), because the complete use of $v$ and $m_{\pm}$ makes the equations much more
lengthy.

Let us next recall the argument by Colliander, Holmer and Tzirakis [6].
The proof by Colliander, Holmer and Tzirakis [6] may be thought of as
a generalization of the Gronwall inequality in terms of Fourier restriction
norms. If we try to apply their proof to the stochastic case, we have a
serious problem with the regularity in time of paths for cylindrical Wiener
processes $\Phi_{j}W_{j}$ , which are slightly less than 1/2-H\"older continuous. While
the Fourier restriction method converts time regularity to spatial regularity,
paths of cylindrical Wiener processes $\Phi_{j}W_{j}$ barely fail to have regularity in
time, which the proof in [6] requires. This is one of the difficulties to apply
the Fourier restiriction method to stochastic nonlinear dispersive equations.

The following lemma about the bilinear estimates is used in [6].

Lemma 3.1 (bilinear estimates)
(i) Assume that $1/4<b_{1},$ $c_{1},$ $b<1/2$ and $b+b_{1}+c_{1}\geq 1$ . Then, we have

$\Vert n_{\pm}u\Vert x^{0,-c}1\sim<\Vert n_{\pm}\Vert_{Y_{\pm}^{-1/2,b}}\Vert u\Vert_{X^{0,b_{1}}}.$

(ii) $As\mathcal{S}ume$ that $1/4<b_{1},$ $c<1/2$ and $2b_{1}+c\geq 1$ . Then, we have

$\Vert\partial_{x}(u_{1}\overline{u}_{2})\Vert_{Y_{\pm}^{-1/2,-c}}<\sim\Vert u_{1}\Vert_{X^{0,b_{1}}}\Vert u_{2}\Vert_{X^{0,b_{1}}}.$
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Remark 3.1 Lemma 3.1 can be proved by the argument of [7] $ifb+b_{1}+c_{1}>1$

and $2b_{1}+c_{1}>1$ and by the refined argument of [6] if $b+b_{1}+c_{1}=2b_{1}+c_{1}=1.$

Lemma 3.1 for the latter case plays a crucial role in the proof of global a priori
estimate corresponding to the solution $n(t)$ of the ion-acoustic part. We can
choose $b=b_{1}=c=c_{1}=1/3$ , which satisfy all the assumptions in Lemma
3. 1 including $b+b_{1}+c_{1}=2b_{1}+c_{1}=1.$

We now explain what the argument in [6] is like. We assume

$\exists L>0;\Vert\partial_{x}(|w|^{2})\Vert_{Y_{\pm}^{-1/2,-1/3}}\leq L^{2}T^{1/3}$ , (11)

$T^{1/<}2(\Vert u_{0}\Vert_{L^{2}}+L)_{\sim}^{2}\Vert n_{\pm 0}\Vert_{H^{-1/2}}$ . (12)

Unless (12) holds, $\Vert n_{\pm 0}\Vert_{H^{-1/2}}$ can be controlled by $\Vert u_{0}\Vert_{L^{2}}$ . Obviously, in this
case, the solutions $(v, m_{\pm})$ can be extended. Therefore, we have only to show
that as long as (12) holds, the solutions $(v, m_{\pm})$ can be extended. Suppose
that one-time application of the contraction argument extends the solutions
by the length $T$ and

$T\sim\Vert n_{\pm 0}\Vert_{H^{-1/2}}^{-2}.$

Here, we note that the influence by $w\pm onT$ is negligible, which follows from
the contraction argument for the local well-posedness.

Then, Lemma 3.1 and the linear estimates yield

$\Vert m_{\pm}(T)\Vert_{H^{-1/2}}\leq\Vert n_{\pm 0}\Vert_{H^{-1/2}}+CT^{1/2}(\Vert u_{0}\Vert_{L^{2}}+L)^{2}$

This inequality implies that every time we extend the solutions by $T,$ $\Vert m_{\pm}\Vert_{H^{-1/2}}$

grows at most by $CT^{1/2}(\Vert u_{0}\Vert_{L^{2}}+L)^{2}$ Denote by $m$ the number of repeti-
tion of the contraction argument until $\Vert m_{\pm}(t)\Vert_{H^{-1/2}}$ becomes twice as large
as $\Vert n_{\pm 0}\Vert_{H^{-1/2}}$ . Then, we have

$m \sim\frac{\Vert n_{\pm 0}||_{H^{-1/2}}}{T^{1}/2(\Vert u_{0}||_{L^{2}}+L)^{2}}.$

Accordingly, the $m$-time repetition of the contraction argument enables us
to extend the solutions by the following time length:

$mT \sim\frac{\tau^{1/2}\Vert n_{\pm 0\Vert_{H^{-1/2}}}}{(\Vert u_{0}||_{L^{2}}+L)^{2}}$

$\sim(\Vert u_{0}\Vert_{L^{2}}+L)^{-2},$

which shows that $mT$ is independent of $\Vert n_{\pm 0}\Vert_{H^{-1/2}}$ . Thus, we have

$\forall T_{0}>0, \exists C>0;\Vert m_{\pm}(t)\Vert_{H^{-1/2}}\leq C,$

$T_{0}\geq t>0,$

140



where $C$ depends only on 1 $u_{0}\Vert_{L^{2}},$ $\Vert n_{\pm 0}\Vert_{H^{-1/2}}$
) $w,$ $w\pm andT_{0}$ . This yields the

global existence of solutions $(v, m_{\pm})$ in $L^{2}\cross H^{-1/2}.$

The argument by [6] would still work if the following inequality held:

$\Vert\psi_{T}f\Vert_{X^{0,b_{1}}\sim}<T^{\frac{1}{2}-b_{1}}\log(1/T)\Vert f\Vert_{X^{0,1/2}},$

$1/2>b_{1}\geq 1/3.$

But even if this were true, we can NOT choose

$f= \psi_{T}\int_{0}^{t}U(t-\tau)\Phi_{1}dW_{1}\not\in X^{0,a} (a\geq 1/2)$ .

To overcome this difficulty, instead of Lemma 3.1, we use the following
lemma.

Lemma 3.2 (i) Assume that $c_{1},$ $b\geq 1/3$ and $1\gg\epsilon>0$ . Then, we have

$\Vert n\pm w\Vert_{X^{0,-c_{1}\sim}}<\Vert n_{\pm}\Vert_{Y_{\pm}^{-1/2,b}}\Vertw\Vert_{X^{2\epsilon,(1-\epsilon)/3}}.$

(ii) Assume that $c,$ $b_{1}\geq 1/3$ and $1\gg\epsilon>0$ . Then, we have

$\Vert\partial_{x}(u\overline{w})\Vert_{Y_{\pm}^{-1/2,-c}}\sim<\Vert u\Vert_{X^{0,b_{1}}}\Vert w\Vert_{X^{2\epsilon,(1-\epsilon)/3}}.$

(iii) $As\mathcal{S}ume$ that $c\geq 1/3$ and $1\gg\epsilon>$ O. Then, we have

$\Vert\partial_{x}(|w|^{2})\Vert_{Y_{\pm}^{-1/2,-c}}<\sim\Vert w\Vert_{X^{2\epsilon,(1-\epsilon)/3}}^{2}.$

Remark 3.2 Lemma 3.2 trades off the spatial regularity for the time regu-
larity of stochastic convolution term $w$ . In fact, Lemma 2 limits the lower
bound of the regularity for the covariance operator $\Phi_{1}$ of the Schr\"odinger
part. Estimate (iii) in Lemma 2 $ensure\mathcal{S}$ assumption (11), which runs the
algorithm by [6].

Sketch of Proof of Lemma 3.2

Estamate (i) is almost equivalent to (ii) by duality. We now prove (ii)

and (iii). We consider the product of two waves in the Fourier space.

$\hat{u}(\tau_{1}, \xi_{1}) , \hat{w}(\tau_{2}, \xi_{2})$ ,

$\tau=\tau_{1}+\tau_{2}, \xi=\xi_{1}+\xi_{2}.$

The interaction of two waves $\hat{u}(\tau_{1}, \xi_{1})$ and $\hat{\overline{w}}(\tau_{2}, \xi_{2})$ in the acoustic wave
sector is represented as follows:

$\tau\pm|\xi|-(\tau_{1}-\xi_{1}^{2})-(\tau_{2}+\xi_{2}^{2})$

$=| \xi|[\frac{\xi}{|\xi|}(\xi_{1}-\xi_{2})\pm 1]$ . (13)
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The problem is how to recover 1/2 derivative. We first prove the following
estimate.

$\Vert\partial_{x}(u\overline{w})\Vert_{Y_{\pm}^{-1/2,-1/3}}<\sim\Vert u\Vert_{X^{0,1/3}}\Vert w\Vert_{X^{1/2,1/4}}$ . (14)

In either case of $|\xi_{1}|\ll|\xi_{2}|$ or $|\xi_{1}|\gg|\xi_{2}|$ , one can pick out the factor $(|\xi||\xi_{1}-$

$\xi_{2}|)$ from the modulus of (13), which yields the gain of extra derivative.
Otherwise, in the case $of|\xi_{1}|\sim|\xi_{2}|$ , one can let 1/2 derivative act on $\hat{w}(\tau_{2}, \xi_{2})$ .
Thus, estimate (14) is proved.

Let $u\in X^{0,1/3}$ be fixed. We first consider the linear operator: $\overline{w}\mapsto$

$\partial_{x}(u\overline{w})$ . We interpolate between Lemma 3.1 (ii) and (14) to obtain Lemma
3.2 (ii). We next consider the bilinear operator: $(u,\overline{w})\mapsto\partial_{x}(u\overline{w})$ . We
use the symmetry of the above mapping with respect to $u$ and $w$ to obtain
Lemma 3.2 (iii) by the bilinear interpolation (see Theorem 4.1 in Appendix
below for the bilinear interpolation).

4 Appendix

We have the following theorem concerning the bilinear interpolation (see
Exercise 5(b) in Section 3.13 in [3]).

Theorem 4.1 (Bilinear interpolation) $T$ is a bounded bilinear operator such
that

$T:A_{0}\cross B_{0}arrow C_{0},$

$T:A_{0}\cross B_{1}arrow C_{1},$

$T:A_{1}\cross B_{0}arrow C_{1}.$

Assume $0<\theta_{0},$ $\theta_{1}<\theta<1,$ $1\leq p,$ $q,$ $r\leq\infty,$ $1\leq 1/p+1/q$ and $\theta=\theta_{0}+\theta_{1}.$

Then,
$T:(A_{0}, A_{1})_{\theta_{0},pr}\cross(B_{0}, B_{1})_{\theta_{1},qr}arrow(C_{0}, C_{1})_{\theta,r}.$

In order to obtain Lemma 3.2 (iii), we apply Theorem 4.1 with $A_{0}=$

$B_{0}=X^{0,1/3},$ $A_{1}=B_{1}=X^{1/2,1/4},$ $C_{0}=C_{1}=Y_{\pm}^{-1/2,1/3},$ $p=q=1,$ $r=2$ and
$\theta_{0}=\theta_{1}=\frac{1}{2}\theta=\eta,$ $0<\eta\ll 1.$
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