Asymptotic behaviors in stochastic heat equations with periodic coefficients

Lu Xu Graduate School of Mathematical Sciences, The University of Tokyo

Abstract

This note is on the attempt to study the asymptotic behaviors in stochastic partial differential equation via Kipnis-Varadhan's theory on functional central limit theorem. In this note we considered a stochastic heat equation with periodic coefficients, which is closely related to the dynamical sine-Gordon equation. We conclude that under time scale $t^{-\frac{1}{2}}$, the law of the solution will converge to a centered Gaussian distribution as $t \to \infty$, and the fluctuation in x will vanish.

1 Stochastic heat equations

Given a Hilbert space H, the cylindrical Brownian motion W_t on H is defined formally by the series

$$W_t = \sum_{j=0}^{\infty} B_t^j e_j, \ t \ge 0,$$
(1.1)

where $\{e_j\}$ is a CONS of H and $\{B_t^j\}$ is an infinite sequence of independent standard 1-dimensional Brownian motions. Notice that (1.1) does not converge in H; indeed the expected value of the H-norm $E||W_t||^2 = \infty$. Instead, it converges in another Hilbert space H' containing H with a Hilbert-Schmidt embedding.

Suppose that $V_x(\cdot) = V(x, \cdot)$ is a family of C^1 functions on \mathbb{R} indexed by $x \in [0, 1]$, and $V'_x(u) = \frac{d}{du}V_x(u)$ for $u \in \mathbb{R}$. We deal with the following 1-dimensional stochastic PDE with a Neumann boundary condition

$$\begin{cases} \partial_t u(t,x) = \frac{1}{2} \partial_x^2 u(t,x) - V_x'(u(t,x)) + \dot{W}(t,x), & t > 0, x \in (0,1), \\ \partial_x u(t,0) = \partial_x u(t,1) = 0, & t > 0, \\ u(0,x) = v(x), & x \in [0,1], \end{cases}$$
(1.2)

where W is a cylindrical Brownian motion on $L^2[0, 1]$ and $\dot{W}(t, x)$ is formally its derivative in x. Precisely, by the solution to (1.2) we mean a process $u(t) \in L^2[0, 1]$ such that for all $\varphi \in C^2[0, 1], \, \varphi'(0) = \varphi'(1) = 0,$

$$\langle u(t),\varphi\rangle = \langle v,\varphi\rangle + \int_0^t V^{\varphi}(u(r))dr + \langle W_t,\varphi\rangle,$$
 (1.3)

where $\langle W_t, \varphi \rangle$ is a Brownian motion and V^{φ} is a functional on C[0, 1] defined as

$$V^{\varphi}(v) \triangleq \frac{1}{2} \int_0^1 v(x) \varphi''(x) dx - \int_0^1 V'_x(v(x)) \varphi(x) dx.$$

The stochastic PDE (1.2) is originally defined in [2] for the purpose of describing the motion of a flexible Brownian string in some potential field. In this note we need the following assumptions on V_r :

(1) $\forall u \in \mathbb{R}, V_x(u)$ is Borel-measurable in x;

(2) $\sup_{x \in [0,1], u \in \mathbb{R}} \{ |V_x(u)| + |V'_x(u)| \} < \infty;$ (3) $\forall x \in [0,1], V'_x$ is global Lipschitz continuous with the same Lipschitz constant.

(4) $\forall x \in [0, 1], V_x$ is periodic in $u: V_x(u) = V_x(u+1)$.

Under condition (1)-(3), the solution u(t) uniquely exists in C[0,1] and forms a continuous Markov process. Furthermore, if $\{w_x\}_{x\in[0,1]}$ is a 1-dimensional Brownian motion whose initial distribution is the Lebesgue measure on \mathbb{R} , then the reversible measure of u(t) is an infinite measure on C[0,1] given by

$$\mu(dv) = \exp\left\{-2\int_0^1 V_x(v(x))dx\right\}\mu_w(dv),$$
(1.4)

where μ_w stands for the measure induced by w_x (see in [2]).

This model is closely related to the following dynamical sine-Gordon model

$$\partial_t u = \frac{1}{2} \Delta u + c \sin(\beta u + \theta) + \xi, \qquad (1.5)$$

where c, β and θ are real constants and ξ denotes the space-time white noise. As introduced in [3], (1.5) is the natural dynamic associated to the usual quantum sine-Gordon model. From a physical perspective, (1.5) describes globally neutral gas of interacting charges at different temperature β . When the spacial dimension is 2 or more, to construct the solution to (1.5) we need Hairer's theory of regularity structures (see in [3]). Now we restrict our discussion to the 1-dimensional case. The aim of this note is to study the limit distribution of $u(t)/\sqrt{t}$. Our main results are listed below.

Theorem 1.1. Under an initial probability distribution ν such that $\nu \ll \mu$,

$$\lim_{t \to \infty} E_{\nu} \left| \mathbb{E} \left[f\left(\frac{u(t)}{\sqrt{t}}\right) \middle| \mathcal{F}_0 \right] - \int_{\mathbb{R}} f(\mathbf{1} \cdot y) N_{\sigma^2}(dy) \right| = 0$$
(1.6)

holds for all $f \in C_b(C[0,1])$, where σ is a constant introduced later and N_{σ^2} stands for a 1-dimensional centered Gaussian distribution on \mathbb{R} with variance σ^2 .

Theorem 1.2. Under initial distribution $\nu \ll \mu$, { $\epsilon u(\epsilon^{-2}t), t \in [0,T]$ } converges weakly to a Gaussian process $\{\sigma B_t \cdot 1, t \in [0,T]\}$ as $\epsilon \downarrow 0$, where T > 0 is fixed, B_t is a 1dimensional Brownian motion on [0,T] and σ is the same constant as in Theorem 1.1.

2 CLT and invariance principle

A general theory of functional CLT for Markov processes is developed in [4], based on a martingale-decomposition of the targeted functional. This method is extended to non-reversible cases in many references, e.g. [6], [7], [8] and [10]. Combined with Itô's formula, it can be used to prove the central limit theorem for diffusion processes in \mathbb{R}^d with periodic coefficients, as illustrated in [5, Chapter 9]. We use the same strategy to prove Theorem 1.1.

Consider an equivalence relation in C[0,1] such that $v_1 \sim v_2$ if and only if $v_1 - v_2$ equals to some integer-valued constant function. Let $\dot{E} = C[0,1]/\sim$ and identify $\dot{v} \in \dot{E}$ with its representative $v \in C[0,1]$ such that $v(0) \in [0,1)$. A function f on C[0,1] can be automatically regarded as a function on \dot{E} if it satisfies that f(v+1) = f(v). Let $\dot{u}(t)$ be the process induced by u(t) on \dot{E} . Notice that $\dot{u}(t)$ is well-defined because we have condition (4) on the periodicity of coefficients.

It is clear that $\dot{u}(t)$ inherits the Markov property and a finite reversible measure form u(t). Precisely, suppose $\{w'_x\}_{x \in [0,1]}$ to be a 1-dimensional Brownian motion whose initial distribution is the Lebesgue measure on [0, 1), then

$$\pi(d\dot{v}) = \frac{1}{Z} \exp\left\{-2\int_0^1 V_x(\dot{v}(x))dx\right\} \pi_w(d\dot{v})$$
(2.1)

is a probability measure and is reversible for $\dot{u}(t)$, where π_w stands for the measure of w'_x and Z is a normalization constant. Let \mathcal{H} be the Hilbert space $L^2(\dot{E},\pi)$, with the inner product $\langle \cdot, \cdot \rangle_{\pi}$ and the norm $\|\cdot\|_{\pi}$. Denote by $\{\dot{\mathcal{P}}_t\}$ the Markov semigroup generated by $\dot{u}(t)$ on \mathcal{H} . Recall the results in [9] on the strong Feller property and irreducibility of $\{\dot{\mathcal{P}}_t\}$, we can conclude that π is the only one invariant measure, thus it is ergodic.

Let $\mathcal{E}_A(H)$ be the linear span of all real and imaginary parts of functions on H of the form $h \mapsto e^{i\langle l,h \rangle}$ where $l \in C^2[0,1]$ such that l'(0) = l'(1) = 0. Moreover, suppose $\mathcal{E}_A(\dot{E})$ to be the collection of functions in $\mathcal{E}_A(H)$ such that f(v) = f(v+1) for all $v \in E$. For $f \in \mathcal{E}_A(\dot{E})$, define

$$\dot{\mathcal{K}}_0 f(\dot{v}) = \frac{1}{2} \langle \partial_x^2 D f(\dot{v}), v \rangle + \frac{1}{2} Tr \left[D^2 f(\dot{v}) \right] - \langle D f(\dot{v}), V'(v(\cdot)) \rangle, \qquad (2.2)$$

where D denotes the Fréchet derivative. The integration-by-part formula for Wiener measure suggests that

$$E_{\pi} \|Df\|^2 = 2\langle f, -\dot{\mathcal{K}}_0 f \rangle_{\pi}, \qquad (2.3)$$

thus $\dot{\mathcal{K}}_0$ is dissipative on \mathcal{H} . Denote its closure by $(\mathcal{D}(\dot{\mathcal{K}}), \dot{\mathcal{K}})$. Along a similar strategy used in [1], we can conclude that $\dot{\mathcal{K}}$ generates $\{\dot{\mathcal{P}}_t\}$ on \mathcal{H} . For $f \in \mathcal{E}_A(\dot{E})$ let

$$||f||_1^2 = \langle -\dot{\mathcal{K}}f, f \rangle_{\pi} = \frac{1}{2}E_{\pi}||Df||^2.$$

Let \mathcal{H}_1 be completion of $\mathcal{E}_A(E)$ under $\|\cdot\|_1$, which turns to be a Hilbert space if all f such that $\|f\|_1 = 0$ are identified with 0. On the other hand, let

$$\mathcal{I} = \left\{ f \in \mathcal{H}; \|f\|_{-1} \triangleq \sup_{g \in \mathcal{E}_A(\dot{E}), \|g\|_1 = 1} \langle f, g \rangle_{\pi} < \infty \right\}$$

Let \mathcal{H}_{-1} be the completion of \mathcal{I}_{-1} under $\|\cdot\|_{-1}$, which also becomes a Hilbert space if all f with $\|f\|_{-1} = 0$ are identified with 0. Denote by $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_{-1}$ the inner products in \mathcal{H}_1 and \mathcal{H}_{-1} defined by polarization respectively.

Proposition 2.1. For all $f \in \mathcal{D}(\mathcal{K})$, the following equation holds π -a.s. and in \mathcal{H} .

$$f(\dot{u}(t)) = f(\dot{u}(0)) + \int_0^t \dot{\mathcal{K}} f(\dot{u}(r)) dr + \int_0^t \langle Df(\dot{u}(r)), dW_r \rangle.$$
(2.4)

Proof. When $f \in \mathcal{E}_A(\dot{E})$, (2.4) follows from the classical Itô's formula easily. For general f, since $\dot{\mathcal{K}}$ is the closure of $(\mathcal{E}_A(\dot{E}), \dot{\mathcal{K}}_0)$, we can pick $f_m \in \mathcal{E}_A(\dot{E})$ such that $f_m \to f$, $\dot{\mathcal{K}}f_m \to \dot{\mathcal{K}}f$ in \mathcal{H} . Then (2.3) suggests that $\|Df_m - Df\|$ also vanishes in \mathcal{H} as $m \to \infty$. Therefore, (2.4) follows from the Itô isometry.

Proof of Theorem 1.1. Pick $\varphi \in C^2[0,1]$ such that $\varphi'(0) = \varphi'(1) = 0$. Recall (1.3), it is not hard to verify that $V^{\varphi} \in \mathcal{H} \cap \mathcal{H}_{-1}$ and $\|V^{\varphi}\|_{-1} \leq \frac{\sqrt{2}}{2} \|\psi\|$. For $\lambda > 0$ we consider the resolvent equation written as

$$\lambda f_{\lambda}^{\varphi} - \dot{\mathcal{K}} f_{\lambda}^{\varphi} = V^{\varphi}. \tag{2.5}$$

Taking inner product with f_{λ}^{φ} in (2.5), since $\dot{u}(t)$ is reversible under π we have

$$\sup_{\lambda>0} \|\dot{\mathcal{K}}f_{\lambda}^{\varphi}\|_{-1} = \sup_{\lambda>0} \|f_{\lambda}^{\varphi}\|_{1} \le \|V^{\varphi}\|_{-1} < \infty.$$

$$(2.6)$$

Decompose the additive functional as $\int_0^t V^{\varphi}(\dot{u}(r))dr = M_{\lambda}^{\varphi}(t) + R_{\lambda}^{\varphi}(t)$, where M_{λ}^{φ} is the Dynkin's martingale and R_{λ}^{φ} is the residual term

$$\begin{split} M_{\lambda}^{\varphi}(t) &= f_{\lambda}^{\varphi}(\dot{u}(t)) - f_{\lambda}^{\varphi}(\dot{u}(0)) - \int_{0}^{t} \dot{\mathcal{K}} f_{\lambda}^{\psi}(\dot{u}(r)) dr, \\ R_{\lambda}^{\varphi}(t) &= f_{\lambda}^{\varphi}(\dot{u}(0)) - f_{\lambda}^{\varphi}(\dot{u}(t)) + \lambda \int_{0}^{t} f_{\lambda}^{\psi}(\dot{u}(r)) dr. \end{split}$$

Applying (2.4) to f_{λ}^{φ} , combining it with this decomposition, we have

$$\langle u(t), \varphi \rangle = \langle u(0), \varphi \rangle + \int_0^t \langle Df_\lambda^{\varphi}(\dot{u}(r)) + \varphi, dW_r \rangle + R_\lambda^{\varphi}(t)$$

Condition (2.6) implies that (see in [5, Chapter 2]) there exists some $f^{\varphi} \in \mathcal{H}_1$ and an adapted process $R^{\varphi}(t)$ such that

$$\langle u(t), \varphi \rangle = \langle u(0), \varphi \rangle + \int_0^t \langle Df^{\varphi}(\dot{u}(r)) + \varphi, dW_r \rangle + R^{\varphi}(t)$$

Now the vanishment of $R^{\varphi}(t)$ (see in [5, Chapter 2]) and martingale CLT show that under initial distribution $\nu \ll \mu$,

$$\lim_{t \to \infty} E_{\nu} \left| \mathbb{E} \left[f\left(\frac{\langle u(t), \varphi \rangle}{\sqrt{t}} \right) \right| \mathcal{F}_{0} \right] - \int_{\mathbb{R}} f(y) N_{\sigma^{2}}(dy) \right| = 0$$
(2.7)

for all $f \in C_b(\mathbb{R})$ and $\theta \in \mathbb{R}$, where $\sigma_{\varphi}^2 = E_{\pi} \|Df^{\varphi} + \varphi\|^2$.

Finally, to prove Theorem 1.1 we only need to pick $\varphi = e_j$ in (2.7) such that $\{e_j\}$ forms a CONS of $L^2[0,1]$ including the constant function 1 and sum them up.

Proof of Theorem 1.2. Fix T > 0 and it is sufficient to verify the tightness of the laws of the processes $\epsilon u(\epsilon^{-2} \cdot)$ when $\epsilon \downarrow 0$. Let S(t) be the semigroup generated by $\frac{1}{2}\partial_x^2$ on $L^2[0,1]$, then u(t) satisfies that

$$u(t) = S(t)v + \int_0^t S(t-r)[-V'_{\cdot}(u(r,\cdot))]dr + \int_0^t S(t-r)dW_r$$

Denote the three terms in the right-hand side by X(t), Y(t) and Z(t) respectively. Furthermore, let $X^{\perp}(t) \triangleq X(t) - \int_0^1 X(t, x) dx$ and define Y^{\perp} , Z^{\perp} similarly. Then

$$\epsilon u(\epsilon^{-2}t) = \epsilon \int_0^1 u(\epsilon^{-2}t, x) dx + \epsilon X^{\perp}(\epsilon^{-2}t) + \epsilon Y^{\perp}(\epsilon^{-2}t) + \epsilon Z^{\perp}(\epsilon^{-2}t)$$

When $\epsilon \downarrow 0$, [5, Theorem 2.32] yields that the integral term is tight, while $\{\epsilon X^{\perp}(\epsilon^{-2}t), t \in [0,T]\}$ vanishes uniformly since the heat semigroup is contractive.

The tightness of the two terms about Y^{\perp} and Z^{\perp} follows from the following estimates. For all p > 1, there exists a finite constant C_p only depending on $\{V_x\}$ such that for all $t_1, t_2 \in [0, \infty)$ and $x_1, x_2 \in [0, 1]$,

$$E\left|Y^{\perp}(t_1, x_1) - Y^{\perp}(t_2, x_2)\right|^{2p} \le C_p(|t_1 - t_2|^p + |x_1 - x_2|^p);$$
(2.8)

$$E\left|Z^{\perp}(t_1, x_1) - Z^{\perp}(t_2, x_2)\right|^{2p} \le C_p(|t_1 - t_2|^{\frac{p}{2}} + |x_1 - x_2|^p).$$
(2.9)

(2.8) and (2.9) are standard estimates for stochastic heat equations and the proof only involves computations, so we omit them here. \Box

References

- Da Ptato, G., Tubaro, L.: Some results about dissipativity of Kolmogorov operators. Czechoslovak Math. J. 126, 685-699 (2001)
- Funaki, T.: Random motion of strings and related stochastic evolution equations. Nagoya Math. J. 89, 129-193 (1983)
- [3] Hairer, M., Shen H.: The dynamical sine-Gordon model. arXir: 1409.5724.
- [4] Kipnis, C., Varadhan, S.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104(1), 1-19 (1986)
- [5] Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes. Springer-Verlag Berlin Heidelberg (2012)
- [6] Komorowski, T., Olla, S.: On the sector condition and homogenization of diffusions with a Gaussian drift. J. Funct. Anal. 197(1), 179-211 (2003)
- [7] Landim, C., Yau, H.-T.: Fluctuation-dissipation equation of asymmetric simple exclusion processes. Probab. Theory Relat. Fields 108(3), 321-356 (1997)
- [8] Osada, H., Saitoh, T.: An invariance principle for non-symmetric Markov processes and reflecting diffusions in random domains. *Probab. Theory Relat. Fields* 101(1), 157-172 (1995)

- [9] Peszat, S., Zabczyk, J.: Strong Feller property and irreducibility for diffusions on Hilbert spaces. Ann. Probab. 23(1), 157-172 (1995)
- [10] Varadhan, S.: Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion processes. Ann. Inst. Henri Poincaré Probab. Stat. 31(1), 273-285 (1995)
- [11] Whitt, W.: Proofs of the martingale FCLT. Probab. Surv. 4, 268-302 (2007).

Graduate School of Mathematical Sciences The University of Tokyo Komaba, Tokyo 153-8914 JAPAN E-mail address: xltodai@ms.u-tokyo.ac.jp