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Abstract

This note is on the attempt to study the asymptotic behaviors in stochastic partial
differential equation via Kipnis-Varadhan’s theory on functional central limit theorem.
In this note we considered a stochastic heat equation with periodic coefficients, which
is closely related to the dynamical sine-Gordon equation. We conclude that under time
scale $t^{-\frac{1}{2}}$ , the law of the solution will converge to a centered Gaussian distribution as
$tarrow\infty$ , and the fluctuation in $x$ will vanish.

1 Stochastic heat equations

Given a Hilbert space $H$ , the cylindrical Brownian motion $W_{t}$ on $H$ is defined formally
by the series

$W_{t}= \sum_{j=0}^{\infty}B_{t}^{j}e_{j},$ $t\geq 0$ , (1.1)

where $\{e_{j}\}$ is a CONS of $H$ and $\{B_{t}^{j}\}$ is an infinite sequence of independent standard
1-dimensional Brownian motions. Notice that (1.1) does not converge in $H$ , indeed the
expected value of the $H$-norm $E\Vert W_{t}\Vert^{2}=\infty$ . Instead, it converges in another Hilbert
space $H’$ containing $H$ with a Hilbert-Schmidt embedding.

Suppose that $V_{x}$ $=V(x, \cdot)$ is a family of $C^{1}$ functions on $\mathbb{R}$ indexed by $x\in[0$ , 1 $],$

and $V_{x}’(u)= \frac{d}{du}V_{x}(u)$ for $u\in \mathbb{R}$ . We deal with the following 1-dimensional stochastic
PDE with a Neumann boundary condition

$\{\begin{array}{ll}\partial_{t}u(t, x)=\frac{1}{2}\partial_{x}^{2}u(t, x)-V_{x}’(u(t, x))+\dot{W}(t, x) , t>0, x\in(0,1) ,\partial_{x}u(t, 0)=\partial_{x}u(t, 1)=0, t>0,u(O, x)=v(x) , x\in[0, 1 ],\end{array}$ (1.2)

where $W$ is a cylindrical Brownian motion on $L^{2}[0$ , 1$]$ and $\dot{W}(t, x)$ is formally its deriva-
tive in $x$ . Precisely, by the solution to (1.2) we mean a process $u(t)\in L^{2}[0$ , 1$]$ such that
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for all $\varphi\in C^{2}[0$ , 1 $],$ $\varphi’(0)=\varphi’(1)=0,$

$\langle u(t) , \varphi\rangle=\langle v, \varphi\rangle+\int_{0}^{t}V^{\varphi}(u(r))dr+\langle W_{t}, \varphi\rangle$ , (1.3)

where $\langle W_{t},$ $\varphi\rangle$ is a Brownian motion and $V^{\varphi}$ is a functional on $C[O$ , 1$]$ defined as

$V^{\varphi}(v)= \triangle\frac{1}{2}\int_{0}^{1}v(x)\varphi"(x)dx-\int_{0}^{1}V_{x}’(v(x))\varphi(x)dx.$

The stochastic PDE (1.2) is originally defined in [2] for the purpose of describing
the motion of a flexible Brownian string in some potential field. In this note we need
the following assumptions on $V_{x}$ :
(1) $\forall u\in \mathbb{R},$ $V_{x}(u)$ is Borel-measurable in $x$ ;
(2) $\sup_{x\in[0,1],u\in \mathbb{R}}\{|V_{x}(u)|+|V_{x}’(u)|\}<\infty$ ;
(3) $\forall x\in[O$ , 1 $],$ $V_{x}’$ is global Lipschitz continuous with the same Lipschitz constant.
(4) $\forall x\in[O$ , 1 $],$ $V_{x}$ is periodic in $u:V_{x}(u)=V_{x}(u+1)$ .
Under condition (1)$-(3)$ , the solution $u(t)$ uniquely exists in $C[O$ , 1$]$ and forms a contin-
uous Markov process. Furthermore, if $\{w_{x}\}_{x\in[0,1]}$ is a 1-dimensional Brownian motion
whose initial distribution is the Lebesgue measure on $\mathbb{R}$ , then the reversible measure of
$u(t)$ is an infinite measure on $C[O$ , 1$]$ given by

$\mu(dv)=\exp\{-2\int_{0}^{1}V_{x}(v(x))dx\}\mu_{w}(dv)$ , (1.4)

where $\mu_{w}$ stands for the measure induced by $w_{x}$ (see in [2]).
This model is closely related to the following dynamical sine-Gordon model

$\partial_{t}u=\frac{1}{2}\triangle u+c\sin(\beta u+\theta)+\xi$ , (1.5)

where $c,$ $\beta$ and $\theta$ are real constants and $\xi$ denotes the space-time white noise. As
introduced in [3], (1.5) is the natural dynamic associated to the usual quantum sine-
Gordon model. From a physical perspective, (1.5) describes globally neutral gas of
interacting charges at different temperature $\beta$ . When the spacial dimension is 2 or
more, to construct the solution to (1.5) we need Hairer’s theory of regularity structures
(see in [3]). Now we restrict our discussion to the 1-dimensional case. The aim of this
note is to study the limit distribution of $u(t)/\sqrt{t}$ . Our main results are listed below.

Theorem 1.1. Under an initial probability distribution $\nu$ such that $v\ll\mu,$

$\lim_{tarrow\infty}E_{\nu}|\mathbb{E}[f(\frac{u(t)}{\sqrt{t}})|\mathcal{F}_{0}]-\int_{\mathbb{R}}f(1\cdot y)N_{\sigma^{2}}(dy)|=0$ (1.6)

holds for all $f\in C_{b}(C[0,1$ where $\sigma$ is a constant introduced later and $N_{\sigma^{2}}$ stands for
$a$ 1-dimensional centered Gaussian distribution on $\mathbb{R}$ with variance $\sigma^{2}.$

Theorem 1.2. Under initial distribution $y\ll\mu,$ $\{\epsilon u(\epsilon^{-2}t), t\in[O, T]\}$ converges weakly
to a Gaussian process $\{\sigma B_{t}\cdot 1, t\in[0, T]\}$ as $\epsilon\downarrow 0$ , where $T>0$ is fixed, $B_{t}$ is $a$ 1-
dimensional Brownian motion on $[0, T]$ and $\sigma$ is the same constant as in Theorem 1.1.
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2 CLT and invariance principle

A general theory of functional CLT for Markov processes is developed in [4], based

on a martingale-decomposition of the targeted functional. This method is extended to

non-reversible cases in many references, e.g. [6], [7], [8] and [10]. Combined with It\^o’s

formula, it can be used to prove the central limit theorem for diffusion processes in $\mathbb{R}^{d}$

with periodic coefficients, as illustrated in [5, Chapter 9]. We use the same strategy to

prove Theorem 1.1.
Consider an equivalence relation in $C[O$ , 1$]$ such that $v_{1}\sim v_{2}$ if and only if $v_{1}-v_{2}$

equals to some integer-valued constant function. Let $\dot{E}=C[O, 1]/\sim and$ identify $\dot{v}\in\dot{E}$

with its representative $v\in C[O$ , 1$]$ such that $v(0)\in[0$ , 1). A function $f$ on $C[O$ , 1$]$ can
be automatically regarded as a function on $E$ if it satisfies that $f(v+1)=f(v)$ . Let
$\dot{u}(t)$ be the process induced by $u(t)$ on $\dot{E}$ . Notice that $\dot{u}(t)$ is well-defined because we
have condition (4) on the periodicity of coefficients.

It is clear that $\dot{u}(t)$ inherits the Markov property and a finite reversible measure
form $u(t)$ . Precisely, suppose $\{w_{x}’\}_{x\in[0,1]}$ to be a 1-dimensional Brownian motion whose

initial distribution is the Lebesgue measure on $[0$ , 1), then

$\pi(dv)=\frac{1}{Z}\exp\{-2\int_{0}^{1}V_{x}(\dot{v}(x))dx\}\pi_{w}(d\dot{v})$ (2.1)

is a probability measure and is reversible for $\dot{u}(t)$ , where $\pi_{w}$ stands for the measure
of $w_{x}’$ and $Z$ is a normalization constant. Let $\mathcal{H}$ be the Hilbert space $L^{2}(\dot{E}, \pi)$ , with
the inner product $\rangle_{\pi}$ and the norm $\Vert\cdot\Vert_{\pi}$ . Denote by $\{\dot{\mathcal{P}}_{t}\}$ the Markov semigroup

generated by $\dot{u}(t)$ on $\mathcal{H}$ . Recall the results in [9] on the strong Feller property and
irreducibility of $\{\mathcal{P}_{t}\}$ , we can conclude that $\pi$ is the only one invariant measure, thus
it is ergodic.

Let $\mathcal{E}_{A}(H)$ be the linear span of all real and imaginary parts of functions on $H$ of

the form $h\mapsto e^{i\langle l,h\rangle}$ where $l\in C^{2}[0$ , 1$]$ such that $l’(O)=l’(1)=0$ . Moreover, suppose
$\mathcal{E}_{A}(\dot{E})$ to be the collection of functions in $\mathcal{E}_{A}(H)$ such that $f(v)=f(v+1)$ for all
$v\in E$ . For $f\in \mathcal{E}_{A}(\dot{E})$ , define

$\dot{\mathcal{K}}_{0}f(v)=\frac{1}{2}\langle\partial_{x}^{2}Df(v)$ , $v \rangle+\frac{1}{2}Tr[D^{2}f(v)]-\langle Df(v)$ , $V$. $\prime(v(\cdot))\rangle$ , (2.2)

where $D$ denotes the Fr\’echet derivative. The integration-by-part formula for Wiener
measure suggests that

$E_{\pi}\Vert Df\Vert^{2}=2\langle f, -\dot{\mathcal{K}}_{0}f\rangle_{\pi}$ , (2.3)

thus $\dot{\mathcal{K}}_{0}$ is dissipative on $\mathcal{H}$ . Denote its closure by $(\mathcal{D}(\dot{\mathcal{K}}),\dot{\mathcal{K}})$ . Along a similar strategy
used in [1], we can conclude that $\dot{\mathcal{K}}$ generates $\{\mathcal{P}_{t}\}$ on $\mathcal{H}$ . For $f\in \mathcal{E}_{A}(\dot{E})$ let

$\Vert f\Vert_{1}^{2}=\langle-\dot{\mathcal{K}}f, f\rangle_{\pi}=\frac{1}{2}E_{\pi}\Vert Df\Vert^{2}.$

Let $\mathcal{H}_{1}$ be completion of $\mathcal{E}_{A}(\dot{E})$ under $\Vert\cdot\Vert_{1}$ , which turns to be a Hilbert space if all $f$

such that $\Vert f\Vert_{1}=0$ are identified with O. On the other hand, let

$\mathcal{I}=\{f\in \mathcal{H};||f||_{-1}=\Delta \sup_{g\in \mathcal{E}_{A}(\dot{E}),||g||_{1}=1} \langle f,g\rangle_{\pi}<\infty\}$
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Let $\mathcal{H}_{-1}$ be the completion of $\mathcal{I}_{-1}$ under $\Vert\cdot\Vert_{-1}$ , which also becomes a Hilbert space
if all $f$ with $\Vert f\Vert_{-1}=0$ are identified with O. Denote by $\rangle_{1}$ and $\rangle_{-1}$ the inner
products in $\mathcal{H}_{1}$ and $\mathcal{H}_{-1}$ defined by polarization respectively.

Proposition 2.1. For all $f\in \mathcal{D}(\dot{\mathcal{K}})$ , the following equation holds $\pi-a.s$ . and in $\mathcal{H}.$

$f( \dot{u}(t))=f(\dot{u}(0))+\int_{0}^{t}\dot{\mathcal{K}}f(\dot{u}(r))dr+\int_{0}^{t}\langle Df(\dot{u}(r)) , dW_{r}\rangle$ . (2.4)

Proof. When $f\in \mathcal{E}_{A}(\dot{E})$ , (2.4) follows from the classical It\^o’s formula easily. For general
$f$ , since $\dot{\mathcal{K}}$ is the closure of $(\mathcal{E}_{A}(\dot{E}),\dot{\mathcal{K}}_{0})$ , we can pick $f_{m}\in \mathcal{E}_{A}(\dot{E})$ such that $f_{m}arrow f,$

$\dot{\mathcal{K}}f_{m}arrow\dot{\mathcal{K}}f$ in $\mathcal{H}$ . Then (2.3) suggests that $\Vert Df_{m}-Df\Vert$ also vanishes in $\mathcal{H}$ as $marrow\infty.$

Therefore, (2.4) follows from the It\^o isometry. $\square$

Proof of Theorem 1.1. Pick $\varphi\in C^{2}[0$ , 1$]$ such that $\varphi’(0)=\varphi’(1)=0$ . Recall (1.3), it is
not hard to verify that $V^{\varphi}\in \mathcal{H}\cap \mathcal{H}_{-1}$ and $\Vert V^{\varphi}\Vert_{-1}\leq\frac{\sqrt{2}}{2}\Vert\psi\Vert$ . For $\lambda>0$ we consider
the resolvent equation written as

$\lambda f_{\lambda}^{\varphi}-\dot{\mathcal{K}}f_{\lambda}^{\varphi}=V^{\varphi}$ . (2.5)

Taking inner product with $f_{\lambda}^{\varphi}$ in (2.5), since $\dot{u}(t)$ is reversible under $\pi$ we have

$\sup_{\lambda>0}\Vert\dot{\mathcal{K}}f_{\lambda}^{\varphi}\Vert_{-1}=\sup_{\lambda>0}\Vert f_{\lambda}^{\varphi}\Vert_{1}\leq\Vert V^{\varphi}\Vert_{-1}<\infty$ . (2.6)

Decompose the additive functional as $\int_{0}^{t}V^{\varphi}(\dot{u}(r))dr=M_{\lambda}^{\varphi}(t)+R_{\lambda}^{\varphi}(t)$ , where $M_{\lambda}^{\varphi}$ is
the Dynkin’s martingale and $R_{\lambda}^{\varphi}$ is the residual term

$M_{\lambda}^{\varphi}(t)=f_{\lambda}^{\varphi}( \dot{u}(t))-f_{\lambda}^{\varphi}(\dot{u}(0))-\int_{0}^{t}\dot{\mathcal{K}}f_{\lambda}^{\psi}(\dot{u}(r))dr,$

$R_{\lambda}^{\varphi}(t)=f_{\lambda}^{\varphi}( \dot{u}(0))-f_{\lambda}^{\varphi}(\dot{u}(t))+\lambda\int_{0}^{t}f_{\lambda}^{\psi}(\dot{u}(r))dr.$

Applying (2.4) to $f_{\lambda}^{\varphi}$ , combining it with this decomposition, we have

$\langle u(t) , \varphi\rangle=\langle u(O) , \varphi\rangle+\int_{0}^{t}\langle Df_{\lambda}^{\varphi}(\dot{u}(r))+\varphi, dW_{r}\rangle+R_{\lambda}^{\varphi}(t)$ .

Condition (2.6) implies that (see in [5, Chapter 2]) there exists some $f^{\varphi}\in \mathcal{H}_{1}$ and an
adapted process $R^{\varphi}(t)$ such that

$\langle u(t) , \varphi\rangle=\langle u(O) , \varphi\rangle+\int_{0}^{t}\langle Df^{\varphi}(\dot{u}(r))+\varphi, dW_{r}\rangle+R^{\varphi}(t)$ .

Now the vanishment of $R^{\varphi}(t)$ (see in [5, Chapter 2]) and martingale CLT show that
under initial distribution $\nu\ll\mu,$

$\lim_{tarrow\infty}E_{v}|\mathbb{E}[f(\frac{\langle u(t),\varphi\rangle}{\sqrt{t}})|\mathcal{F}_{0}]-\int_{N}f(y)N_{\sigma^{2}}(dy)|=0$ (2.7)

for all $f\in C_{b}(\mathbb{R})$ and $\theta\in \mathbb{R}$ , where $\sigma_{\varphi}^{2}=E_{\pi}\Vert Df^{\varphi}+\varphi\Vert^{2}.$

Finally, to prove Theorem 1.1 we only need to pick $\varphi=e_{j}$ in (2.7) such that $\{e_{j}\}$

forms a CONS of $L^{2}[0$ , 1$]$ including the constant function 1 and sum them up. $\square$
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Proof of Theorem 1.2. Fix $T>0$ and it is sufficient to verify the tightness of the laws

of the processes $\epsilon u(\epsilon^{-2}\cdot)$ when $\epsilon\downarrow 0$ . Let $S(t)$ be the semigroup generated by $\frac{1}{2}\partial_{x}^{2}$ on
$L^{2}[0$ , 1 $]$ , then $u(t)$ satisfies that

$u(t)=S(t)v+ \int_{0}^{t}S(t-r)[-V’(u(r, \cdot))]dr+\int_{0}^{t}S(t-r)dW_{r}$

Denote the three terms in the right-hand side by $X(t)$ , $Y(t)$ and $Z(t)$ respectively.

Furthermore, let $X^{\perp}(t)= \Delta X(t)-\int_{0}^{1}X(t, x)dx$ and define $Y^{\perp},$ $Z^{\perp}$ similarly. Then

$\epsilon u(\epsilon^{-2}t)=\epsilon\int_{0}^{1}u(\epsilon^{-2}t, x)dx+\epsilonX^{\perp}(\epsilon^{-2}t)+\epsilon Y^{\perp}(\epsilon^{-2}t)+\epsilon Z^{\perp}(\epsilon^{-2}t)$ .

When $\epsilon\downarrow 0$ , [5, Theorem 2.32] yields that the integral term is tight, while $\{\epsilon X^{\perp}(\epsilon^{-2}t)$ , $t\in$

$[0, T]\}$ vanishes uniformly since the heat semigroup is contractive.
The tightness of the two terms about $Y^{\perp}$ and $Z^{\perp}$ follows from the following esti-

mates. For all $p>1$ , there exists a finite constant $C_{p}$ only depending on $\{V_{x}\}$ such
that for all $t_{1},$ $t_{2}\in[0, \infty$ ) and $x_{1},$ $x_{2}\in[0$ , 1 $],$

$E|Y^{\perp}(t_{1}, x_{1})-Y^{\perp}(t_{2}, x_{2})|^{2p}\leq C_{p}(|t_{1}-t_{2}|^{p}+|x_{1}-x_{2}|^{p})$ ; (2.8)

$E|Z^{\perp}(t_{1}, x_{1})-Z^{\perp}(t_{2}, x_{2})|^{2p}\leq C_{p}(|t_{1}-t_{2}|^{R}2+|x_{1}-x_{2}|^{p})$ . (2.9)

(2.8) and (2.9) are standard estimates for stochastic heat equations and the proof only

involves computations, so we omit them here. $\square$
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