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1 Introduction

In this paper we consider the nonlinear version of the dissipative Timoshenko system

$\{\begin{array}{l}\varphi_{tt}-(\varphi_{x}-\psi)_{x}=0,\psi_{tt}-\sigma(\psi_{x})_{x}-(\varphi_{x}-\psi)+\gamma\psi_{t}=0\end{array}$ (1.1)

with the initial data
$(\varphi, \varphi_{t}, \psi, \psi_{t})(x, 0)=(\varphi_{0}, \varphi_{1}, \psi_{0}, \psi_{1})(x)$

in the one-dimensional whole space. The original Timoshenko system $(\gamma=0)$ was first
introduced by S.P. Timoshenko in [6, 7] as a model system which describes the vibration
of the beam called Timoshenko beam: It considers not only transversal movement but
also shearing deformation. Here $t\geq 0$ is a time variable and $x\in \mathbb{R}$ is a spacial variable
which denotes a point on the center line of the beam; $\varphi$ and $\psi$ are unknown functions
of $(x, t)$ , which denote the transversal displacement and the rotation angle of the beam,
respectively. Note that $\varphi_{x}-\psi$ denotes the shearing stress. The nonlinear term $\sigma(\eta)$ is
assumed to be a smooth function of $\eta$ such that $\sigma’(\eta)>0$ for any $\eta$ under considerations;
the coefficient $\gamma$ in the frictional damping term $\gamma\psi_{t}$ is a positive constant. The Timoshenko
system is very important as a model system of symmetric hyperbolic systems or symmetric
hyperbolic-parabolic systems because the system has new dissipative structures which can
not be characterized by the general theory established by S. Kawashima in [5, 8] in terms
of the Kawashima condition. In this paper we investigate the nonlinear version of the
system by introducing frictional damping as the dissipative mechanism, and first prove
the global existence and uniqueness of solutions under smallness assumption on the initial
data in the Sobolev space $H^{2}$ (with the critical regularity-index). Also, for initial data in
$H^{2}\cap L^{1}$ , we show that the solutions decay in $L^{2}$ at the the optimal rate $t^{-1/4}$ for $arrow\infty.$
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1.1 Formulation of the problem

By introducing new unknown functions

$v:=\varphi_{x}-\psi, u:=\varphi_{t}, z:=a\psi_{x}, y:=\psi_{t},$

we transform our system (1.1) into the first order hyperbolic system

$v_{t}-u_{x}+y=0$ , (1.2a)

$y_{t}-\sigma(z/a)_{x}-v+\gamma y=0$ , (1.2b)

$u_{t}-v_{x}=0$ , (1.2c)

$z_{t}-ay_{x}=0$ , (1.2d)

where $a:=\sqrt{\sigma’(0)}$ . The corresponding initial data are given by

$(v, y, u, z)(x, O)=(v_{0}, y_{0}, u_{0}, z_{0})(x)$ , (1.3)

where $v_{0}:=\varphi_{0,x}-\psi_{0},$ $y_{0}:=\psi_{1},$ $u_{0}:=\varphi_{1},$ $z_{0}:=a\psi_{0,x}$ . Here we remark that the
nonlinearity of the system (1.2) depends on the component $z$ only.

Our system (1.2) is a symmetric hyperbolic system with non-symmetric relaxation. In
fact, we can write (1.2) as

$A^{0}(z)W_{t}+A(z)W_{x}+LW=0$ , (1.4)

where $W=(v, y, u, z)^{T},$ $A^{0}(z)=diag(1,1,1, b(z)/a)$ with $b(z)=\sigma’(z/a)/a$ , and

$A(z)=-(\begin{array}{llll}0 0 1 00 0 0 b(z)1 0 0 00 b(z) 0 0\end{array}), L=(\begin{array}{llll}0 1 0 0-1 \gamma 0 00 0 0 00 0 0 0\end{array})$

The corresponding linearized system at $z=0$ is given by

$W_{t}+AW_{x}+LW=0$ , (1.5)

where $A^{0}(0)=I$ and

$A:=A(0)=-(\begin{array}{llll}0 0 1 00 0 0 a1 0 0 00 a 0 0\end{array})$

Notice that the linearized system is given explicitly as

$\{\begin{array}{l}v_{t}-u_{x}+y=0,y_{t}-az_{x}-v+\gamma y=0,u_{t}-v_{x}=0,z_{t}-ay_{x}=0.\end{array}$ (1.6)

In our system (1.4) or (1.5) the relaxation matrix $L$ is not symmetric such that $kerL\neq$

$kerL_{1}$ , where $L_{1}$ denotes the symmetric part of $L$ . This is the reason why the general
theory on the dissipative structure developed in [5, 8] can not be applicable to our system.
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1.2 Known results for linear system

The decay property of the linear system (1.6) was first investigated by J.E. Munoz Rivera
and R. Racke in [4]. They studied (1.6) in a bounded region and with simple boundary
conditions and showed that the energy of the solution decays exponentially when $a=1,$

but polynomially when $a\neq 1$ as $tarrow\infty.$

To explain this interesting decay property, K. Ide, K. Haramoto and S. Kawashima
[2] considered the system (1.6) in one-dimensional whole space and showed that the dis-
sipative structure of the system (1.6) can be described as

${\rm Re}\lambda(i\xi)\leq-c\eta(\xi)$ , $\eta(\xi)=\{\begin{array}{ll}\xi^{2}/(1+\xi^{2}) for a=1,\xi^{2}/(1+\xi^{2})^{2} for a\neq 1,\end{array}$

where $\lambda(i\xi)$ denotes the eigenvalues of the system (1.6) in the Fourier space, and $c$ is a
positive constant. We note that the dissipative structure for $a=1$ is the same as that
in the general theory developed in [5, 8]. However, the dissipative strudture for $a\neq 1$

is much weaker in the high frequency region and causes regularity-loss in the dissipation
term of the energy estimate and also in the decay estimate.

In fact, by using the energy method in the Fourier space, the authors in [2] derived
the following pointwise estimate for the linear solution $W=(v, y, u, z)^{T}$ of (1.6):

$|\hat{W}(\xi, t)|\leq Ce^{-c\eta(\xi)t}|\hat{W}_{0}(\xi)|,$

where $W_{0}=(v_{0}, y_{0}, u_{0}, z_{0})^{T}$ is the corresponding initial data. Moreover, based on this
pointwise estimate, they showed the optimal time decay estimates of the linear solution:

$\Vert\partial_{x}^{k}W(t)\Vert_{L^{2}}\leq C(1+t)^{-1/4-k/2}\Vert W_{0}\Vert_{L^{1}}+\{\begin{array}{ll}Ce^{-ct}\Vert\partial_{x}^{k}W_{0}\Vert_{L^{2}} for a=1,C(1+t)^{-\ell/2}\Vert\partial_{x}^{k+\ell}W_{0}\Vert_{L^{2}} for a\neq 1,\end{array}$

where $k$ and $l$ are nonnegative integers, and $C$ and $c$ are positive constants. We note that
when $a\neq 1$ , in order to obtain the optimal decay rate $(1+t)^{-1/4-k/2}$ we have to assume
the additional $\ell$-th order regularity on the initial data to make the decay rate $(1+t)^{-\ell/2}$

better than $(1+t)^{-1/4-k/2}$ . Therefore the regularity-loss can not be avoided in the decay
estimate for $a\neq 1.$

1.3 Known results for nonlinear system

Based on these linear results in [2], K. Ide and S. Kawashima [1] proved the global existence
and decay of solutions to the nonlinear system (1.2). To state the result, we introduce
the following time-weighted norms $\tilde{E}(t)$ and $\tilde{D}(t)$ :

$\tilde{E}(t)^{2}:=\sum_{j=0}^{[s/2]}\sup_{0\leq\tau\leq t}(1+\tau)^{j-1/2}\Vert\partial_{x}^{j}W(\tau)\Vert_{H^{s-2j}}^{2},$

$\tilde{D}(t)^{2}:=\sum_{j=0}^{[s/2]}\int_{0}^{t}(1+\tau)^{j-3/2}\Vert\partial_{x}^{j}W(\tau)\Vert_{H^{s-2j}}^{2}d\tau$

$+ \sum_{j=0}^{[s/2]-1}\int_{0}^{t}(1+\tau)^{j-1/2}\Vert\Psi_{x}v(\tau)\Vert_{H^{s-1-2j}}^{2}d\tau+\sum_{j=0}^{[s/2]}\int_{0}^{t}(1+\tau)^{j-1/2}\Vert ffl_{x}y(\tau)\Vert_{H^{\epsilon-2j}}^{2}d\tau.$
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Then the result in [1] is stated as follows.

Theorem 1.1 ([1]). Assume that the initial data satisfy $W_{0}\in H^{s}\cap L^{1}$ for $s\geq 6$ and put
$\tilde{E}_{1}$

$:=\Vert W_{0}\Vert_{H^{s}}+\Vert W_{0}\Vert_{L^{1}}$ . Then there exists a positive constant $\tilde{\delta}_{1}$ such that if $\tilde{E}_{1}\leq\tilde{\delta}_{1}$ , the
Cauchy problem (1.2), (1.3) has a unique global solution $W(t)$ with $W\in C([O, \infty);H^{s})\cap$

$C^{1}([0, \infty);H^{s-1})$ . Moreover the solution $W(t)$ verifies the energy estimate

$\tilde{E}(t)^{2}+\tilde{D}(t)^{2}\leq C\tilde{E}_{1}^{2}$

and the following optimal decay estimate for lower order derivatives

$\Vert\partial_{x}^{k}W(t)\Vert_{L^{2}}\leq C\tilde{E}_{1}(1+t)^{-1/4-k/2},$

where $0\leq k\leq[s/2]-1$ , and $C>0$ is a constant.

Remark 1.1. The result in Theorem 1.1 requires the regularity $s\geq 6$ and $L^{1}$ property on
the initial data. Also, the norms $\tilde{E}(t)$ and $\tilde{D}(t)$ contains the time weights with negative
exponents. These were crucial in [1] to overcome the difficulty caused by the regularity-loss
property.

1.4 Main results

The main purpose of this paper is to refine Theorem 1.1 under less regularity assumption
on the initial data. To state our results, we introduce the energy norm $E(t)$ and the
corresponding dissipation norm $D(t)$ by

$E(t)^{2}:= \sup_{0\leq\tau\leq t}\Vert W(\tau)\Vert_{H^{s}}^{2},$

$D(t)^{2}:= \int_{0}^{t}\Vert v(\tau)\Vert_{H^{s-1}}^{2}+\Vert y(\tau)\Vert_{H^{s}}^{2}+\Vert\partial_{x}u(\tau)\Vert_{H^{s-2}}^{2}+\Vert\partial_{x}z(\tau)\Vert_{H^{s-1}}^{2}d\tau.$

Notice that in the dissipation norm $D(t)$ we have 1 regularity-loss for $(v, u)$ but no
regularity-loss for $(y, z)$ . Our first result is then stated as follows.

Theorem 1.2 (Global existence). Assume that the initial data satisfy $W_{0}\in H^{S}$ for
$s\geq 2$ and put $E_{0}:=\Vert W_{0}\Vert_{H^{s}}$ . Then there exists a positive constant $\delta_{0}$ such that if
$E_{0}\leq\delta_{0}$ , the Cauchy problem (1.2), (1.3) has a unique global solution $W(t)$ with $W\in$

$C([O, \infty);H^{s})\cap C^{1}([0, \infty);H^{s-1})$ . Moreover the solution $W(t)$ verifies the energy estimate

$E(t)^{2}+D(t)^{2}\leq CE_{0}^{2},$

where $C>0$ is a constant.

Remark 1.2. Our global existence result holds true under less regularity assumption
$s\geq 2$ and without $L^{1}$ property on the initial data. This refinement is based on the
better Lyapunov function constructed in [3]. Our Lyapunov function produces the optimal
dissipation estimate for $z$ without any regularity-loss (see $D(t)$ ), which enables us to
control the nonlinearity depending only on $z.$

Next we state the result on the optimal time decay estimate.
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Theorem 1.3 (Optimal $L^{2}$ decay estimate). Assume that the initial data satisfy $W_{0}\in$

$H^{2}\cap L^{1}$ and put $E_{1}:=\Vert W_{0}\Vert_{H^{2}}+\Vert W_{0}\Vert_{L^{1}}$ . Then there is a positive constant $\delta_{1}$ such that

if $E_{1}\leq\delta_{1}$ , then the solution $W(t)$ obtained in Theorem 1.2 satisfies the following optimal
$L^{2}$ decay estimate:

$\Vert W(t)\Vert_{L^{2}}\leq CE_{1}(1+t)^{-1/4},$

where $C>0$ is a constant.

Remark 1.3. In order to show the above decay estimate, we first estimate the nonlinear
solution by using the energy method in the Fourier space and then apply the refined decay
estimate of $U-L^{q_{-}}L^{r}$ type which was established in [9]. For the details, see Section 3.

Notations. Let $\hat{f}=\mathcal{F}[f]$ be the Fourier transform of $f$ :

$\hat{f}(\xi)=\overline{ノ_{}\Gamma}[f](\xi):=\int_{\mathbb{R}}f(x)e^{-i\xi x}dx.$

For $1\leq p\leq\infty$ , we denote by $L^{p}=If(\mathbb{R})$ the usual Lebesgue space on $\mathbb{R}$ with the norm
$\Vert\cdot\Vert_{Lr}$ . Also, for nonnegative integer $s$ , we denote by $H^{s}=H^{s}(\mathbb{R})$ the Sobolev space of
$L^{2}$ functions, equipped with the norm $\Vert\cdot\Vert_{H^{s}}$ . In this paper, every positive constant is
denoted by the same symbol $C$ or $c$ without confusion.

2 Energy method

The aim of this section is to prove the global existence result in Theorem 1.2. Our global
existence result can be shown by the combination of a local existence result and the
desired a priori estimate. Since our system (1.2) is a symmetric hyperbolic system, it is
not difficult to show a local existence result by the standard method, and we omit the
details. To state our result on the a priori estimate, we consider a solution $W(t)$ of the
problem (1.2), (1.3) satisfying $W\in C([O, T];H^{s})\cap C^{1}([0, T];H^{s-1})$ for $s\geq 2$ and

$\sup_{0\leq t\leq T}\Vert W(t)\Vert_{L}\infty\leq\delta$
, (2.1)

where $\delta$ is a fixed positive constant. Our a priori estimate is now given as follows.

Proposition 2.1 (A priori estimate). Suppose that $W_{0}\in H^{s}$ for $s\geq 2$ and put $E_{0}=$

$\Vert W_{0}\Vert_{H^{S}}$ . Let $T>0$ and let $W(t)$ be a solution to the Cauchy problem (1.2), (1.3) satisfying
(2.1). Then there exists a positive constant $\delta_{2}$ independent of $T$ such that if $E_{0}\leq\delta_{2}$ , we
have the a priori estimate

$E(t)^{2}+D(t)^{2}\leq CE_{0}^{2}, t\in[0, T]$ , (2.2)

where $C>0$ is a constant independent of $T.$

To prove the above a priori estimate in Proposition 2.1, we need to show the following
energy inequality by applying the energy method.
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Proposition 2.2 (Energy inequality). Suppose that $W_{0}\in H^{s}$ for $s\geq 2$ and put $E_{0}=$

$\Vert W_{0}\Vert_{H^{s}}$ . Let $T>0$ and let $W(t)$ be a solution to the Cauchy problem (1.2), (1.3) satisfying
(2.1). Then we have the following energy inequality:

$E(t)^{2}+D(t)^{2}\leq CE_{0}^{2}+CE(t)D(t)^{2}, t\in[0, T]$ , (2.3)

where $C>0$ is a constant independent of $T.$

We note that the desired a priori estimate (2.2) easily follows from the energy inequality
(2.3), provided that $E_{0}$ is suitably small. Therefore it is sufficient to prove (2.3) for our
purpose.

2.1 Proof of Proposition 2.2

In this subsection we prove the energy inequality (2.3) in Proposition 2.2 by using the
energy method. Our energy method is based on the refined Lyapunov function constructed
in [3] and gives the optimal dissipation estimate for $z$ without any regularity-loss, which
can control the nonlinearity of the system (1.2). Our proof is divided into 4 steps.

Step 1: (Basic energy and dissipation for y) We calculate as $(1.2a)\cross v+(1.2b)\cross y+$

$(1.2c)\cross u+(1.2d)\cross\{\sigma(z/a)-\sigma(O)\}/a$ . This yields

$\frac{1}{2}(v^{2}+y^{2}+u^{2}+S(z))_{t}-\{vu+(\sigma(z/a)-\sigma(0))y\}_{x}+\gamma y^{2}=0$ , (2.4)

where $S(z):=2 \int_{0}^{z/a}(\sigma(\eta)-\sigma(0))d\eta$ is equivalent to $|z|^{2}$ . Integrate (2.4) with respect to
$x$ to have

$\frac{d}{dt}E_{0}^{(0)}+2\gamma\Vert y\Vert_{L^{2}}^{2}=0$ , (2.5)

where

$E_{0}^{(0)} := \Vert(v, y, u)\Vert_{L^{2}}^{2}+\int_{\pi}S(z)dx.$

Since $E_{0}^{(0)}$ is equivalent to $\Vert W\Vert_{L^{2}}^{2}$ , by integrating (2.5) with respect to $t$ , we obtain

$\Vert W(t)\Vert_{L^{2}}^{2}+\int_{0}^{t}\Vert y(\tau)\Vert_{L^{2}}^{2}d\tau\leq CE_{0}^{2}$ . (2.6)

Next, we apply $\partial_{x}^{k}$ to (1.2) and write $\partial_{x}^{k}(v, y, u, z)=(V, Y, U, Z)$ for simplicity. Then
we have

$V_{t}-U_{x}-Y=0$ , (2.7a)

$Y_{t}-\sigma’(z/a)(Z/a)_{x}-V+\gamma Y=[\partial_{x}^{k}, \sigma’(z/a)](z/a)_{x}$ , (2.7b)

$U_{t}-V_{x}=0$ , (2.7c)

$Z_{t}-aY_{x}=0$ , (2.7d)
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where $[A, B]$ $:=AB-BA$ . We compute as $(2.14)\cross V+(2.7b)\cross Y+(2.17)\cross U+(2.20)\cross$

$\sigma’(z/a)Z/a^{2}$ . This gives

$\frac{1}{2}(V^{2}+Y^{2}+U^{2}+\sigma’(z/a)(Z/a)^{2})_{t}-\{VU+\sigma’(z/a)(Z/a)Y\}_{x}+\gamma Y^{2}$

$= \frac{1}{2}\sigma’(z/a)_{t}(Z/a)^{2}-\sigma’(z/a)_{x}(Z/a)Y+Y[\partial_{x}^{k}, \sigma’(z/a)](z/a)_{x}$ . (2.8)

Integrate (2.8) with respect to $x$ to have

$\frac{d}{dt}E_{0}^{(k)}+2\gamma\Vert\partial_{x}^{k}y\Vert_{L^{2}}^{2}\leq CR_{0}^{(k)}$ (2.9)

for $1\leq k\leq s$ , where

$E_{0}^{(k)}:= \Vert\partial_{\dot{x}}^{k}(v, y, u)\Vert_{L^{2}}^{2}+\int_{N}\sigma^{l}(z/a)|\partial_{x}^{k}(z/a)|^{2}dx,$

$R_{\(k):= \int_{R}|y_{x}||\partial_{x}^{k}z|^{2}+|z_{x}\Vert\partial_{x}^{k}z\Vert\partial_{x}^{k}y|+|[\partial_{x}^{k}, \sigma^{l}(z/a)]z_{x}||\partial_{x}^{k}y|dx.$

Here in the term $R_{\(k)$ we used the relation $z_{t}=ay_{x}$ from (1.2d). Now we integrate (2.9)

with respect to $t$ and add for $k$ with $1\leq k\leq s$ . Since $E_{0}^{(k)}$ is equivalent to $\Vert\partial_{x}^{k}W\Vert_{L^{2}}^{2}$ , we
obtain

$\Vert\partial_{x}W(t)\Vert_{H^{s-1}}^{2}+\int_{0}^{t}\Vert\partial_{x}y(\tau)\Vert_{H^{s-1}}^{2}d\tau\leq CE_{0}^{2}+CE(t)D(t)^{2}$ . (2.10)

Here we have used the following estimates for $R_{0}^{(k)}$ :

$R_{0}^{(k)} \leq C\Vert\partial_{x}(y, z)\Vert_{L}\infty 1\partial_{x}^{k}(y, z)\Vert_{L^{2}}^{2}, \sum_{k=1}^{s}\int_{0}^{t}R_{0}^{(k)}(\tau)d\tau\leq CE(t)D(t)^{2}.$

Consequently, adding (2.6) and (2.10), we arrive at

$E(t)^{2}+ \int_{0}^{t}\Vert y(\tau)\Vert_{H^{s}}^{2}d\tau\leq CE_{0}^{2}+CE(t)D(t)^{2}$ . (2.11)

Step 2: (Dissipation for v) We rewrite the system (1.2) in the form

$v_{t}-u_{x}-y=0,$

$y_{t}-az_{x}-v+\gamma y=g(z)_{x},$

(2.12)
$u_{t}-v_{x}=0,$

$z_{t}-ay_{x}=0,$

where $g(z)$ $:=\sigma(z/a)-\sigma(O)-\sigma’(O)z/a=O(z^{2})$ as $zarrow 0$ . We apply $\partial_{x}^{k}$ to (2.12). Letting
$(V, Y, U, Z)=\partial_{x}^{k}(v, y, u, z)$ as before, we have

$V_{t}-U_{x}-Y=0$ , (2.13a)

$Y_{t}-aZ_{x}-V+\gamma Y=\partial_{x}^{k}g(z)_{x}$ , (2.13b)

$U_{t}-V_{x}=0$ , (2.13c)

$Z_{t}-aY_{x}=0$ . (2.13d)
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To create the dissipation term $V^{2}$ , we compute as $(2.13b)\cross(-V)+(2.13a)\cross(-Y)+$

$(2.13c)\cross(-aZ)+(2.13d)\cross(-aU)$ . This gives

$-(VY+aUZ)_{t}+(aVZ+a^{2}YU)_{x}+V^{2}$

$=Y^{2}+\gamma VY+(a^{2}-1)YU_{x}-V\partial_{x}^{k}g(z)_{x}$ . (2.14)

Integrate (2.14) with respect to $x$ to obtain

$\frac{d}{dt}E_{1}^{(k)}+\Vert\partial_{x}^{k}v\Vert_{L^{2}}^{2}\leq\Vert\partial_{x}^{k}y\Vert_{L^{2}}^{2}+\gamma\Vert\partial_{x}^{k}v\Vert_{L^{2}}\Vert\partial_{x}^{k}y\Vert_{L^{2}}$

$+(a^{2}-1) \int_{\mathbb{R}}\partial_{x}^{k}y\partial_{x}^{k}u_{x}dx+R_{1}^{(k)}$ (2.15)

for $0\leq k\leq s-1$ , where

$E_{1}^{(k)} :=- \int_{\pi}\partial_{x}^{k}v\partial_{x}^{k}ydx-a\int_{\mathbb{R}}\partial_{x}^{k}u\partial_{x}^{k}zdx,$

$R_{1}^{(k)}:= \int_{\mathbb{R}}|\partial_{x}^{k}v||\partial_{x}^{k+1}g(z)|dx.$

Adding (2.15) with $k$ and $k+1$ and integrating by parts, we have

$\frac{d}{dt}(E_{1}^{(k)}+E_{1}^{(k+1)})+\Vert\partial_{x}^{k}v\Vert_{H^{1}}^{2}\leq\Vert\partial_{x}^{k}y\Vert_{H^{1}}^{2}+\gamma\Vert\partial_{x}^{k}v\Vert_{H^{1}}\Vert\partial_{x}^{k}y\Vert_{H^{1}}$

$+(a^{2}-1) \int_{\pi}(\partial_{x}^{k}y\partial_{x}^{k}u_{x}-\partial_{x}^{k+1}y_{x}\partial_{x}^{k+1}u)dx+R_{1}^{(k)}+R_{1}^{(k+1)}$

$\leq\Vert\partial_{x}^{k}y\Vert_{H^{1}}^{2}+\gamma\Vert\partial_{x}^{k}v\Vert_{H^{1}}\Vert\partial_{x}^{k}y\Vert_{H^{1}}+|a^{2}-1|\Vert\partial_{x}^{k}y\Vert_{H^{2}}\Vert\partial_{x}^{k+1}u\Vert_{L^{2}}+R_{1}^{(k)}+R_{1}^{(k+1)}$

for $0\leq k\leq s-2$ . We integtate this inequality with respect to $t$ and add for $k$ with
$0\leq k\leq s-2$ . Noting that $\sum_{k=0}^{s-1}|E_{1}^{(k)}|\leq C\Vert W\Vert_{H^{s-1}}^{2}$ and u\’{s}ing the Young inequality, we
obtain

$\int_{0}^{t}\Vert v(\tau)\Vert_{H^{\epsilon-1}}^{2}\leq\epsilon\int_{0}^{t}\Vert\partial_{x}u(\tau)\Vert_{H^{s-2}}^{2}d\tau+C_{\epsilon}\int_{0}^{t}\Vert y(\tau)\Vert_{H^{s}}^{2}d\tau$

$+CE_{0}^{2}+CE(t)^{2}+CE(t)D(t)^{2}$ (2.16)

for any $\epsilon>0$ , where $C_{\epsilon}$ is a constant depending on $\epsilon$ . Here we also used the following
estimates for $R_{1}^{(k)}$ :

$R_{1}^{(k)} \leq C\Vert z\Vert_{L}\infty\Vert\partial_{x}^{k}v\Vert_{L^{2}}\Vert\partial_{x}^{k+1}z\Vert_{L^{2}}, \sum_{k=0}^{s-1}\int_{0}^{t}R_{1}^{(k)}(\tau)d\tau\leq CE(t)D(t)^{2}.$

Step 3: (Dissipation for $u$ and z) To get the dissipation term $U_{x}^{2}$ , we compute as $(2.13a)\cross$

$(-U_{x})+(2.13c)\cross V_{x}$ . This gives

$-(VU_{x})_{t}+(VU_{t})_{x}+U_{x}^{2}=V_{x}^{2}+YU_{x}$ . (2.17)
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Integrating (2.17) with respect to $x$ , we have

$\frac{d}{dt}E_{2}^{(k)}+\Vert\partial_{x}^{k+1}u\Vert_{L^{2}}^{2}\leq\Vert\partial_{x}^{k+1}v\Vert_{L^{2}}^{2}+\Vert\partial_{x}^{k}y\Vert_{L^{2}}\Vert\partial_{x}^{k+1}u\Vert_{L^{2}}$ (2.18)

for $0\leq k\leq s-2$ , where $E_{2}^{(k)}:=- \int_{\mathbb{R}}\partial_{x}^{k}v\partial_{x}^{k+1}udx$ . We integrate (2.18) with respect to $t$

and add for $k$ with $0\leq k\leq s-2$ . Then we easily get

$\int_{0}^{t}\Vert\partial_{x}u(\tau)\Vert_{H^{s-2}}^{2}d\tau\leq C\int_{0}^{t}\Vert v(\tau)\Vert_{s-1}^{2}+\Vert y(\tau)\Vert_{H^{s-2}}^{2}d\tau+CE_{0}^{2}+CE(t)^{2}$ . (2.19)

In order to create the dissipation term $Z_{x}^{2}$ , we compute as $(2.13b)\cross(-Z_{x})+(2.13d)\cross Y_{x}.$

This yields

$-(YZ_{x})_{t}+(YZ_{t})_{x}+aZ_{x}^{2}=aY_{x}^{2}-(V-\gamma Y)Z_{x}-Z_{x}\partial_{x}^{k}g(z)_{x}$ . (2.20)

Integrating (2.20) with respect to $t$ , we obtain

$\frac{d}{dt}E_{3}^{(k)}+a\Vert\partial_{x}^{k+1}z\Vert_{L^{2}}^{2}\leq a\Vert\partial_{x}^{k+1}y\Vert_{L^{2}}^{2}+\Vert\partial_{x}^{k}v-\gamma\partial_{x}^{k}y\Vert_{L^{2}}\Vert\partial_{x}^{k+1}z\Vert_{L^{2}}+R_{3}^{(k)}$ (2.21)

for $0\leq k\leq s-1$ , where

$E_{3}^{(k)}:=- \int_{\mathbb{R}}\partial_{x}^{k}y\partial_{x}^{k+1}zdx, R_{3}^{(k)}:=\int_{\mathbb{R}}|\partial_{x}^{k+1}z||\partial_{x}^{k+1}g(z)|dx.$

We integrate (2.21) with respect to $t$ and add for $k$ with $0\leq k\leq s-1$ . This yields

$\int_{0}^{t}\Vert\partial_{x}z(\tau)\Vert_{H^{s-1}}^{2}d\tau\leq C\int_{0}^{t}\Vert v(\tau)\Vert_{s-1}^{2}+\Vert y(\tau)\Vert_{H^{s}}^{2}d\tau$

$+CE_{0}^{2}+CE(t)^{2}+CE(t)D(t)^{2}$ . (2.22)

Here we have used the estimates

$R_{3}^{(k)} \leq C\Vert z\Vert_{L}\infty\Vert\partial_{x}^{k+1}z\Vert_{L^{2}}^{2}, \sum_{k=0}^{s-1}\int_{0}^{t}R_{3}^{(k)}(\tau)d\tau\leq CE(t)D(t)^{2}.$

Step 4: Finally, combining (2.16), (2.19) and (2.22), and then taking $\epsilon>0$ in (2.16)

suitably small, we arrive at the estimate

$\int_{0}^{t}\Vert v(\tau)\Vert_{H^{s-1}}^{2}+\Vert\partial_{x}u(\tau)\Vert_{H^{s-2}}^{2}+1^{\partial_{x}z(\tau)\Vert_{H^{s-1}}^{2}d\tau}$

$\leq C\int_{0}^{t}\Vert y(\tau)\Vert_{H^{s}}^{2}d\tau+CE_{0}^{2}+CE(t)^{2}+CE(t)D(t)^{2}.$

This combined with the basic estimate (2.11) yields the desired inequality $E(t)^{2}+D(t)^{2}\leq$

$CE_{0}^{2}+CE(t)D(t)^{2}$ . Thus the proof of Proposition 2.2 is comptlete. $\square$
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3 $L^{2}$ decay estimate

The aim of this section is to show the optimal decay estimate stated in Theorem 1.3. For
this purpose we derive the pointwise estimate of solutions in the Fourier space. We recall
that the system (1.2) is written in the form of (2.12) or in the vector notation as

$W_{t}+AW_{x}+LW=G_{x}$ , (3.1)

where $G=(0, g(z), 0,0)^{T}$ with $g(z)=\sigma(z/a)-\sigma(0)-\sigma’(0)z/a=O(z^{2})$ for $zarrow 0$ ; the
coefficient matrices $A$ and $L$ are given in (1.5).

Proposition 3.1 (Pointwise estimate). Let $W$ be a solution of (3.1) with the initial data
$W_{0}$ . Then the Fourier image $\hat{W}$ satisfies the pointwise estimate

$| \hat{W}(\xi, t)|^{2}\leq Ce^{-c\rho(\xi)t}|\hat{W}_{0}(\xi)|^{2}+C\int_{0}^{t}e^{-c\rho(\xi)(t-\tau)}\xi^{2}|\hat{G}(\xi, \tau)|^{2}d\tau$ (3.2)

for $\xi\in \mathbb{R}$ and $t\geq 0$ , where $\rho(\xi)$ $:=\xi^{2}/(1+\xi^{2})^{2}$ , and $C$ and $c$ are positive constants.

Our optimal decay estimate will be obtained by applying the following decay estimate
of $L^{2}-L^{q}-L^{r}$ type which was established in [9].

Lemma 3.2 (Decay estimate of $L^{2}-L^{q}-L^{r}$ type [9]). Let $U$ be a function satisfying

$|\hat{U}(\xi, t)|\leq C|\xi|^{m}e^{-c\rho(\xi)t}|\hat{U}_{0}(\xi)|$ (3.3)

for $\xi\in \mathbb{R}$ and $t\geq 0$ , where $\rho(\xi)=\xi^{2}/(1+\xi^{2})^{2},$ $m\geq 0$ , and $U_{0}$ is a given function. Then
we have

$\Vert\partial_{x}^{k}U(t)\Vert_{L^{2}}\leq C(1+t)^{-\frac{1}{2}(\frac{1}{q}-\frac{1}{2})-\frac{k+m}{2}}\Vert U_{0}\Vert_{Lq}$

$+C(1+t)^{-\frac{\ell}{2}+\frac{1}{2}(\frac{1}{r}-\frac{1}{2})}\Vert\partial_{x}^{k+m+\ell}U_{0}\Vert_{L^{r}}$ , (3.4)

where $k\geq 0,$ $1\leq q,$ $r\leq 2,$ $\ell>\frac{1}{r}-\frac{1}{2}$ $(\ell\geq 0 if r=2)$ .

Remark 3.1. The first (resp. the second) term on the right hand side of (3.4) is
corresponding to the low frequency region $|\xi|\leq 1$ (resp. high frequency region $|\xi|\geq 1$ ).

When $m=0,$ $q=1$ and $r=2$ , the estimate (3.4) is reduced to

$\Vert\partial_{x}^{k}U(t)\Vert_{L^{2}}\leq C(1+t)^{-1/4-k/2}\Vert U_{0}\Vert_{L^{1}}+C(1+t)^{-\ell/2}\Vert\partial_{x}^{k+\ell}U_{0}\Vert_{L^{2}},$

which is just the same decay estimate obtained in [2] for the linear system (1.6).

The outline of the proof of Lemma 3.2 is as follows. $Rom$ the Plancherel theorem and
(3.3), we have

$\Vert\partial_{x}^{k}U(t)\Vert_{L^{2}}^{2}=\int_{\pi}\xi^{2k}|\hat{U}(\xi, t)|^{2}d\xi\leq C\int_{\pi}\xi^{2(k+m)}e^{-c\rho(\xi)t}|\hat{U}_{0}(\xi)|^{2}d\xi$

We divide the last integral into two parts corresponding to $|\xi|\leq 1$ and $|\xi|\geq 1$ , respec-
tively, and estimate each part by applying the H\"older inequality and the Hausdorff-Young

inequality. This yields the desired estimate (3.4). We omit the details and refer to [9].
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3.1 Proof of Proposition 3.1

Taking the Fourier transform of (2.12), we have

$\hat{v}_{t}-i\xi\hat{u}+\hat{y}=0$ , (3.5a)

$\hat{y}_{t}-ai\xi\hat{z}-\hat{v}+\gamma\hat{y}=i\xi\hat{g}$ , (3.5b)

$\hat{u}_{t}-i\xi\hat{v}=0$ , (3.5c)

$\hat{z}_{t}-ai\xi\hat{y}=0$ , (3.5d)

where $g=g(z)$ . We construct a Lyapunov function of the system (3.5) in the Fourier
space. The computations below are essentially the same as in [3] and correspond to those
in the proof of Proposition 2.2. We divide the proof into 4 steps.

Step 1: (Basic energy and dissipation for $\hat{y}$ ) We compute as (3.5a) $\cross\overline{\hat{v}}+(3.5b)\cross\overline{\hat{y}}+$

$(3.5c)\cross\overline{\hat{u}}+(3.5d)\cross\overline{\hat{z}}$ and take the real part. This yields

$\frac{1}{2}E_{0,t}+\gamma|\hat{y}|^{2}={\rm Re}\{i\xi\overline{\hat{y}}\hat{g}\},$

where $E_{0}:=|\hat{W}|^{2}$ . Applying the Young inequality, we have

$E_{0,t}+\gamma|\hat{y}|^{2}\leq C\xi^{2}|\hat{g}|^{2}$ . (3.6)

Step 2: (Dissipation for $\hat{v}$ ) To create the dissipation term for $\hat{v}$ , we compute as $(3.5b)\cross$

$(-\overline{\hat{v}})+(3.5a)\cross(-\overline{\hat{y}})+(3.5c)\cross(-a\overline{\hat{z}})+(3.5d)\cross(-a\overline{\hat{u}})$ and take the real part. This gives

$E_{1,t}+|\hat{v}|^{2}-|\hat{y}|^{2}=\gamma{\rm Re}(\overline{\hat{v}}\hat{y})-{\rm Re}\{i\xi(\overline{\hat{y}}\hat{u}+a^{2_{\hat{u}\hat{y})\}}^{-}}-{\rm Re}\{i\xi\overline{\hat{v}}\hat{g}\}$

$=\gamma{\rm Re}(\overline{\hat{v}}\hat{y})-(a^{2}-1)\xi{\rm Re}(i\overline{\hat{u}}\hat{y})-\xi{\rm Re}\{i\overline{\hat{v}}\hat{g}\},$

where $E_{1}$ $:=-{\rm Re}(\hat{v}\overline{\hat{y}}+a\hat{u}\hat{z})-$ . We multiply this equality by $1+\xi^{2}$ . Then, using the Young
inequality, we obtain

$(1+\xi^{2})E_{1,t}+c_{1}(1+\xi^{2})|\hat{v}|^{2}\leq\epsilon\xi^{2}|\hat{u}|^{2}+C_{\epsilon}(1+\xi^{2})^{2}|\hat{y}|^{2}+C(1+\xi^{2})\xi^{2}|\hat{g}|^{2}$ (3.7)

for any $\epsilon>0$ , where $c_{1}$ is a positive constant with $c_{1}<1$ and $C_{\epsilon}$ is a constant depending
on $\epsilon.$

Step 3: (Dissipation for $\hat{u}$ and $\hat{z}$ ) To create the dissipation term $|\hat{u}|^{2}$ , we compute as
(3.5a) $\cross i\xi\overline{\hat{u}}-(3.5c)\cross i\xi\overline{\hat{v}}$ and take the real part. The result is

$\xi E_{2,t}+\xi^{2}(|\hat{u}|^{2}-|\hat{v}|^{2})+\xi{\rm Re}(i\overline{\hat{u}}\hat{y})=0$ , (3.8)

where $E_{2}:={\rm Re}(i\hat{v}\overline{\hat{u}})$ . For the dissipation term $|\hat{z}|^{2}$ , we compute as $(3.5b)\cross i\xi z$ $(3.5d)\cross$

$i\xi\overline{\hat{y}}$ and take the real part. Then we have

$\xi E_{3,t}+a\xi^{2}(|\hat{z}|^{2}-|\hat{y}|^{2})-\xi{\rm Re}\{i\overline{\hat{z}}(\hat{v}-\gamma y =-\xi^{2}{\rm Re}\{\overline{\hat{z}}\hat{g}\},$ (3.9)

where $E_{3}:={\rm Re}(i\hat{y}\overline{\hat{z}})$ . Now we combine (3.8) and (3.9) such that $(3.8)+(3.9)\cross(1+\xi^{2})$ .
This gives

$\xi\{E_{2}+(1+\xi^{2})E_{3}\}_{t}+\xi^{2}|\hat{u}|^{2}+a(1+\xi^{2})\xi^{2}|\hat{z}|^{2}$

$=\xi^{2}|\hat{v}|^{2}+a(1+\xi^{2})\xi^{2}|\hat{y}|^{2}+(1+\xi^{2})\xi{\rm Re}\{i\overline{\hat{z}}(\hat{v}-\gamma y$

$-\xi{\rm Re}(i\overline{\hat{u}}\hat{y})-(1+\xi^{2})\xi^{2}{\rm Re}\{\hat{z}\hat{g}\}-.$
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Using the Young inequality, we get

$\xi\{E_{2}+(1+\xi^{2})E_{3}\}_{t}+c_{1}\xi^{2}|\hat{u}|^{2}+c_{2}(1+\xi^{2})\xi^{2}|\hat{z}|^{2}$

$\leq C(1+\xi^{2})|\hat{v}|^{2}+C(1+\xi^{2})^{2}|\hat{y}|^{2}+C(1+\xi^{2})\xi^{2}|\hat{g}|^{2}$ , (3.10)

where $c_{1}$ and $c_{2}$ are positive constants satisfying $c_{1}<1$ and $c_{2}<a$ , respectively.

Step 4: (Lyapunov function) Letting $\alpha_{1}>0$ , we combine (3.7) and (3.10) such that
$(3.7)+(3.10)\cross a_{1}$ . Then we have

$\{(1+\xi^{2})E_{1}+\alpha_{1}\xi\{E_{2}+(1+\xi^{2})E_{3}\}\}_{t}+(c_{1}-\alpha_{1}C)(1+\xi^{2})|\hat{v}|^{2}$

$+(\alpha_{1}c_{1}-\epsilon)\xi^{2}|\hat{u}|^{2}+\alpha_{1}c_{2}(1+\xi^{2})\xi^{2}|\hat{z}|^{2}$

$\leq C_{\epsilon,\alpha_{1}}(1+\xi^{2})^{2}|\hat{y}|^{2}+C_{\alpha_{1}}(1+\xi^{2})\xi^{2}|\hat{g}|^{2}$ , (3.11)

where $C_{\epsilon,\alpha_{1}}$ and $C_{\alpha_{1}}$ are constants depending on $(\epsilon, \alpha_{1})$ and $\alpha_{1}$ , respectively. Also, letting
$\alpha_{2}>0$ , we combine (3.6) and (3.11) such that $(3.6)+(3.11) \cross\frac{\alpha_{2}}{(1+\xi^{2})^{2}}$ . Then, putting

$E :=E_{0}+ \frac{\alpha_{2}}{1+\xi^{2}}(E_{1}+\frac{\alpha_{1}\xi}{1+\xi^{2}}\{E_{2}+(1+\xi^{2})E_{3}\})$ , (3.12)

we obtain

$E_{t}+ \alpha_{2}(c_{1}-\alpha_{1}C)\frac{1}{1+\xi^{2}}|\hat{v}|^{2}+(\gamma-\alpha_{2}C_{\epsilon,\alpha 1})|\hat{y}|^{2}$

$+ \alpha_{2}(\alpha_{1}c_{1}-\epsilon)\frac{\xi^{2}}{(1+\xi^{2})^{2}}|\hat{u}|^{2}+\alpha_{2}\alpha_{1}c_{2}\frac{\xi^{2}}{1+\xi^{2}}|\hat{z}|^{2}\leq C_{\alpha_{1},\alpha_{2}}\xi^{2}|\hat{g}|^{2}$ , (3.13)

where $C_{\alpha\alpha_{2}}1$

)
is a constant depending on $(\alpha_{1}, \alpha_{2})$ . Here we see that there is a small positive

constant $\alpha_{0}$ such that if $\alpha_{1},$
$\alpha_{2}\in(0, \alpha_{0}],$ then $E in (3.12)$ is equivalent to $|\hat{W}|^{2}$ , that is,

$c_{0}|\hat{W}|^{2}\leq E\leq C_{0}|\hat{W}|^{2}$ , (3.14)

where $c_{0}$ and $C_{0}$ are positive constants. Futhermore, we choose $\alpha_{1}\in(0, \alpha_{0}$ ] such that
$c_{1}-\alpha_{1}C>0$ and take $\epsilon>0$ so small as $\alpha_{1}c_{1}-\epsilon>$ O. Finally, we choose $\alpha_{2}\in(0, \alpha_{0}$ ]
such that $\gamma-\alpha_{2}C_{\epsilon,\alpha_{1}}>0$ . Then (3.13) becomes to

$E_{t}+cF\leq C\xi^{2}|\hat{g}|^{2}$ , (3.15)

where

$F := \frac{1}{1+\xi^{2}}\downarrow\hat{v}|^{2}+|\hat{y}|^{2}+\frac{\xi^{2}}{(1+\xi^{2})^{2}}|\hat{u}|^{2}+\frac{\xi^{2}}{1+\xi^{2}}|\hat{z}|^{2}$ (3.16)

This suggests that $E$ in (3.12) is the desired Lyapunov function of the system (3.5). Noting
(3.14), we find that $F\geq c\rho(\xi)E$ , where $\rho(\xi)=\xi^{2}/(1+\xi^{2})^{2}$ . Therefore (3.15) becomes
to $E_{t}+c\rho(\xi)E\leq C\xi^{2}|\hat{g}|^{2}$ . Solving this ordinary differential inequality for $E$ and using
(3.14), we arrive at the desired estimate (3.2) in the form

$| \hat{W}(\xi, t)|^{2}\leq Ce^{-c\rho(\xi)t}|\hat{W}_{0}(\xi)|^{2}+C\int_{0}^{t}e^{-c\rho(\xi)(t-\tau)}\xi^{2}|\hat{9}(\xi, \tau)|^{2}d\tau.$

This completes the proof of Proposition 3.1. $\square$
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3.2 Proof of Theorem 1.3

Let $W$ be the solution to the problem (1.2), (1.3) obtained in Theorem 1.2. Then $W$

satisfies (3.1). Therefore we have the pointwise estimate (3.2). We integrate (3.2) with
respect to $\xi$ . Applying the Plancherel theorem, we obtain

$\Vert W(t)\Vert_{L^{2}}^{2}=\int_{\mathbb{R}}|\hat{W}(\xi, t)|^{2}d\xi$

$\leq C\int_{\mathbb{R}}e^{-c\rho(\xi)t}|\hat{W}_{0}(\xi)|^{2}d\xi+C\int_{0}^{t}\int_{\mathbb{R}}e^{-c\rho(\xi)(t-\tau)}\xi^{2}|\hat{g}(\xi, \tau)|^{2}d\xi d\tau=:I+J$. (3.17)

We estimate the terms $I$ and $J$ by applying Lemma 3.2. For $I$ , using (3.4) with $m=0,$

we have

$I=C \int_{\mathbb{R}}e^{-c\rho(\xi)t}|\hat{W}_{0}(\xi)|^{2}d\xi$

$\leq CE_{1}^{2}(1+t)^{-\frac{1}{2}}$ , (3.18)

where $E_{1}=\Vert W_{0}\Vert_{H^{2}}+1W_{0}\Vert_{L^{1}}$ . On the other hand, for $J$ we use (3.4) with $m=1$ . Then
we obtain

$J=C \int_{0}^{t}\int_{\mathbb{R}}e^{-c\rho(\xi)(t-\tau)}\xi^{2}|\hat{G}(\xi, \tau)|^{2}d\tau d\xi$

$=:J_{1}+J_{2}.$

Here we introduce the norms $N(t)$ and $D(t)$ by

$N(t)= \sup_{0\leq\tau\leq t}(1+\tau)^{\frac{1}{4}}\Vert W(\tau)\Vert_{L^{2}}, D(t)^{2}=\int_{0}^{t}\Vert\partial_{x}z(\tau)\Vert_{H^{1}}^{2}d\tau.$

We know from Theorem 1.2 that $D(t)\leq CE_{0}\leq CE_{1}$ . For the low frequency part $J_{1},$

since $\Vert G\Vert_{L^{1}}\leq C\Vert z\Vert_{L^{2}}^{2}$ , we have

$J_{1} \leq C\int_{0}^{t}(1+t-\tau)^{-\frac{3}{2}}\Vert z(\tau)\Vert_{L^{2}}^{4}d\tau$

$\leq CN(t)^{4}\int_{0}^{t}(1+t-\tau)^{-\frac{3}{2}}(1+\tau)^{-1}d\tau\leq CN(t)^{4}(1+t)^{-1}$ . (3.19)
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For the high frequency part $J_{2}$ , using $\Vert\partial_{x}^{2}G\Vert_{L^{1}}\leq C\Vert z\Vert_{L^{2}}\Vert\partial_{x}^{2}z\Vert_{L^{2}}$ , we have

$J_{2} \leq C\int_{0}^{t}(1+t-\tau)^{-\frac{1}{2}}\Vert z(\tau)\Vert_{L^{2}}^{2}\Vert\partial_{x}^{2}z(\tau)\Vert_{L^{2}}^{2}d\tau$

$\leq CN(t)^{2}\int_{0}^{t}(1+t-\tau)^{-\frac{1}{2}}(1+\tau)^{-\frac{1}{2}}\Vert\partial_{x}^{2}z(\tau)\Vert_{L^{2}}^{2}d\tau$

$\leq CN(t)^{2}D(t)^{2}\sup_{0\leq\tau\leq t}\{(1+t-\tau)^{-\frac{1}{2}}(1+t)^{-\frac{1}{2}}\}$

$\leq CN(t)^{2}D(t)^{2}(1+t)^{-\frac{1}{2}}$ . (3.20)

Combining (3.18), (3.19) and (3.20) and using $D(t)\leq CE_{1}$ , we obtain

$(1+t)^{\frac{1}{2}}\Vert W(t)\Vert_{L^{2}}^{2}\leq CE_{1}^{2}+CN(t)^{4}+CE_{1}^{2}N(t)^{2}.$

Thus we have the inequality $N(t)^{2}\leq CE_{1}^{2}+CN(t)^{4}+CE_{1}^{2}N(t)^{2}$ . This inequality can
be solved as $N(t)\leq CE_{1}$ , provided that $E_{1}$ is suitably small. Thus we have proved the
desired decay estimate $\Vert W(t)\Vert_{L^{2}}\leq CE_{1}(1+t)^{-1/4}$ . This completes the proof of Theorem
1.3. $\square$
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