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This report is a summary of a recent joint work [2] with Prof. Moshe Baruch in which
we characterize the space of new forms for $\Gamma_{0}(N)$ as a common eigenspace of certain
Hecke operators which depend on primes dividing the level $N.$

Our approach is to study a certain $p$-adic Hecke algebra of functions on $K=GL_{2}(\mathbb{Z}_{p})$

and find generators and relations for it. Casselman [3, 4] showed that there is a unique
irreducible representation of $K$ which contains a $K_{0}(p^{n})$ fixed vector but does not contain
a $K_{0}(p^{k})$ fixed vector for $k<n$ , such a vector is called a new vector and is unique up to

scalar multiplication. Using $p-$-adic Hecke algebra we explicitly find for any positive $n$ the
$n+1$ irreducible representations of $K$ which contain a $K_{0}(p^{n})$ fixed vector including the
unique representation that contains the “new vector”’ of level $n.$

This $p$-adic Hecke algebra sits inside the endomorphism algebra $End_{\mathbb{C}}(A_{2k}(N))$ , where
$A_{2k}(N)$ is the space of adelic automorphic forms of weight $2k$ and level $N$ and is well
known [5] to be isomorphic to the classical space of cusp forms $S_{2k}(\Gamma_{0}(N))$ . We use this
isomorphism to translate the $p\mapsto$-adic Hecke operators to their classical counterparts and
obtain relations amongst them. This leads us to obtain the characterization results about
the new and old spaces.

We view our work as a connection between the theory of new vectors described by
Casselman and the theory of newforms by Atkin and Lehner [1]. We expect to have
applications of these results to the Shimura correspondence and to the definition of new
forms of half integral weight [7, 8, 9].

We present below one of our characterization results.

Theorem 1. Let $N$ be a square-free positive number. For any prime $p|N$ , let $Q_{p}=$

$p^{1-k}U_{p}W_{p}$ and $Q_{p}’=p^{1-k}W_{p}U_{p}$ . Then the space of new forms $S_{2k}^{new}(\Gamma_{0}(N))$ is the in-

tersection of the $-1$ eigenspace\’{s} of $Q_{p}$ and $Q_{p}’$ as $p$ varies over the prime divisors of
$N.$

For a similar statement for general level $N$ we will later introduce a certain “new”
family of Hecke operators.

1. $p$-ADIC HECKE ALGEBRAS AND GENERATORS AND RELATIONS.

In this section we describe the Hecke algebra of functions on $K=GL_{2}(\mathbb{Z}_{p})$ which are
bi-invariant with respect to $K_{0}(p^{n})$ using generators and relations.

Let $G$ denotes the group $GL_{2}(\mathbb{Q}_{p})$ . Let $K_{0}(p^{n})$ be the subgroup of $K$ defined by

$K_{0}(p^{n})=\{(\begin{array}{ll}a bc d\end{array})\in K:c\in p^{n}\mathbb{Z}_{p}\}.$

FACULTY OF MATHEMATICS, KYUSHU UNIVERSITY
$E$-mail address: somapurkait@gmail.com.
1991 Mathematics Subject Classification. Primary: $22E50$ ; Secondary: $22E35,11S37.$

Key words and phrases. Hecke algebras, Hecke operators, New forms, New vectors.

数理解析研究所講究録

第 1973巻 2015年 55-63 55



HECKE ALGEBRAS, NEW VECTORS AND NEW SPACES

Note that the subgroup $K_{0}(p)$ denotes the usual Iwahori subgroup.
The Hecke algebra corresponding to $K_{0}(p^{n})$ is defined as:

$H(G//K_{0}(p^{n}))=\{f\in C_{c}^{\infty}(G):f(kgk’)=f(g)$ for $g\in G,$ $k,$ $k’\in K_{0}(p^{n})\},$

it forms a $\mathbb{C}$-algebra under convolution which, for any $f_{1},$ $f_{2}\in C_{c}^{\infty}(G)$ , is defined by

$f_{1}*f_{2}(h)= \int_{G}f_{1}(g)f_{2}(g^{-1}h)dg=\int_{G}f_{1}(hg)f_{2}(g^{-1})dg,$

where $dg$ is the Haar measure on $G$ such that the measure of $K_{0}(p^{n})$ is one.
Let $X_{g}$ be the characteristic function of the double coset $K_{0}(p^{n})gK_{0}(p^{n})$ . Thus as

$a$
$\mathbb{C}$-vector space $H(G//K_{0}(p^{n}))$ is spanned by $X_{g}$ as $g$ varies over the double coset

representatives of $G$ modulo $K_{0}(p^{n})$ .
Let $\mu(g)$ denotes the number of disjoint left (right) $K_{0}(p^{n})$ cosets in the double coset

$K_{0}(p^{n})gK_{0}(p^{n})$ . Then the following lemmas are well known [6, Corollary 1.1].

Lemma 1.1. If $\mu(g)\mu(h)=\mu(gh)$ then $X_{g}*X_{h}=X_{gh}.$

Lemma 1.2. Let $f_{1},$ $f_{2}\in H(G//K_{0}(p^{n}))$ such that $f_{1}$ is supported on $K_{0}(p^{n})xK_{0}(p^{n})=$

$\bigcup_{i=1}^{m}\alpha_{i}K_{0}(p^{n})$ and $f_{2}$ is supported on $K_{0}(p^{n})yK_{0}(p^{n})= \bigcup_{j=1}^{n}\beta_{j}K_{0}(p^{n})$ . Then

$f_{1}*f_{2}(h)= \sum_{i=1}^{m}f_{1}(\alpha_{i})f_{2}(\alpha_{i}^{-1}h)$

where the nonzero summands are precisely for those $i$ for which there exist a $j$ such that
$h\in\alpha_{i}\beta_{j}K_{0}(p^{n})$ .

For $t\in \mathbb{Q}_{p}$ we consider the following elements:

$x(t)=(\begin{array}{ll}1 t0 1\end{array}), y(t)=(\begin{array}{ll}1 0t 1\end{array}), w(t)=(\begin{array}{ll}0 -1t 0\end{array}),$

$d(t)=(\begin{array}{ll}t 00 1\end{array}), z(t)=(\begin{array}{ll}t 00 t\end{array}).$

Let $N=\{x(t) : t\in \mathbb{Q}_{p}\},$ $\overline{N}=\{y(t) : t\in \mathbb{Q}_{p}\}$ and $A$ be the group of diagonal matrices
of $G$ . Let $Z_{G}=\{z(t) : t\in \mathbb{Q}_{p}^{*}\}$ denote the center of $G.$

1.1. The Iwahori Hecke Algebra. We first look at the case when $n=1$ . We have
following well-known lemma.

Lemma 1.3. A complete set of representatives for the double cosets of $G$ mod $K_{0}(p)$ are
given by $d(p^{n})z(m)$ , $w(p^{n})z(m)$ where $n,$ $m$ varies over integers.

Using triangular decomposition of $K_{0}(p)$ we obtain following decomposition.

Lemma 1.4. (1) For $n\geq 0$ we have

$K_{0}(p)d(p^{n})K_{0}(p)=\sqcup x(s)d(p^{n})K_{0}(p)s\in \mathbb{Z}_{r}/p^{\mathfrak{n}}\mathbb{Z}_{p}.$

(2) For $n\geq 1$ we have

$K_{0}(p)d(p^{-n})K_{0}(p)=\sqcup y(ps)d(p^{-n})K_{0}(p)s\in \mathbb{Z}_{p}/p^{n}\mathbb{Z}_{p}.$
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(3) For $n\geq 1$ we have

$K_{0}(p)w(p^{n})K_{0}(p)=\sqcup y(ps)w(p^{n})K_{0}(p)s\in \mathbb{Z}_{p}/p^{n-1}\mathbb{Z}_{p}.$

(4) For $n\geq 0$ we have

$K_{0}(p)w(p^{-n})K_{0}(p)=\sqcup x(s)w(p^{-n})K_{0}(p)s\in \mathbb{Z}_{p}/p^{n+1}\mathbb{Z}_{p}.$

Let $\mathcal{T}_{n}=X_{d(p^{n})},$ $\mathcal{U}_{n}=X_{w(p^{n})}$ and $\mathcal{Z}=X_{z(p)}$ be elements of the Hecke algebra
$H(G//K_{0}(p))$ . Note that $\mathcal{Z}$ commutes with every $f\in H(G//K_{0}(p))$ and that $\mathcal{Z}^{n}=$

$X_{z(p^{n})}$ . We use Lemma 1.1, Lemma 1.2 and Lemma 1.4 to obtain the following relations
in $H(G//K_{0}(p))$ .

Lemma 1.5. (1) If $n,$ $m\geq 0$ or $n,$ $m\leq 0$ , then $\mathcal{T}_{n}*\mathcal{T}_{m}=\mathcal{T}_{n+m}.$

(2) If $n\geq 0$ then $\mathcal{U}_{1}*\mathcal{T}_{n}=\mathcal{U}_{n+1}$ and $\mathcal{T}_{n}*\mathcal{U}_{1}=\mathcal{Z}^{n}*\mathcal{U}_{1-n}.$

(3) If $n\geq 0$ then $\mathcal{U}_{1}*\mathcal{T}_{-n}=\mathcal{U}_{1-n}$ and $\mathcal{T}_{-n}*\mathcal{U}_{1}=\mathcal{Z}^{-n}*\mathcal{U}_{1+n}.$

(4) If $n\geq 0$ then $\mathcal{U}_{0}*\mathcal{T}_{-n}=\mathcal{U}_{-n}$ and $\mathcal{T}_{n}*\mathcal{U}_{0}=\mathcal{Z}^{n}*\mathcal{U}_{-n}.$

(5) $Forn\in \mathbb{Z},$ $\mathcal{U}_{1}*\mathcal{U}_{n}=\mathcal{Z}*\mathcal{T}_{n-1}and\mathcal{U}_{n}*\mathcal{U}_{1}=\mathcal{Z}^{n}*\mathcal{T}_{1-n}.$

(6) For $n\geq 1,$ $\mathcal{U}_{0}*\mathcal{U}_{n}=\mathcal{T}_{n}$ and $\mathcal{U}_{n}*\mathcal{U}_{0}=\mathcal{Z}^{n}*\mathcal{T}_{-n}.$

(7) $\mathcal{U}_{0}*\mathcal{U}_{0}=(p-1)\mathcal{U}_{0}+p$

As a consequence we have the following well known theorem.

Theorem 2. The Iwahori Hecke Algebra $H(G//K_{0}(p))$ is generated by $\mathcal{U}_{0},$ $\mathcal{U}_{1}$ and $\mathcal{Z}$

with the relations:
1) $\mathcal{U}_{1}^{2}=\mathcal{Z}$

2) $(\mathcal{U}_{0}-p)(\mathcal{U}_{0}+1)=0$

3) $\mathcal{Z}$ commutes with $\mathcal{U}_{0}$ and $\mathcal{U}_{1}$

Remark 1. The algebra $H(G//K_{0}(p))/\langle \mathcal{Z}\rangle$ is an algebra generated by $\mathcal{U}_{0}$ and $\mathcal{U}_{1}$ with
the relations $\mathcal{U}_{1}^{2}=1$ and $(\mathcal{U}_{0}-p)(\mathcal{U}_{0}+1)=0.$

1.2. A subalgebra. We now consider the case $n\geq 2.$

Let $H(K//K_{0}(p^{n}))$ denotes the subalgebra of $H(G//K_{0}(p^{n}))$ consisting of functions
supported on $K$ . We shall obtain generators and relations for $H(K//K_{0}(p^{n}))$ .
We first note the following lemma [4, Lemma 1].

Lemma 1.6. A complete set of representatives for the double cosets of $K$ mod $K_{0}(p^{n})$

are given by 1, $w(1)$ , $y(p)$ , $y(p^{2})$ , . . . $y(p^{n-1})$ .

Let $\mathcal{U}_{0}=X_{w(1)}$ and $\mathcal{V}_{r}=X_{y(p^{r})}$ for $1\leq r\leq n-1$ be the elements of $H(G//K_{0}(p^{n}))$ .
Then by the above lemma, $H(K//K_{0}(p^{n}))$ is spanned by 1, $\mathcal{U}_{0}$ and $\mathcal{V}_{r}$ where $1\leq r\leq n-1.$

We have the following lemma.

Lemma 1.7.

$K_{0}(p^{n})y(p^{r})K_{0}(p^{n})=\sqcup d(s)y(p^{r})K_{0}(p^{n})s\in \mathbb{Z}_{p}^{*}/1+p^{n-r}\mathbb{Z}_{p}.$

As a consequence of the above lemma and Lemma 1.2 we obtain the following relations.

Proposition 1.8. We have the following relations in $H(K//K_{0}(p^{n}))$ :

(1) $\mathcal{V}_{r}^{2}=p^{n-r-1}(p-1)(I+\sum_{j=r+1}^{n-1}\mathcal{V}_{j})+p^{n-r-1}(p-2)\mathcal{V}_{r}.$

(2) $\mathcal{V}_{r}*\mathcal{V}_{j}=(p-1)p^{n-j-1}\mathcal{V}_{r}=\mathcal{V}_{j}*\mathcal{V}_{r}$ for $r+1\leq j\leq n-1.$
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(3) $Let \mathcal{Y}_{r+1}=I+\sum_{j=r+1}^{n-1}\mathcal{V}_{j}$ . Then

$\mathcal{V}_{r}*\mathcal{Y}_{r+1}=p^{n-r-1}\mathcal{V}_{r}=\mathcal{Y}_{r+1}*\mathcal{V}_{r},$

and so,
$(\mathcal{V}_{r}-p^{n-r-1}(p-1))(\mathcal{V}_{r}+\mathcal{Y}_{r+1})=0.$

For $1\leq r\leq n-1$ , let $\mathcal{Y}_{r}=I+\sum_{j=r}^{n-1}\mathcal{V}_{j}$ , take $\mathcal{Y}_{n}=I$ . We have the following easy
corollary.

Corollary 1.9. (1) $\mathcal{Y}_{n-r}^{2}=p^{r}\mathcal{Y}_{n-r}$ for all $0\leq r\leq n-1.$

(2) $\mathcal{Y}_{r}*\mathcal{Y}_{l}=p^{n-r}\mathcal{Y}_{l}=\mathcal{Y}_{l}*\mathcal{Y}_{r}$ for $r\geq l.$

Next we obtain relations in $H(K//K_{0}(p^{n}))$ that involve $\mathcal{U}_{0}.$

Proposition 1.10. (1) $\mathcal{U}_{0}*\mathcal{U}_{0}=p^{n-1}(p-1)\mathcal{U}_{0}+p^{n}\mathcal{Y}_{1}.$

(2) $\mathcal{U}_{0}*\mathcal{Y}_{r}=p^{n-r}\mathcal{U}_{0}=y_{r}*\mathcal{U}_{0}$ for all $1\leq r\leq n.$

(3) $\mathcal{U}_{0}*(\mathcal{U}_{0}-p^{n})*(\mathcal{U}_{0}+p^{n-1})=0.$

As a consequence of the above relations have the following theorem.

Theorem 3. The algebra $H(K//K_{0}(p^{n}))$ is an $n+1$ dimensional commutative algebra
with generators $\{\mathcal{U}_{0}, y_{1}, y_{2}, . . . , \mathcal{Y}_{n}\}$ and relations given by Corollary 1.9 and Propo-
sition 1.10.

We should point out that we have not yet found an analogue of Theorem 2 for
$H(G//K_{0}(p^{n}))$ for $n\geq 2$ . However we would need the following relation later. Let
$\mathcal{T}_{m}=X_{d(p^{m})},$ $\mathcal{U}_{m}=X_{w(p^{m})},$ $\mathcal{Z}=X_{z(p)}$ be the elements in $H(G//K_{0}(p^{n}))$ . Then

Lemma 1.11. $(\mathcal{T}_{1})^{m}*\mathcal{U}_{m}=\mathcal{T}_{m}*\mathcal{U}_{m}=\mathcal{Z}^{m}*\mathcal{U}_{0}$ for all $m\leq n.$

1.3. Representations of $K$ having a $K_{0}(p^{n})$ fixed vector. We are interested in irre-
ducible representations of $K$ having a $K_{0}(p^{n})$ fixed vector. Let

$I(n):=Ind_{K_{0}(p^{n})}^{K}1=\{\phi:Karrow \mathbb{C}$ : $\phi(k_{0}k)=\phi(k)$ for $k_{0}\in K_{0}(p^{n})$ , $k\in K\}.$

Then $I(n)$ is a right representation of $K$ , via right translation, denoted by $\pi_{R}$ , where
$\pi_{R}(k)(\phi)(k’)=\phi(k’k)$ , and the dimension of this representation is $[K : K_{0}(p^{n})]=p^{n-1}(p+$

1). It follows from Frobenius Reciprocity that every (smooth) irreducible representation
of $K$ which has a nonzero $K_{0}(p^{n})$ fixed vector is isomorphic to a subrepresentation of
$I(n)$ . We shall therefore decompose $I(n)$ into sum of irreducible representations.

We note the following easy lemma.

Lemma 1.12. We have $I(n)^{K_{0}(p^{n})}=H(K//K_{0}(p^{n}))$ and consequently the dimension of
$I(n)^{K_{0}(p^{n})}$ is $n+1.$

Further, using induction argument and Robenius reciprocity we can check that the
representation $I(n)$ is a sum of $n+1$ distinct irreducible representations.
We shall now explicitly describe the irreducible subrepresentations of $I(n)$ . Consider

the following action $\pi_{L}$ of $H(K//K_{0}(p^{n}))$ on $I(n)$ : for $f\in H(K//K_{0}(p^{n}))$ and $\phi\in I(n)$

set

$\pi_{L}(f)(\phi)(g)=\int_{K}f(k)\phi(k^{-1}g)dk$ for all $g\in K.$

In particular, if $\phi\in I(n)^{K_{0}(p^{n})}$ which by Lemma 1.12 is same as the algebra $H(K//K_{0}(p^{n}))$

then we have $\pi_{L}(f)(\phi)=f*\phi$ . It is easy to check that the action $\pi_{L}$ commutes with
the action $\pi_{R}$ . It now follows by Schur’s Lemma that for each $f\in H(K//K_{0}(p^{n}))$ the
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operator $\pi_{L}(f)$ acts as a scalar operator on an irreducible subrepresentation of $I(n)$ . We
use this to distinguish the irreducible components of $I(n)$ .

Note that if a is any irreducible subrepresentation of $I(n)$ then $\sigma$ contains a $K_{0}(p^{n})$

fixed vector, that is there exists a non-zero vector $v_{\sigma}\in\sigma\cap I(n)^{K_{0}(p^{n})}$ . Thus $v_{\sigma}$ is a
linear combination of $\mathcal{U}_{0}$ and $\mathcal{Y}_{r}$ for $1\leq r\leq n$ . Since $\pi_{L}(f)$ acts as a scalar for every
$f\in H(K//K_{0}(p^{n}))$ the vector $v_{\sigma}$ will be an eigenvector under the action of $\pi_{L}(\mathcal{U}_{0})$ and
$\pi_{L}(\mathcal{Y}_{r})$ for all $1\leq r\leq n$ . For each $\sigma$ we can compute these eigenvectors $v_{\sigma}$ and their
corresponding eigenvalues using the relations in Corollary 1.9 and Proposition 1.10. Thus
we obtain the following proposition.

Proposition 1.13. A basis of eigenvectors for $H(K//K_{0}(p^{n}))$ under the above action is
given by:
$v_{1}=\mathcal{U}_{0}+\mathcal{Y}_{1}$

$v_{2}=\mathcal{U}_{0}-p\mathcal{Y}_{1}$

$w_{k}=\mathcal{Y}_{k}-p\mathcal{Y}_{k+1}$ for $1\leq k\leq n-1,$

with eigenvalues given as follows:
$\mathcal{U}_{0}*v_{1}=p^{n}v_{1},$ $\mathcal{Y}_{i}*v_{1}=p^{n-i}v_{1}$ for all $1\leq i\leq n.$

$\mathcal{U}_{0}*v_{2}=-p^{n-1}v_{2},$ $y_{i}*v_{2}=p^{n-i}v_{2}$ for all $1\leq i\leq n.$

$\mathcal{U}_{0}*w_{k}=0,$ $\mathcal{Y}_{i}*w_{k}=0$ for all $1\leq i\leq k,$ $\mathcal{Y}_{i}*w_{k}=p^{n-i}w_{k}$ for all $k<i\leq n.$

Corollary 1.14. The representation $I(n)$ is a sum of $n+1$ irreducible subspaces given
by: $S_{1}=Span(\pi_{R}(K)v_{1})$ , $S_{2}=Span(\pi_{R}(K)v_{2})$ and $T_{k}=Span(\pi_{R}(K)w_{k})$ where $1\leq k\leq$

$n-1$ such that $\dim(S_{1})=1,$ $\dim(S_{2})=p,$ $\dim(T_{k})=p^{k-1}(p^{2}-1)$ . Consequently, $T_{n-1}$

is the unique irreducible representation of $K$ that has a $K_{0}(p^{n})$ fixed vector $w_{n-1}$ but does
not have $K_{0}(p^{k})$ fixed vector for $k<n$ that is, $w_{n-1}$ is the “new “ vector of level $n.$

2. TRANSLATION FROM THE ADELIC TO THE CLASSICAL SETTING.

Let $G_{\infty}=GL_{2}(\mathbb{R})^{+}$ . Then $G_{\infty}$ acts on the upper half plane $\mathbb{H}$ using M\"obius trans-

formation. For $9=(\begin{array}{ll}a bc d\end{array})\in G_{\infty},$ $z\in \mathbb{H}$ and functions $f$ on $\mathbb{H}$ recall the automorphy

factor and the slash operator $|_{2k}g,$

$j(g, z)=det(g)^{-1/2}(cz+d) , f|_{2k}g=j(g, z)^{-2k}f( \frac{az+b}{cz+d})$ .

Let $N$ be a positive integer and $K_{p}=K_{0}(p^{\alpha})$ for a prime $p$ such that $p^{\alpha}\Vert N$ . Let $K_{f}$ be
the subgroup of $GL_{2}(\mathbb{A})$ defined by

$K_{f}(N)= \prod_{q<\infty}K_{q}.$

By the strong approximation theorem we have

$GL_{2}(\mathbb{A})=GL_{2}(\mathbb{Q})G_{\infty}K_{f}(N)$

Let $A_{2k}(N)$ be the space of functions $\Phi\in L^{2}(Z_{A}GL_{2}(\mathbb{Q})\backslash GL_{2}(\mathbb{A}))$ satisfying the following
properties:

(1) $\Phi(gk)=\Phi(g)$ for all $g\in GL_{2}(\mathbb{A})$ , $k\in K_{f}(N)$ .

(2) $\Phi(gr(\theta))=e^{-i2k\theta}\Phi(g)$ where $r(\theta)=(\begin{array}{ll}cos\theta -sin\theta sin\theta cos\theta\end{array})\in SO(2)$ .

(3) $\Phi$ is smooth as a function of $G_{\infty}$ and satisfies the differential equation $\triangle\Phi=$

$-k(k-1)\Phi$ where $\triangle$ is the Casimir operator.
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(4) $\Phi$ is cuspidal, that is $\int_{\mathbb{Q}\backslash A}\Phi((\begin{array}{ll}1 a0 1\end{array})g)da=0$ for all $g\in GL_{2}(\mathbb{A})$ .

By Gelbart [5, Proposition 3.1] there exists an isomorphism

$A_{2k}(N)arrow S_{2k}(\Gamma_{0}(N))$

given by $\Phi\mapsto f_{\Phi}$ where for $z\in \mathbb{H},$

$f_{\Phi}(z)=\Phi(g_{\infty})j(g_{\infty}, i)^{2k}$

where $g_{\infty}\in G_{\infty}$ is such that $g_{\infty}(i)=z$ . The inverse map is given by $f\mapsto\Phi_{f}$ where for
$g\in GL_{2}(\mathbb{A})$ if $g=\gamma g_{\infty}k$ (using strong approximation),

$\Phi_{f}(g)=f(g_{\infty}(i))j(g_{\infty}, i)^{-2k}.$

This isomorphism induces a ring isomorphism of spaces of linear operators by

$q:End_{\mathbb{C}}(A_{2k}(N))arrow End_{\mathbb{C}}(S_{2k}(\Gamma_{0}(N)))$

given by
$q(\mathcal{T})(f)=f_{\mathcal{T}(\Phi_{f})}.$

Let $N=p^{n}M$ where $p$ is a prime coprime to $M$ and $G=GL_{2}(\mathbb{Q}_{p})$ . We note that the
$H(G//K_{0}(p^{n}))$ is a subalgebra of $End_{\mathbb{C}}(A_{2k}(N))$ via the following action:

for $\mathcal{T}\in H(G//K_{0}(p^{n}))$ and $\Phi\in A_{2k}(N)$ , $\mathcal{T}(\Phi)(g)=\int_{G}\mathcal{T}(x)\Phi(gx)dx.$

Then we have following proposition.

Proposition 2.1. Let $N=p^{n}M$ where $n\geq 1$ and $p$ (M. Let $f\in S_{2k}(\Gamma_{0}(N))$ . Consider
operators $\mathcal{T}_{1},$ $\mathcal{U}_{m}\in H(G//K_{0}(p^{n}))$ where $m\leq n$ . If $n\geq 2$ , further consider $\mathcal{V}_{r}\in$

$H(G//K_{0}(p^{n}))$ where $1\leq r\leq n-1$ . Then,

(1) $q( \mathcal{T}_{1})(f)(z)=p^{-k}\sum_{s=0}^{p-1}f((z+s)/p)=\tilde{U}_{p}(f)(z)$ .
(2) If $f\in S_{2k}(\Gamma_{0}(p^{r}M))$ where $r\leq n$ then $q(\mathcal{U}_{r})(f)(z)=p^{n-r}f|_{2k}W_{p^{r}}(z)$ where $W_{p^{r}}=$

$(\begin{array}{ll}p^{r}\beta 1p^{r}M\gamma p^{r}\end{array})$ is an integer matrix of determinant $p^{r}$ . In particular, $q(\mathcal{U}_{n})(f)(z)=$

$f|_{2k}W_{p^{n}}(z)$ .
(3) $q( \mathcal{V}_{r})(f)(z)=\sum_{s\in \mathbb{Z}_{p}^{*}/1+p^{n-r}\mathbb{Z}_{p}}f|_{2k}A_{s}$ where $A_{s}\in SL_{2}(\mathbb{Z})$ is any matrix of the form

$(\begin{array}{ll}a_{s} b_{s}p^{r}M p^{n-r}-sM\end{array}).$

(4) If $f\in S_{2k}(\Gamma_{0}(p^{r}M))$ then $q(\mathcal{V}_{r})(f)=p^{n-r-1}(p-1)f$ , consequently, $q(\mathcal{Y}_{r})(f)=$

$p^{n-r}f.$

We give below a proof of statement (3).
Let $n\geq 2$ . Using Lemma 1.7 we have

$\mathcal{V}_{r}(\Phi)(g)=\int_{G}X_{y(p^{r})}\Phi(gh)dh=\sum_{s\in \mathbb{Z}_{p}^{*}/1+p^{n-r}\mathbb{Z}_{p}}\Phi(gd(s)y(p^{r}))$
.

Let $z\in \mathbb{H}$ be such that $z=g_{\infty}i$ for some $g_{\infty}\in G_{\infty}$ . Then,

$q( \mathcal{V}_{r})(f)(z)=\sum_{s\in \mathbb{Z}_{p}^{*}/1+p^{n-r}\mathbb{Z}_{r}}\Phi_{f}(g_{\infty}d(s)y(p^{r}))j(g_{\infty}, i)^{2k}.$
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By strong approximation, $g_{\infty}d(s)y(p^{r})=A_{s}^{-1}h_{\infty}k_{f}$ for some $A_{S}\in GL_{2}(\mathbb{Q})$ , $h_{\infty}\in G_{\infty}$ and
$k_{f}\in K_{f}(N)$ . For any $s\in \mathbb{Z}_{p}^{*}$ , we have $gcd(p^{r}M,p^{n-r}-sM)=1$ , so there exists integers
$a_{s},$

$b_{s}$ such that $a_{s}(p^{n-r}-sM)-b_{s}p^{r}M=1$ . Take

$A_{s}=(\begin{array}{ll}a_{S} b_{S}p^{r}M p^{n-r}-sM\end{array})\in SL_{2}(\mathbb{Z})$ ,

then $A_{s}$ belongs to $K_{q}$ for $q\neq p$ and

$A_{S}d(s)y(p^{r})=(\begin{array}{ll}a_{s}+b_{s}p^{r} b_{s}p^{n} p^{n-r}-sM\end{array})\in K_{0}.$

Consequently,

$q( \nu_{r})(f)(z)=\sum_{s\in \mathbb{Z}_{p}^{*}/1+p^{n-r}\mathbb{Z}_{p}}f(A_{s}z)j(A_{s}, z)^{-2k}=\sum_{s\in \mathbb{Z}_{p}^{*}/1+p^{n-r}\mathbb{Z}_{p}}f|_{A_{s}}(z)$
.

Remark 2. The operator $q(\mathcal{U}_{n})$ is the usual Atkin-Lehner operator $W_{p^{n}}$ while the operator
$q(\mathcal{T}_{1})$ is the operator $\tilde{U}_{p}=p^{1-k}U_{p}$ where $U_{p}$ is the usual Hecke operator. It is obvious that
$q(\mathcal{Z})$ is the identity operator.

Let $N=pM$ where $p(M$ . Let $Q_{p}=q(\mathcal{U}_{0})$ where $\mathcal{U}_{0}\in H(G//K_{0}(p))$ . Then using
Lemma 1.5 we have

Corollary 2.2. $Q_{p}=p^{1-k}U_{p}W_{p}$ and $(Q_{p}-p)(Q_{p}+1)=0.$

Now consider $N=p^{n}M$ where $n\geq 2$ . Let $Q_{p^{m}}=(\tilde{U}_{p})^{m}W_{p^{m}}$ for $m\leq n$ where $W_{p^{m}}$

is the Atkin-Lehner operator on $S_{2k}(\Gamma_{0}(p^{m}M))$ . Using Lemma 1.11 and Propositions 2.1
and 1.10 we have

Corollary 2.3. For $\mathcal{U}_{0}\in H(G//K_{0}(p^{n}))$ , we have $Q_{p^{n}}=q(\mathcal{U}_{0})$ and hence $Q_{p^{n}}(Q_{p^{n}}-$

$p^{n})(Q_{p^{n}}+p^{n-1})=O.$ Further for $m\leq n$ we have $Q_{p^{n}}=(\tilde{U}_{p})^{m}q(\mathcal{U}_{m})$ , hence if $f\in$

$S_{2k}(\Gamma_{0}(p^{m}M))\subseteq S_{2k}(\Gamma_{0}(N))$ then $Q_{p^{n}}(f)=p^{n-m}Q_{p^{m}}(f)$ .

Let $S_{p^{n},r}=q(\mathcal{Y}_{r})$ where $y_{r}\in H(G//K_{0}(p^{n}))$ , $1\leq r\leq n$ . Using relations in Corol-
lary 1.9, we have

Corollary 2.4. $S_{p_{)}^{n}r}(S_{p^{n},r}-p^{n-r})=0$ for $1\leq r\leq n.$

Let $Q_{p^{n}}’=W_{p^{n}}Q_{p^{n}}W_{p^{n}}^{-1}$ and $S_{p^{n},r}’=W_{p^{n}}S_{p^{n},r}W_{p^{n}}^{-1}$ . Then $Q_{p^{n}}’$ and $S_{p^{n},r}’$ also satisfy the
above cubic and quadratic relations.

3. CHARACTERIZATION RESULTS.

The following is a restatement (slightly general) of Theorem 1.
Theorem 1. Let $N=M_{1}^{2}M$ where $M_{1}$ and $M$ are square free and coprime. Then
$f\in S_{2k}^{new}(\Gamma_{0}(N))$ if and only if $Q_{p}(f)=-f=Q_{p}’(f)$ for all primes $p$ dividing $M$ and
$Q_{p^{2}}(f)=0=Q_{p^{2}}’(f)$ for all primes $p$ dividing $M_{1}.$

For a general $N$ we need to use the family of operators $S_{p^{n},r}$ to obtain a similar char-
acterization result.

Theorem 4. Let $N$ be a positive integer. Then the space of new forms $S_{2k}^{new}(\Gamma_{0}(N))$ is
the intersection of $the-1$ eigenspaces of $Q_{p}$ and $Q_{p}’$ where $p$ varies over the primes such
that $p\Vert N$ and the $0$ eigenspaces of $S_{p^{\gamma},\gamma-1}$ and $S_{p^{\gamma},\gamma-1}’$ for primes $p$ such that $p^{\gamma}\Vert N$ with
$\gamma\geq 2$ . That is, $f\in S_{2k}^{new}(\Gamma_{0}(N))$ if and only if $Q_{p}(f)=-f=Q_{p}’(f)$ for all primes $p$

such that $p\Vert N$ and $S_{p^{\gamma},\gamma-1}(f)=0=S_{p_{:}^{\gamma}\gamma-1}’(f)$ for all primes $p$ such that $p^{\gamma}\Vert N$ for $\gamma\geq 2.$
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Let $q=e^{2\pi iz}$ and $f(z)= \sum_{n=1}^{\infty}a_{n}q^{n}\in S_{2k}(\Gamma_{0}(m))$ . Let $p$ be an odd prime. Define

$R_{p}(f)(z)= \sum_{n=1}^{\infty}(\frac{n}{p})a_{n}q^{n}, R_{\chi}(f)(z)=\sum_{n=1}^{\infty}(\frac{-1}{n})a_{n}q^{n}.$

By [1, Lemma 33], $R_{p}$ and $R_{\chi}$ are operators on $S_{2k}(\Gamma_{0}(m))$ provided that $p^{2}|m$ and
16 $|m$ respectively.

Theorem 5. Let $N=2^{\beta}M_{1}M_{2}$ where $M_{1}M_{2}$ is odd such that $M_{1}$ is square free and any
prime divisor of $M_{2}$ divides it with a power at least 2. Let $\beta\geq 4$ . Then $f\in S_{2k}^{new}(\Gamma_{0}(N))$

if and only if $Q_{p}(f)=-f=Q_{p}’(f)$ for all primes $p$ dividing $M_{1},$ $(R_{\chi})^{2}(f)=f$ and
$(R_{p})^{2}(f)=f$ for all primes $p$ dividing $M_{2}$ , and $S_{p^{\gamma},\gamma-1}(f)=0$ for all primes $p$ such that

$p^{\gamma}\Vert 2^{\beta}M_{2}.$

Remark 3. We can similarly characterize the subspaces of old forms $V(d)S_{2k}^{new}(\Gamma_{0}(M))$

that appear in the direct sum decomposition of the old space $S$ $(\Gamma_{0}(N))$ . In particular

for $N$ square-free and $M,$ $M’>1$ such that $MM’|N$ we have $f\in V(M’)S_{2k}^{new}(\Gamma_{0}(M))$ if
and only if $Q_{p}(f)=-f=Q_{p}’f$ for all $p|M,$ $Q_{q}’(f)=qf$ for all $q|M’$ and $Q_{q}(f)=qf$

for all $q|(N/MM’)$ .

3.1. Sketch of proof. We now sketch a proof of the Theorem 4 for a particular case
when any prime divisor of $N$ divides it with a power at least 2. Let $N=p^{n}M$ where
$n\geq 2$ and $(p, M)=1$ . Recall the family of operators that we defined: for $1\leq r\leq n,$

$S_{p^{\mathfrak{n}},r}(f)=f+ \sum_{j=r}^{n-1}\sum_{s\in \mathbb{Z}_{\dot{p}}/1+p^{n-j}\mathbb{Z}_{p}}f|_{2k}A_{s,j},$

where $A_{s,j}=(\begin{array}{ll}a_{s,j} b_{s,j}Mp^{J} p^{n-j}-sM\end{array})\in SL_{2}(\mathbb{Z})$ and the quadratic relation they satisfy

$S_{p^{n},r}(S_{p^{n},r}-p^{n-r})=0.$

We have the following lemma.

Lemma 3.1. For $1\leq r\leq n$ , a set of right coset $repre\mathcal{S}$entatives for $\Gamma_{0}(N)$ in $\Gamma_{0}(p^{r}M)$

consists of the identity element and elements of the form

$A_{s,j}=(_{p^{J}M}^{a_{s,j}}p^{n-j}-sMb_{s,j)}$ where $r\leq j\leq n-1$ and $s\in \mathbb{Z}_{p}^{*}/1+p^{n-j}\mathbb{Z}_{p}.$

Consequently, the operator $S_{p^{n},r}$ takes the space $S_{2k}(\Gamma_{0}(N))$ to $S_{2k}(\Gamma_{0}(p^{r}M))$ .

Thus we have the following corollary.

Corollary 3.2. For $1\leq r\leq n$ , the $p^{n-r}$ eigenspace of $S_{p^{n},r}$ is precisely the subspace
$S_{2k}(\Gamma_{0}(p^{r}M))$ .

Proposition 3.3. Let $1\leq r\leq n$ . Then for each $r<\alpha\leq n$ , the space $S_{2k}^{new}(\Gamma_{0}(p^{\alpha}M))$ is
contained in the $0$ eigenspace of $S_{p^{n},r}.$

Proof. For a prime $q$ with $(q, N)=1$ , the Hecke operator $T_{q}$ on $S_{2k}(\Gamma_{0}(N))$ corresponds

to the characteristic function of $GL_{2}(\mathbb{Z}_{q})(\begin{array}{ll}q 00 1\end{array})GL_{2}(\mathbb{Z}_{q})$ which belongs to the $q$-adic

Hecke algebra. Since $\mathcal{Y}_{r}$ belongs to the p–adic Hecke algebra $H(K_{0}(p^{n}))$ , it follows that
the operators $S_{p^{\mathfrak{n}},r}$ and $T_{q}$ on $S_{2k}(\Gamma_{0}(N))$ commute.
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Let $r<\alpha\leq n$ and $f\in S_{2k}^{new}(\Gamma_{0}(p^{\alpha}M))$ be a primitive form. Thus $f$ is an eigenform
with respect to $T_{q}$ for any $q$ coprime to $N$ . Now since $S_{p^{n},r}$ and $T_{q}$ commute we get that
$S_{p^{n},r}(f)$ is also an eigenfunction with respect to all such $T_{q}$ having the same eigenvalue
as $f.$

By the above lemma, $S_{p^{n},r}(f)\in S_{2k}(\Gamma_{0}(p^{r}M))$ and as $r<\alpha$ , it is an old form in the
space $S_{2k}(\Gamma_{0}(p^{\alpha}M))$ . It now follows from Atkin and Lehner that $S_{p^{n},r}(f)=0.$ $\square$

We have the following lemma.

Lemma 3.4. For $1\leq r\leq n$ , the operator $W_{p^{n}}$ maps $S_{2k}(\Gamma_{0}(p^{r}M))$ onto the space
$V(p^{n-r})S_{2k}(\Gamma_{0}(p^{r}M))$ .

Consequently, the $p^{n-r}$ eigenspace of $S_{p^{n},r}’$ is precisely the space $V(p^{n-r})S_{2k}(\Gamma_{0}(p^{r}M))$ .

Applying above results to the case $r=n-1$ we have the following corollary.

Corollary 3.5. The space $S_{2k}(\Gamma_{0}(p^{n-1}M))$ is the $p$ eigenspace of $S_{p^{n},n-1}$ and the space
$V(p)S_{2k}(\Gamma_{0}(p^{n-1}M))$ is the $p$ eigenspace of $S_{p^{n},n-1}’$ . Moreover, the space $S_{2k}^{new}(\Gamma_{0}(N))$ is
contained in the intersection of the $0$ eigenspaces of $S_{p_{)}^{n}n-1}$ and $S_{p_{\}}^{n}n-1}’.$

Finally we need the following proposition.

Proposition 3.6. The operators $S_{p^{n},n-1}$ and $S_{p^{n},n-1}’$ are self-adjoint with respect to Pe-
tersson inner product.

Proof of Theorem 4. Let $N=q_{1}^{\alpha_{1}}q_{2}^{\alpha}\cdots q_{s}^{\alpha_{s}}2$ where $q_{j}$ are distinct primes and $\alpha_{j}\geq 2$

for all $1\leq j\leq s$ . We have already seen one side implication. Conversely suppose
$f\in S_{2k}(\Gamma_{0}(N))$ is such that $S_{q_{j^{\alpha_{j}}},\alpha_{j}-1}(f)=0=S_{qj^{\alpha_{j_{\alpha}}},j^{-1}}’(f)$ for all $1\leq j\leq s$ . It follows
from from Corollary 3.5 that for each $1\leq j\leq s$ , the subspace $S_{2k}(\Gamma_{0}(N/q_{j}))$ is contained
in the $q_{j}$ eigenspace of $S_{q_{j}^{\alpha_{j}},\alpha_{j}-1}$ and $V(q_{j})S_{2k}(\Gamma_{0}(N/q_{j}))$ is contained in the $q_{j}$ eigenspace
of $S_{q_{jj}^{\alpha_{j_{\alpha-1}}}}’,\cdot$

Since $S_{q_{j}^{\alpha_{j}},\alpha_{j}-1},$ $S_{q_{j^{\alpha_{j}}},\alpha_{j}-1}’$ are self-adjoint operators we get that $f$ is orthogonal to
$S_{2k}(\Gamma_{0}(N/q_{j}))$ and $V(q_{j})S_{2k}(\Gamma_{0}(N/q_{j}))$ for each prime divisor $q_{j}$ of $N$ . Thus $f$ is orthog-
onal to the old space, that is, $f\in S_{2k}^{new}(\Gamma_{0}(N))$ . $\square$
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