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1 Introduction

This paper is concerned with the heat equation with a nonlinear boundary condition,

Ou = Au, r el t>0,
Vu - v(z) = |ulp~ 1y, z €0, t>0, (1.1)
u(z,0) = p(z), e,

where N > 1, p > 1, Q is a smooth domain in RY, 8; = 8/t and v = v(x) is the outer
unit normal vector to Q. For any ¢ € BUC(f2), problem (1.1) has a unique solution

u e C* (2 x (0,T]) N CWO@ x (0,T]) N BUC x [0, T))

for some T' > 0 and the maximal existence time T(¢) of the solution can be defined. If

T(p) < 0o, then
limsup ||u(t)]| Lo (@) = 00
t—= T()

and we call T'(¢) the blow-up time of the solution w.

Problem (1.1) has been studied in many papers from various points of view (see e. g [4]-
(6], (8]-[12], [14]-[18], [20]-[25], [27], [28], [33], [35] and references therein). In particular,
the local well-posedness of the solutions of (1.1) in L"(2) (1 < r < 00) was studied in [4].
See also [6]. However, for problem (1.1), there are few results related to the dependence
of the blow-up time on the initial function.

Let LT

uloc,p

(€2) be the uniformly local L™ space in € equipped with the norm

1/r
[|£llr,p = sup (/ \f(y)lrdy) ;
zeq) QN B(z,p)



where 1 < 7 < 0o and p > 0. Let £y, p(ﬂ) be the completion of bounded uniformly

continuous functions in () with respect to the norm || - ||,,, that is,
r Aoy I
uloc,p(ﬂ) = BUC(Q) .
We set Lgg, () = L*(Q) and L35, () = BUC(R?). The spaces Liioc,(§2) and

wloc,p(§Y) are useful for the study of the solutions of parabolic equations in unbounded
domains with non-decaying initial functions (see e.g., [7], [31] and references therein).
In this paper we prove the local existence and the uniqueness of the solutions of prob-

lem (1.1) with initial functions in £3;,. ,(€?) and obtain the estimates of the blow-up time

of the solutions by using the scaling parameter p of ||¢||r,. The blow-up time of the so-
lution is involved with the degree of the concentration of the initial function, which can
be estimated by the scaling parameter p of the norm ||¢||,,,. We give the estimates of the
blow-up time by the norm ||¢||r, with a suitable choice of p. This also gives a sufficient
condition for the existence of global-in-time solutions for problem (1.1) (see Corollary 1.1
and Remark 1.1).

Throughout this paper, following [34, Section 1], we assume that & C R¥ is a uniformly
regular domain of class C!. For any z € R" and p > 0, define

B(z,p) = {y e RV : [z —y| < p}, Uz,p) :=Q N B(z,p), 89z, p) :=0Q N B(z,p).

By the trace inequality for W11(Q)-functions and the Gagliardo-Nirenberg inequality we
can find p, € (0, 00] with the following properties (see Lemma, 2.2).

e There exists a positive constant c¢; such that

/ lv|do < c1/ Vol dy (1.2)
8 (z,p) Q(z,p)

for all v € C3(B(z,p)), T € L and 0 < p < px.

e Let 1 <a, 8 <00 ando € [0,1] be such that
1 1 1 1

Assume, if N > 2, that a # 0o or N # 2. Then there exists a constant ¢z such that

”U”L"‘(Q(m,p)) <c “U“E;‘(Tg)(x’p)) ||VU||22(Q(z,p)) (1'4)

for all v € C}(B(z,p)), z € D and 0 < p < p,.
We remark that, in the case
Q={(,zy) e RN : zy > 0(z")},

where N > 2 and & € CY(RV™1) with [|[V®| zo@mn-1) < 00, (1.2) and (1.4) hold with
px = 0o (see Lemma 2.2). Inequalities (1.2) and (1.4) are used to treat the nonlinear
boundary condition.

Next we state the definition of the solution of (1.1).



Definition 1.1 Let 0 < T < o0 and 1 < 7 < 0o. Let u be a continuous function in
Q% (0,T). We say that u is a LT, ()-solution of (1.1) in Q x [0, T] f

uloc

o u€ L®(,T: L®(Q)) N LY, T : WH3(QN B(0, R))) for any 7 € (0,T) and R > 0,

uloc,p

e uec C(0,T): LT, . () with }1_1)1(1) |lu(t) = ¢llrp = 0 for some p > 0,

o u satisfies

T T
_— . — -1
/0 /g{ ulp + Vu - Vo} dyds /0 ./{m lulP~ ug dods (1.5)

for all $ € CP(RYN x (0,T)).
Here do is the surface measure on Q). Furthermore, for any continuous function u in

Q x (0,T), we say that u is a LT, (Q)-solution of (1.1) in Q x [0,T) if u is a LT, ()-

uloc

solution of (1.1) in Q x [0,n] for any n € (0,T).
We remark the following for any p, o’ € (0, 00):
o feLy. () isequivalent to f € LT,  ,();

uloc,p uloc,p’

o u€ C([0,T] : LYy, ,()) is equivalent to u € C([0,T] : wloc,p ())-

These follow from property (i) in Section 2.
Now we are ready to state the main results of this paper. Let p, = 1+ 1/N.

Theorem 1.1 Let N > 1 and Q C RY be a uniformly reqular domain of class C!. Let P
satisfy (1.2) and (1.4). Then, for any 1 < r < oo with

r>Np-1) if p>p,.,
r>1 if p=ps, (1.6)
r>1 Zf 1<p<p*,

there exists a positive constant y; such that, for any ¢ € L7, p(ﬂ) with

1 N
PP T ol <m (1.7)

for some p € (0, p«/2), problem (1.1) possesses a LT, (Q)-solution u in Q x [0, up?] satis-
fying

sup [u(t)llr,p < Cllellr,p, (1.8)
0<t<up?
N
Sup t2r ”u(t)”L‘x’(ﬂ) < C”‘P”r,p- (19)
0<t<up?

Here C and p are constants depending only on N, Q, p and r.

Theorem 1.1 implies that T'(¢) > up? under assumption (1.6). Furthermore, we have:
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Theorem 1.2 Assume the same conditions as in Theorem 1.1. Let v and w be L7, .(2)-

solutions of (1.1) in Q x [0,T) such that v(z,0) < w(z,0) for almost all xz € 2, where
T >0 andr is as in (1.6). Assume, if r =1, that

1
fimsup 757 [Ju(t)] (@) + 100 o] < o (1.10)

Then there ezists a positive constant yo such that, if
1 _N
p7=1 7 [J[v(0)lrp + [w(0)lrp] < 72 (1.11)
for some p € (0, p«/2), then
v(z,t) < w(z,t) in Qx(0,T).
We give some comments related to Theorems 1.1 and 1.2.

(i) Let u be a LT, (£2)-solution of (1.1) in © x [0, T'). It follows from Definition 1.1 that
u € L®(1,0 : L®(Q)) for any 0 < 7 < o < T. This together with Theorem 6.2 of [12]
implies that u(t) € BUC(Q) for any t € (0,7). This means that u(0) € Ly, ,(?)
for any p > 0.

(if) Let 1 < r < oo. If, either

(@) f€Lupa(@), r>N(p-1) or (b) feL(Q), r2N(p-1),

1 N
then, for any v > 0, we can find a constant p > 0 such that p7=1" 7 |||, < 7.
As a corollary of Theorem 1.1, we have:
Corollary 1.1 Assume the same conditions as in Theorem 1.1 and p > p«.

(i) For any € LN®~1)(Q), problem (1.1) has a unique ngz_l) (9)-solution in Q% [0, T
for some T > 0.

(ii) Assume p. = o0o. Then there ezists a constant v such that, if

el Lyve-n@) <7, (1.12)

then problem (1.1) has a unique LN(p_l)(Q)—solution u such that

uloc

1
sup [[u(t)llpve-n@y + sup tZFD |ju(t)]| o) < oo
o<t<oo 0<t<oo

Remark 1.1 Let @ = RY = {(z/,zn) € RN : o5 > 0}. If1 < p < p., then prob-
lem (1.1) possesses no positive global-in-time solutions. See [11] and [18]. For the case
D > s, it is proved in [28] (see also [27]) that, if ¢ >0, ¢ Z 0 in Q and

“90||L1(R¢J)|Ig0|\ﬁ,(o(;{1%;l is sufficiently small,

then there exists a positive global-in-time solution of (1.1). This also immediately follows
from assertion (ii) of Corollary 1.1 and the comparison principle.



We explain the idea of the proof of Theorem 1.1. Under the assumptions of Theo-
rem 1.1, there exists a sequence {¢,}52,; C BUC(Q) such that

A lle = enllrp =0, sup lenllny < 2l¢llr,- (1.13)
For any n =1,2,..., let u, satisfy in the classical sense
8tu = Au in OQx (0, Tn):
Vu-v(z) = [uf~lu on 80 x (0,T), (1.14)

u(z,0) = ¢n(z) in Q,

where T), is the blow-up time of the solution u,. By regularity theorems for parabolic
equations (see e.g. [12] and [29, Chapters III and IV]) we see that

u, € BUC(Q x [0,TY), Vun, € L%(Q x (1,T)), (1.15)

for any 0 < 7 < T < T, which imply that u, is a LT, ()-solution in Q x [0,T;,) for any
1< r<oo. Set

U, olus](t) := sup sup / lun(y, 7)|" dy, 0<t<Th.
0<7<t 20 JUz,p)

It follows from (1.7) and (1.13) that

1 i L1 N
Uy p[un](0)7 = lenllre < 2{l@llrp < 2v1p" 77T 7. (1.16)

Define
T, ==sup{o € (0,Ty) : ¥y [un](t) < 6MY, ,[u,](0) in [0,0]},

1.17
T** .= sup {a € (0,Tn) : p~* + [lun(t)[Bakgy <267 in (0, a]}, (17)

where M is the integer given in Lemma 2.1. We adapt the arguments in [2], [3] and [26]
to obtain uniform estimates of u, and um, — u, with respect to m, n =1,2,..., and prove
that

nf Ty > pp?,  infT* > pp?,
for some x> 0. This enables us to prove Theorem 1.1. Theorem 1.2 follows from a similar
argument as in Theorem 1.1.

2 Preliminaries

In this section we recall some properties of uniformly local L" spaces and prove some
lemmas related to p.. Furthermore, we give some inequalities used in Section 3. In what
follows, the letter C' denotes a generic constant independent of z € Q, n and p.

Let 1 < r < co. We first recall the following properties of L7, oc,p(§1):



(i) if f € Ly, ,(Q) for some p > 0, then, for any p' >0, f € L7, () and
£l < Cillflir,p
for some constant C; depending only on N, p and p';

(ii) there exists a constant Cy depending only on N such that

1fllrp < Cop™F D fllgpy € LY (@), (2.1)

forany 1 <r < g<ooandp>0;
(iii) if f € L"(2), then f € LT, (§2) for any p > 0 and

uloc,p
lim [l =0. (2.2)

Properties (ii) and (iii) are proved by the Holder inequality and the absolute continuity of
| fI" dy with respect to dy. Property (i) follows from the following lemma.

Lemma 2.1 Let N > 1 and Q be a domain in RYN. Then there exists M € {1,2,...}
depending only on N such that, for any z € Q and p > 0,

Q(z,2p) € | Qa, p) (2.3)
k=1
for some {zx}7_; C Q withn < M.
We state a lemma on the existence of p, satisfying (1.2) and (1.4).

Lemma 2.2 Let N > 1 and Q be a uniformly regular domain of class C'. Then there
exists p« > 0 such that (1.2) and (1.4) hold. In particular, if

Q= {(«,zy) e RN : zy > &(z)}, (2.4)
where N > 2 and ® € C* (RN ™) with || V®|| oo gn-1) < 00, then (1.2) and (1.4) hold with
px = 00.

We obtain the following two lemmas by using (1.2) and (1.4).

Lemma 2.3 Let N > 1 and Q C RY be a uniformly regular domain of class C*. Let p,
satisfy (1.2) and (1.4). Then there exists a constant C; such that

[ gdo<e vepa+ [ g (2.5)
0(z,p) Q(z,p) € J(z,p)

for all ¢ € CY(B(z,p)), € >0, z € Q and p € (0,p,). Furthermore, for any p > 1 and
r > 0, there exists a constant Cy such that
2

N
/ 2 dy < Cy ( / fNE=D dy) / V£2 | dy (2.6)
z,p) Q(z,p) Q(z,p)

for all nonnegative functions f satisfying f7/2 € C*(Q(z, p)) with f = 0 near QN AB(x, p),
p€(0,ps) and z € Q.



Proof. It follows from (1.4) that

/ Pdo<c [ |Veldy<2C / 1611V dy
oQ(z,p) Qz,p) Q(z,p)
02

SE/ Voldy+ S [ Say
Q(z,p) € JQ(z,p)

for all ¢ € Wy(B(z,p)), € >0, z € Q and p € (0, p,). This implies (2.5).
Let r >0and 0 < p < py. If 2N(p — 1) > r, then, by (1.4) we have

2

4(p-1)+2 we-n , " 2
gr'? dy<C g dy IVg|®dy (2.7)
Q(z,p) Q(z,p) Qz,p)

for all g € C}(B(z,p)) and = € Q. Furthermore, we obtain (2.7) by the Holder inequality
and (1.4) even for the case 2N(p—1) < r (see e.g. [32, Lemma 3]). Then, setting g = f7/2,
we obtain (2.6), and the proof is complete. O

Lemma 2.4 Assume the same conditions as in Theorem 1.1. Letr > 1, T > 0 and f be
a nonnegative function such that

f€C([0,T] : Liype ,(0)) N LA, T : WH(Q N B(0, R)))

for any p € (0,p4/2), 7 € (0,T) and R > 0. Let z € Q and ¢ be a smooth function in RN
such that

0<(¢<1 and |V(| <20t in RV,
¢=1 on B(z,p), (=0 outside B(z,2p).

Set fe = f + € for e > 0. Then, for any sufficiently large k > 2, there exists a constant C
such that

t
sup// frrr=1¢k dods
zeQt JT JOQ(z,2p)

r E_El t r
< C[pF"N‘Ifr,p[fe](t)] [sug / / V2P dyds + p2(t — 7)WL (1)
zeQl JT JQ(z,p)

(2.8)

forall0<7<t<T, pe(0,p./2) and € > 0.

Proof. Let p € (0, p,/2). It suffices to consider the case where 9§ (z, p) # 0. Let k > 2

be such that
k r

. Z>1. 2.9
2p+71—2 2‘1 (2.9)



By (1.2) and Lemma 2.1, for any § > 0, we have

t t
/ / ¢k dods < C / / |Viz+7=1¢H]| dyds
T JOQ(x,2p) T JQz,2p)

t r_ r t
sc[ [ grvidicayas+c [ [ prrwec dyds
T JQ(z,2p) T JQ(z,2p)

t
< Cé / / f27=2¢k dyds
T JQ(z,2p)

t r t
+Cs! / / |V 22k dyds + €671 / / frek=2ve P dy ds
7 JQ(z,2p) T JQ(z,2p)

t
<cs [ [ prrichayas
T JQ(z,2p)

t r
+C6 1 sup / / V212 dyds + C5~ p~2(t — 7) Uy, [ £ (t)
.'Eeﬁ T Q(a:,p)

(2.10)

for 0 < 7 <t < T, where C is a constant independent of € and 8. Set g, := f.¢*/(2p+r=2),
It follows from (2.9) that f§/2 = 0 near QN IB(z,2p). Then, by Lemmas 2.1 and 2.3 we

have
t t
// fg(y,7)2p+’_2deyds=// 95(%7)2p+r_2dyds
T JQ(z,2p) T JQ(z,2p)

2
N ,t r
< C sup (/ ge(y,s)N(I"“l) dy) / / (Vgef|2 dyds
0<s<t \ JQ(z,2p) T JQ(z,2p)

2(p—-1)
< C sup pﬁ—N/ fe(y,s)" dy
0<s<t Q(z,2p) (2.11)

t r t
X [/ / |Vf?\2dyds+p_2/ / T dyds]
T JQ(z,2p) T JQ(z,2p)
2(p-1)

<C [Pi‘:‘l‘”wr,p[fel(t)}
u ! % 2 -2y :I
[—5/ /Q(z,,,) (V& dyds + p~ (¢ = 7)Tr,p (£ (1)

for 0 < 7 <t <T. Therefore, taking § = [pﬁ_N\Ilr,p[fe](t)]‘(p‘l)/", by (2.10) and (2.11)
we obtain (2.8), and the proof is complete. O

3 Proof of Theorems 1.1 and 1.2 in the case r > 1.

Let v and w be L7, .(9)-solutions of (1.1) in  x [0,T], where 0 < T' < oo and r is as in
(1.6). Set z := v — w and 2, := max{z,0} + € for € > 0. Then z, satisfies

Otze < Az in Qx (0,7, Vze - v(z) < a(z,t)ze on 900 x (0,7, (3.1)



in the weak sense (see e.g. [13, Chapter II]). Here

(@, P v(z, t) — [w(z, t) P w(z, )

if u(z,t) # w(z,t),

a(z,t) = v(z,t) — w(z,1) (3.2)
plv(z, t)[P~! if v(z,t) =w(z,1),
which satisfies
0<a(z,t) < C(vP™ + }w|p'1) in Qx(0,7T). (3.3)

In this section we give some estimates of z, and prove Theorems 1.1 and 1.2 in the case

T > 1
We first give an L{® estimate of zg by using the Moser iteration method with the aid

of (1.17). For related results, see [17].

Lemma 3.1 Assume the same conditions as in Theorem 1.1. Let v and w be L7,  ()-

solutions of (1.1) in Q x [0,T], where 0 < T < 00 and r > 1. Set zp := max{v — w, 0} and
a = a(z,t) as in (3.2). Then there ezists a constant C such that

1/r
N4+2 t
20|z (ae. ey < OO ( [ zgdyds) G
to Q(w,Rz)
t t
/ / |V 2|2 dyds < CD / / 22 dyds, (3.5)
t1 JQ(z,R1) ta JQ(z,R2)

for all z € Q, O<RI<Ry<piand0<ty<ty <t<T, where
D := ||al|F (o0, Ro)x (2,0 T (R2 = R1) ™%+ (t1 — t2) ™1,
Proof. Let 1 € Q,0< Ry < Ry <pyand 0 <ty <t; <t<T. For j =0,1,2,..., set
ri=Ri+(Ry—R1)277, 7j=t1~(t1 —t2)279, Qj:=Q(z,75) x (15,1).
Let ¢; be a piecewise smooth function in @; such that

0<¢ <1 in RY, =1 on Qi

¢ =0 mnear ON(x,r;) x [15,t]UQ(z,7;) x {75}, (3.6)
94j+1 9+l '
|VCJI S m and 0 S 8tCJ S tl — t2 m QJ

Let ap > 1 and € > 0. For any o > ag, multiplying (3.1) by 227'¢? and integrating it on
Q;, we obtain

1 -1
— sup / 22 dy + 2 5 // 2272\ Vze[*¢? dyds
(87 T <s<t Q(z,rj) Qj

4 2 4 a
< [, el avis + 25 [ v Payas 3.7

t
+2/ / a(y, s)zf‘(f dods.
75 JOQ(z,r5)
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This calculation is somewhat formal, however it is justified by the same argument as in [29,

Chapter III] (see also [13]). Then it follows that

sup / zé”(} dy + // [V[ze%Cj]lz dyds < O// 28¢;0:¢; dyds
Tj<s<t Q(m,rj)
+C / / 2&|V¢;|? dyds + Ca / / a(y, 5)22(? dods
75 JOQUz,r;)
for all  =0,1,2,... and a > ap. On the other hand, by Lemma 2.3 we have
t t
Ca/ / a(y, s)zf(f dods < Ca”a”Lco(Qo)/ / zf‘C]z dods
T3 BQ(:E,'I‘J') Tj aﬂj
1 a
< 3 //Q |V[z& ng]|2 dyds + Ca2||a”%°°(Qo) //Q z?(f dyds.
j j

We deduce from (3.6), (3.8) and (3.9) that

sup/ 2 dy + / V(22 ()12 dyds
Q(:crj)

T <8<t

2
< w
<C [ lallZ oo (o) + B-R)?  § —tzJ // % dyds

for all 5 =0,1,2,... and & > 9. This together with (1.4) implies that

1/k
(// zee dyds)
Qj+1

<C 02”0”2 + 2% + 2 // 2% dyds
= L (Qo) (Rg— R1)? ' t1—ts S e @Y

(3.10)

(3.11)

forall j =0,1,2,... and a > ag, where & := 1+ 2/N. Furthermore, by (3.10) with o = 2

we have (3.5).
We prove (3.4) in the case r > 2. Setting

I; = ||ze”L°‘J'(Q,-), Qj = rel,
by (3.11) we have

A 92j 27
L1 <C™ [ajllaHLoo(Qo) + (R; — R1)? th

L 5
] I; <C=(CD)% I;

for all j =0,1,2,..., where D := ”a“%‘”(Qo) + (Rg — Ry)™2 + (t1 — t2) L. Since

oo o0 o0 .
1 1 ; 1 N +2

E _—= - E Ii_] = 1 = + , E _‘7_

e R r(1 - k1) 2r P

(3.12)
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we deduce from (3.12) that
o oo 1
el zoe(@uy = lim I < O3 (CD)Y==0% Iy < CDW*/7 ||z 11 ),
J—ro0

which implies

1/r
l|2ell Lo (w, R ) x (t1,8)) < cD% (/ / 2, dytis) , (3.13)
to JQ(z,R2)

where 7 > 2. Then, passing the limit as ¢ — 0, we obtain (3.4).
On the other hand, for the case 1 < 7 < 2, applying (3.13) with r = 2 to the cylinders
Q; and Q;4+1, we have

Izellpoe(@s40) £ € ( 2% D) // P dyds)
%
< CV| 2]l poo -T/Q (D(N+2)/2// deyds) :
Qj

where b = 2NV+2)/2 Then, for any v > 0, we have
_2-r 2 N2 r r
|‘Z6”L°°(Qj_+1) < V”ZEHLOO(Q].) +Cv~ "+ briD2r o z, dyds
i

) . J ] 1/r
< V2 (o) + O™ 5 S (b2 ) D ( / / . dyds)
i= 0

for j =1,2,.... Taking a sufficiently small v if necessary, we see that
i+1 Nt2 U
|| 2ell Loo(@;41) < ¥ | 2el oo (@) + CD 2 (//Q Ze dyds)
4]
for j =1,2,.... Passing to the limit as j — oo and € — 0, we obtain

1/r
120l o0 (Quo) < cDs (// zh dyds) ,
4]

which implies (3.4) in the case 1 < r < 2. Thus Lemma 3.1 follows. O

Lemma 3.2 Assume the same conditions as in Theorem 1.1. Let r satisfy (1.6) andr > 1.

Letv be a L7, .(Q)-solution of (1.1) in 2% [0,T], where T > 0. Then there ezists a positive
constant A such that, if .
PN, )(T) < A (3.14)
for some p € (0, p«/2), then
U, ,[v](t) < 5MY, ,[v](T), (3.15)
t -
sup / / 0Pl dods < CAT U, ,[v](7), (3.16)
xeﬁ T BQ vp)
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for all0 <7<t <T witht—7 < pup?, where C and u are positive constants depending
onlyon N, Q, p and r.

Proof. Let z € Q and let ¢ and & be as in Lemma 2.4. By (3.14) we can take a sufficiently

small € > 0 so that .
P71 N [0 (T) < 24, (3.17)

where v, := max{%v,0} + ¢. Similarly to (3.8), for any 0 < 7 < ¢t < T, multiplying (1.1)
by v7~1¢* and integrating it in Q x (7,¢), we obtain

/ velyrsychdy| / / Yok |2 dyds
Q(z,2p) s=T Q(z,p)

SCp—zf / deyds-I—C/ / v£+"_1(kdcrds.
T JQ(z,2p) T JOQ(z,2p)

This together with v € C(Q x [r,T]) N L®(r, T : L>(2)) (see Definition 1.1) implies that

(3.18)

t T
sup / / |Vvé |2 dyds < oo. (3.19)
Q(z,p)

zeQl JT

Furthermore, by Lemma 2.4, (3.17) and (3.18) we have

s=t t r t
/ ve(y, s)"¢* dy +/ / |V |2 dyds < Cp—2/ / v] dyds
Q(z,2p) s=1 T JQ(z,p) T JQ(z,2p)

(3.20)
p=1 t 52 -2
+ C(2A) = |sup / / [Vvé |* dyds + p~*(t — 7) ¥y p[vel(t)
zeQl J7 JQ(z,p)
for 0 < 7 < t < T. Therefore, by Lemma 2.1, (1.17) and (3.20) we obtain
t r
sup / ve(y,t)" dy + sup / / |V |? dyds
< M sup / ve(y, 7)" dy + Cp~2(t — 7) ¥y p[uve](2) (3.21)
zeQ Y 2(z,p)

+C(2A)~ B [sup/ /ﬂ( |Vvé |2dyds+p'2(t—'r Y- olvel (2)
z,0)

€S2

for 0 < 7 <t < T. Taking a sufficiently small A if necessary, we deduce from (3.19) and
(3.21) that

sup/ ve(y, t) dy-’r——sup// |Vvé |2dyds
zefl JQ(z,p) zef Q(z,p)

< M sup / ve(y, 7)" dy + C’p—z(t — T)¥, pvel(2).
zefl JQ(z,p0)



Taking a sufficiently small u € (0, 1], we obtain

1 ¢ r
U, 5[ve](t) + = sup / / |Vvé )2 dyds
2 2eq Jr Ja(zp) (3.22)

1
< AMT, [0 (r) + Cp2(t = 7)ol (1) < 2M T fod (7) + 5 W ploe] (1)
for 0 < 7 <t < T with t — 7 < up®. This implies that
Uy p[max{=v, 0}](t) < Ty p[ve] (t) < 4AM T, [ve](7) < 5ME,,[v](7) + CepN (3.23)

for 0 < 7 < ¢t < T with t — 7 < pp®. Furthermore, by Lemma 2.4, (3.22) and (3.23) we
have

t t
/ / max{%v, 0}**" "1 dods < / / Pt dods
T JOQ(z,p) T JOQ(z,p) (324)

< CAS U, ul(7) < CAS U, [v](7) + Ce™ V.

Since 7 and € is arbitrary, by (3.23) and (3.24) we obtain (3.15) and (3.16). Thus
Lemma 3.2 follows. O

Lemma 3.3 Assume the same conditions as in Lemma 3.1. Let r satisfy (1.6) and r > 1.
Then there exists a positive constant A such that, if

P71 N (@, [V)(T) + ¥y p[w](T)) < A (3.25)
for some p € (0, p./2), then
Tp,p[20)(t) < CFyp[20](7) (3.26)

for0< 7 <t <T witht—7 < up?, where C and u are positive constants depending only
on N, Q, pandr.

Proof. Let z € Q and ¢ be as in Lemma 2.4. Let k be as in Lemma 2.4 and € > 0.
Similarly to (3.18), we have

s=t t r
/ ey sy + / / V28 ¢k dyds
Q(z,2p) s=T T JQz,2p)

t t
< Cp‘z/ / 2 dyds + C/ / a(y, )20 ¢* dods
T JQ(z,2p) T JOQ(z,2p)

for all 0 < 7 < t < T. This together with z, a € C( x [r,T]) N L®(Q x (1,T)) implies
that

(3.27)

t .
sup / / |V22|? dyds < oo (3.28)
"Eeﬁ T Q(I,Zp)

13
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for 0 < 7 <t <T. On the other hand, by the Hélder inequality and (3.3) we have

—1

t t F—%T
/ / a(y,7)25¢* dods < C (/ / (joPt =t + lw]p”_l)dads)
T JO(z,2p) T JOQ(z,2p)

¢ 7T
X (/ / 2Prr-1ck dads) .
T JO88(z,2p)

Let A and u be sufficiently small positive constants. Then, by Lemma 2.1, (3.16) and
(3.25) we see that

t
/ / (o[ + [wP*1) dods
T JOQ(z,2p)

t
< M sup / / (ot + |wPt™1) dods (3.30)
xeﬁ oz, p)

(3.29)

< CA™ {,,[u](7) + Lp plw](7)} < CAZFT 7 THY

forall 0 < 7 <t < T with t — 7 < pp®. Similarly, by Lemma 2.4 we obtain

t ™
/ / 2PH=1ck dods < C (P"T‘_N‘I’r,p[ze](t)
T JoQ(z,2p)

X [sup / t /Q . [V(ze) 2| dyds + p~2(t — r)wr,p[ze](f)]

zeQ JT

>u

- (3.31)

for all 0 < 7 <t < T with t — 7 < pp?. Then we deduce from (3.29)—(3.31) that

t
/ / a(y,t)z7¢* dods
T JOQz,2p)
< CA™F (gl (1) 75T

t (2 -2 pTr_l
x | sup / / IV (2e) 2 dyds + p=2(t — )Ty p[2e](2)
Q(z,p)

zeQlJT

(3.32)

< CA%I»I:SUP /t/ » |V2§‘2 dyds + Wy (2] (t) + p~2(t — T)‘I’r,p[ZEJ(T)}

zeQJT

for all 0 < 7 <t < T with t — 7 < pp?. Therefore, by Lemma 2.1, (3.27) and (3.32) we
have

sup / z¢ dy + sup / / V22 12 dyds
zeQl v Q(z,p0) zefl Q(z,p)
< M‘I"rp[ze T)+Cp t_T)‘IlTP[ZC]( )

L:"u z22 S r.o|Ze —2 —T)¥p p|Ze|\T
Lch [;%/T /Q( V22 P dyds + Uy plzd(8) + o2t — )l >]



for all 0 < 7 < ¢ < T with t — 7 < pup?. Then, taking sufficiently small constants A and u

if necessary, we obtain
Urpl2e)(t) < AMT; p[2€](T)

for all 0 < 7 < ¢t < T with t — 7 < up?. This implies (3.26), and the proof is complete. O
Now we are ready to complete the proof of Theorems 1.1 and 1.2 in the case r > 1.

Proof of Theorem 1.1 in the case 7 > 1. Let v; be a sufficiently small positive
constant and assume (1.7). Let {¢,} satisfy (1.13) and define T}* and T;}* as in (1.17).
Then it follows from (1.16) that

PPN, ] (1) < 6MpFT N By pfun] (0) < 6M (271)" (3.33)

for all 0 < ¢t < T;. Taking a sufficiently small ; if necessary, by Lemma 3.2, (1.16) and
(3.33), we can find a constant u > 0 such that

Urplun](t) < SM Ty [un](0) < 6M ¥y ,[un](0) < Cligllr, (3.34)

for 0 < ¢ < min{T}}, up?}. On the other hand, we apply Lemma 3.1 with R, = p/2,
Ry = p, t1 =t/2 and t2 = t/4 to obtain

/ 1/r
N+2 t
ln (8)l| oo (2w 0/2)) < CDZ < / / iunl’dyds) , (3.35)
t/4 JQ(z,p)
t t
/ / |Vug|? dyds < CD / / lun|? dyds, (3.36)
t/2 JQ(z,p/2) t/4 JQ(z,p)

forallz € Q and t € (0,T,). where D = ”tunlp—l“%‘”(Q(x,p)x(t/él,t)) +p2+t71. By (1.17),
(3.34) and (3.35) we have

N 1 DY AR |
lun(@®)lzo(@) < Ct75 [[pllrp < Omt™ 7D (p™2¢) " 27 26T, (3.37)
t N
sup |Vun|* dyds < Co"l|unlZoo(ax ey < CPNE T lelz,  (3.38)
> @x(t/4,1))

for all 0 < t < min{pp?, T}, T**}. Since r > N(p— 1), taking sufficiently small y; > 0 and
p > 0 if necessary, by (3.37) we have

N(p—-1)

- 1 1 — 1 -1 = 1
(p 2t)2 + 12 ||un(t)|[iwl(n) <p2+(Cm)? ll-L = T2 <1

for 0 < t < min{up?, T, T*}. This implies that T,, > T* > min{T*, up?} for n =

y+n

1,2,.... Then, by (3.34) we see that T} > up? for n = 1,2,.... Therefore, by (3.34),
(3.37) and (3.38) we obtain

N
lun(t) || Loy < Ct™2r ||p]lr,p, (3.39)
t
sup [ [ [Vuafayds < oV ol (3.40)
sup |un(t)llr,p < Cllelir,p, (3.41)

0<t<up?

15
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for0<t<pp*andn=12,....

Applying [12, Theorem 6.2] with the aid of (3.39), we see that u, (n = 1,2,...) are
uniformly bounded and equicontinuous on K X [7, up?] for any compact set K C © and
7 € (0, up?]. Then, by the Ascoli-Arzela theorem and the diagonal argument we can find
a subsequence {u,/} and a continuous function u in € x (0, #p?] such that

Jim [un = ull Loo (k[ pp2)) = O
for any compact set K C © and 7 € (0, up?]. This together with (3.39) and (3.41) implies
(1.8) and (1.9). Furthermore, by (3.40), taking a subsequence if necessary, we see that
lim uy =u weakly in L%([r, up?] : WH2(QN B(0,R)))
n/— o0
for any R > 0 and 0 < 7 < pp?. This implies that u satisfies (1.5).
On the other hand, since u, is a LT, .(€2)-solution of (1.1) (see (1.15)), we see that

uloc
Un € C([07#p2] : L:Lloc,p(ﬂ))'
Furthermore, by Lemma 3.3 and (3.33), taking a sufficiently small 7; if necessary, we have

sup  [[um(7T) = un(7)|lrp < Cllum(0) = un(0){lr,p, m,n=1,2,....
0<T<pup?

This means that {u,} is a Cauchy sequence in C([0, up?] : L7, (), which implies

S C([O7 :upz] : Ltrzloc,p(ﬂ))‘ (3'42)
Therefore we see that u is a LT, (Q)-solution of (1.1) in £ x [0, up?] satisfying (1.8) and

uloc

(1.9), and the proof of Theorem 1.1 for the case r > 1 is complete. O
Proof of Theorem 1.2 in the case r > 1. Let v and w be L7, (£)-solutions of (1.1) in
O x[0,T), where T > 0. Let 2 be a sufficiently small constant and assume (1.11). We can

assume, without loss of generality, that p € (0, p+/2). Since v, w € C([0,T] : Ly, ,()),
we can find a constant 7" € (0,T") such that

1_N
pr-t T [ sup |v(7)l|lrp + sup ”"U(T)”r,p:l < 27 (3.43)
0<r<T" 0<T<T
Furthermore, for any T” € (T",T), since v, w € L>®(Q x (T",T")), we see that
1l _N
pr=1 7 | sup |[o(7)|lrp+ _sup |lw(T)llrz| <2 (3.44)
T/ <r<T" T/ <T<T"

for some g € (0, p). Since v(z,0) < w(z,0) for almost all z € Q, by (3.43) and (3.44) we
apply Lemma 3.3 to obtain
sup I(v(7) = w(7)+]lr5 < Cll(v(0) = w(0))4+[lrp =0
0<7T<min{us?,T"}
for some constant 4 > 0. This implies that v(z,t) < w(z,t) in Q x (0, min{up?, T"}].
Repeating this argument, we see that v(z,t) < w(z,t) in Q x (0,T7”]. Finally, since 7" is
arbitrary, we see that v(z,t) < w(z,t) in  x (0,T), and the proof is complete. O
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