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1 Introduction

The paper is denoted to some remarks on the result obtained in [11].
Prostate cancer is one of the deadly disease of male. By the fact that prostate cells prolif-

erate by a male hormone so-called androgen, it is expected that prostate tumors are sensitive
to androgen suppression. In 1941, Huggins and Hodges ([9]) demonstrated the validity of the
androgen deprivation. Since then, the hormonal therapy has been a major therapy of prostate
cancer. The therapy aims to induce apoptosis of prostate cancer cells under the androgen sup-
pressed condition. For instance, the androgen suppressed condition can be kept by medicating a
patient continuously ([19]), and the therapy is called Continuous Androgen Suppression therapy.
However, during several years of the CAS therapy, the relapse of prostate tumor often occurs
([4]). The fact was also verified mathematically by [13] and [14]. It is known that there ex-
ist Androgen-Dependent cells (AD cells) and Androgen-Independent cells (AI cells) in prostate
tumors. AI cells are considered as one of the causes for the relapse. Although AD cells can
not proliferate under the androgen suppressed condition, AI cells are not sensitive to andro-
gen suppression and can still proliferate under the androgen poor condition ([2], [16]). Thus
the relapse of prostate tumors is caused by progression to androgen independent cancer due
to emergence of AI cells. Since prostate cancer cells produce large amount of Prostate-Specific
Antigen, the serum PSA is utilized as a good biomarker for prostate cancer. This means that
the level corresponds to the total number of cancer cells or the size of tumor.

In order to prevent or prolong the relapse of prostate tumors, Intermittent Androgen Sup-
pression therapy was proposed and has been studied clinically by many researchers (e.g., see [1],
[3], [6], [17], and references therein). Recently the IAS therapy is becoming a major in hormonal
therapy for prostate cancer. The typical feature of the clinical phenomenon is stated as follows:

(i) In the IAS therapy, medication is stopped when the serum PSA level falls enough, and
resumed when the serum PSA level rises enough.

In order to comprehend qualitative property of prostate tumors under the IAS therapy,
several mathematical models were proposed and has been studied in the mathematical hterature,
for instance, hybrid ODE models ([8], [10], [12], [18], and references therein), hybrid PDE models
([7], [15], [20], [21], [22]). Due to the feature (i), an unknown binary function, denoting the
treatment state, appears in the models. The discontinuity of the binary function is the cause of
the difficulty of the models. To the best of our knowledge, there is no result proving that the
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binary function switches in the hybrid PDE models. The purpose of this paper is to prove the
existence of a solution with the switching property for a hybrid PDE model.

In the present paper, we focus on the feature (i) and the following:

(ii) There is the competition interaction between AD cells and AI cells in prostate tumors.

From these features (i) and (ii), Y. Tao, Q. Guo, and K. Aihara proposed a mathematical
model describing the IAS therapy for prostate cancer ([20]). They regarded the prostate tumor
as a densely packed radially symmetric three dimensional sphere. Moreover they formulated the
serum PSA level as the radius of tumor. In our previous paper ([11]), we analyzed the following
model which is based on the model proposed in [20]:

(P) $\{\begin{array}{ll}\frac{da}{dt}(t)=-\gamma(a(t)-a_{*})-\gamma a_{*}S(t) in \mathbb{R}_{+},\partial_{t}u(\rho, t)+[v(\rho, t)-\rho v(1, t)]\partial_{\rho}u(\rho, t) D 1 =\overline{R(t)^{2}}\rho^{\overline{2}^{\partial_{\rho}}}[\rho^{2}\partial_{\rho}u(\rho, t)]+P(u(\rho, t), a(t)) in I\cross \mathbb{R}+,v(\rho, t)=\frac{1}{\rho^{2}}\int_{0}^{\rho}F(u(r, t), a(t))r^{2}dr in I\cross\mathbb{R}+,\frac{dR}{dt}(t)=v(1, t)R(t) in \mathbb{R}_{+},S(t)=\{_{1}^{0}arrow 0arrow 1 whenwhen R(t)=r_{0}R(t)=r_{1} andand R’(t)R’(t)<0>0,’ in \mathbb{R}+,\partial_{\rho}u(O, t)=\partial_{\rho}u(1, t)=0, \frac{v(\rho,t)}{\rho}|_{\rho=0}=\frac{1}{3}F(u(O, t), a(t)) , in \mathbb{R}_{+},a(O)=a_{0}, u(\rho, 0)=u_{0}(\rho) , R(O)=R_{0}, S(O)=S_{0}, in I,\end{array}$

where $I=(O, 1)$ , $\mathbb{R}+=\{t\in \mathbb{R}|t>0\}$ , and

$P(u, a)=\{f_{1}(a)-f_{2}(a)-c_{1}+(c_{1}+c_{2})u\}u(1-u)$ ,

$F(u, a)=f_{1}(a)u+\{f_{2}(a)-(c_{1}+c_{2})u\}(1-u)$ .

The unknown functions in (P) are the androgen concentration $a$ , the volume fraction of AD cells
$u$ , the advection velocity of the cancer cells $v$ , the radius of the tumor $R$ , and the treatment state
$S$ . Since we regard the prostate tumor as a densely packed radially symmetric three dimensional
sphere, the unknowns $u$ and $v$ are radially symmetric functions with radial variable $\rho.$

Positive parameters $a_{*},$ $\gamma,$ $c_{1},$ $c_{2},$ $r_{0}$ , and $r_{1}$ denote the normal androgen concentration, the
reaction velocity, the effective competition coefficient from AD to AI cells, and from AI to AD
cells, the lower and upper thresholds, respectively.

Here we remark that the condition of $S$ in (P) is a concise form. Indeed, the feature (i) is
formulated precisely as follows: $S(t)\in\{0$ , 1 $\}$ and

$S(t)=\{\begin{array}{ll}\{0, 1\}\backslash \lim_{\tau\uparrow t}S(\tau) if [Case]hm S(\tau) otherwise.\tau\uparrow t \end{array}$

We will state our previous result in [11]. To begin with, let $f_{1}$ : $[0, a_{*}]arrow \mathbb{R}$ and $f_{2}$ : $[0, a_{*}]arrow$

$\mathbb{R}$ satisfy

(AO) $\{\begin{array}{ll}f_{1}(a_{*})>0, f_{1}(0)<0, f_{1}\in C^{1}([0, a_{*} f_{1}’>0 in [0, a_{*}],f_{2}(0)>0, f_{2}\in C^{1}([0, a_{*}]) , f_{2}’\leq 0 in [0, a_{*}],\end{array}$
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(A1)

(A2)

$fi(a_{*})-f_{2}(a_{*})-c_{1}>0,$

$f_{1}(0)-f_{2}(0)+c_{2}>0.$

Remark that (AO) is a natural assumption in the clinical point of view. We considered the initial
data $(u0, R_{0}, a_{0}, S_{0})$ satisfying the following:

(IC) $\{\begin{array}{l}u_{0}\in C^{2+\alpha}(B_{1}) , \partial_{\rho}u_{0}(0)=\partial_{\rho}u_{0}(1)=0, 0\leq u_{0}\leq 1,u_{0}(\rho)\not\equiv 0, u_{0}(\rho)\not\equiv 1, 0<a_{0}<a_{*}, R_{0}>0, S_{0}\in\{0, 1 \},\end{array}$

where $0<\alpha<1$ , and $B_{1}$ $:=\{x\in \mathbb{R}^{3}||x|<1\}$ . Under these setting, we obtained the following
result:

Theorem 1.1. Assume that $f_{i}$ and $c_{i}$ satisfy (AO), (A1), and (A2). Let $S_{0}=0$ and $(u0, R_{0}, a_{0})$

satisfy (IC) and $u_{0}>$ O. Then, for a suitable pair $(r_{0}, r_{1})$ with $0<r_{0}\leq R_{0}<r_{1}<\infty_{f}$ the
system (P) has a unique classical solution $(u, v, R, a, S)$ satisfying the following:

(i) $(u, v, R, a)\in c^{2+\alpha,1+\alpha/2}(B_{1}\cross \mathbb{R}_{+})\cross(c^{1+\alpha,\alpha/2}(B_{1}\cross \mathbb{R}_{+})\cap C^{1}(B_{1}\cross \mathbb{R}_{+}))\cross C^{1}(\mathbb{R}_{+})\cross$

$C^{0,1}(\mathbb{R}_{+})$ ;

(ii) There exists a strictly monotone increasing sequence $\{t_{j}\}_{j=0}^{\infty}$ with $t_{0}=0$ and $t_{j}arrow\infty$ as
$jarrow\infty$ such that, for any $j\in \mathbb{N}\cup\{0\},$ $a\in C^{1}((t_{j}, t_{j+1}))$ and

$S(t)=\{\begin{array}{l}0 in [t_{2j}, t_{2j+1}) ,1 in [t_{2j+1}, t_{2j+2}) ;\end{array}$

(iii) There exist positive constants $C_{1}<C_{2}$ such that the solution $R(t)$ satisfies

$C_{1}\leq R(t)\leq C_{2}$ for any $t\geq 0.$

In the clinical point of view, Theorem 1.1 means that, if a patient has the prostate tumor with
the properties corresponding to (AO), (A1), and (A2), then we can set appropriate thresholds
$r_{0}$ and $r_{1}$ such that the IAS therapy will be successful on the patient.

Since we considered only the case with $S_{0}=0$ in [11], we are interested in the following
problem:

Problem 1.1. Does there exist a ‘Switching solution” of (P) with appropriate thresholds $0<$

$r0<r_{1}<\infty$ and $S_{0}=1$ ? Moreover what is the dynamical aspect of the switching solution?

In order to give an answer to Problem 1.1, we impose the following assumption on $u_{0}$ :

(1.1) $\min_{\rho\in[0,1]}u_{0}(\rho, t)>\frac{c_{1}+c_{2}}{g(0)+c_{1}+2c_{2}}.$

Then we obtain the following result:

Theorem 1.2. Assume that $f_{i}$ and $c_{i}$ satisfy (AO), (A1), and (A2). Let $S_{0}=1$ and $(u_{0}, R_{0}, a_{0})$

satisfy (IC) and (1.1). Then, for a suitable pair $(r_{0}, r_{1})$ with $0<r_{0}<R_{0}\leq r_{1}<\infty$ , the system
(P) has a unique classical solution $(u, v, R, a, S)$ satisfying the following:
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(i) $(u, v, R, a)\in c^{2+\alpha,1+\alpha/2}(B_{1}\cross \mathbb{R}_{+})\cross(c^{1+\alpha,\alpha/2}(B_{1}\cross \mathbb{R}_{+})\cap C^{1}(B_{1}\cross \mathbb{R}_{+}))\cross C^{1}(\mathbb{R}_{+})\cross$

$C^{0,1}(\mathbb{R}_{+})$ ;

(ii) There exists a strictly monotone increasing sequence $\{t_{j}\}_{j=0}^{\infty}$ with $t_{0}=0$ and $t_{j}arrow\infty$ as
$jarrow\infty$ such that, for any $j\in N\cup\{0\},$ $a\in C^{1}((t_{j}, t_{j+1}))$ and

$S(t)=\{\begin{array}{l}1 for t\in[t_{2j}, t_{2j+1}),0 for t\in[t_{2j+1}, t_{2j+2});\end{array}$

(iii) There exist positive constants $K_{1}<K_{2}$ such that the solution $R(t)$ satisfies

$K_{1}\leq R(t)\leq K_{2}$ for any $t\geq 0.$

Theorem 1.2 means that, if a prostate tumor has the properties corresponding to $(AO)-$

(A2) and (1.1), then we can start the IAS therapy with the medication by setting appropriate
thresholds $0<r_{0}<r_{1}<\infty$ . Moreover, then the IAS therapy will be successful on the patient.

Thus we hope that the results give a guideline for the patient who will be treated by the
IAS therapy. On the other hand, our assumptions are written in terms of the properties of the
tumor, namely, net grows rate and competition coefficients. Therefore we also hope that the
result can be utilized for judging whether the IAS therapy is applicable for the patient or not.

In the clinical point of view, it is important to keep the size of tumor as small as possible.
We state the difference between Theorem 1.1 and Theorem 1.2:

Corollary 1.1. Assume that $f_{i}$ and $c_{i}$ satisfy (AO), (A1), and (A2). Let $(u_{0}, R_{0}, a_{0}, S_{0})$ satisfy
(IC), and

(1.2) $\min_{\rho\in[0,1]}u_{0}(\rho)\geq\max\{1-\frac{1}{2}\frac{9(0)+c_{2}}{g(0)+c_{1}+2c_{2}}, \frac{-g(0)+c_{1}+c_{2}}{2(c_{1}+c_{2})}\}.$

Then, for a suitable pair $(r_{0}, r_{1})$ with $0<r_{0}<r_{1}<\infty$ , there exists a unique classical solution
$(u, v, R, a, S)$ of (P) satisfying the following: There exist positive constants $K_{1}\leq C_{1}<C_{2}\leq K_{2}$

such that, for $t\geq 0$ , the solution $R(t)$ satisfies

$\{\begin{array}{ll}K_{1}\leq R(t)\leq K_{2} if S_{0}=0,C_{1}\leq R(t)\leq C_{2} if S_{0}=1.\end{array}$

Remark that

$\frac{c_{1}+c_{2}}{g(0)+c_{1}+2c_{2}}\leq\max\{1-\frac{1}{2}\frac{g(0)+c_{2}}{g(0)+c_{1}+2c_{2}}, \frac{-g(0)+c_{1}+c_{2}}{2(c_{1}+c_{2})}\}.$

Thus the assumption (1.2) includes the assumption (1.1). Corollary 1.1 means that if we set
$S_{0}=1$ , a patient having the prostate tumor with the properties corresponding to (AO), (A1),
(A2), (1.1), and (1.2) may keep the radius of the tumor $R$ small in comparison to the case of
$S_{0}=0.$
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2 Dynamical aspect of switching solutions

The purpose of this section is to prove the existence of a switching solution of (P) and give its
property.

Throughout this section, we assume (AO), (A1), and (A2). Remark that (A1) and (A2) are
respectively written as $g(a_{*})-c_{1}>0$ and $g(0)+c_{2}>0$ , where $g(z)$ $:=f_{1}(z)-f_{2}(z)$ . Moreover,
we consider the initial data $(u_{0}, R_{0}, a_{0}, S_{0})$ satisfying (IC) and (1.1).

From now on, we denote by $C^{2\kappa+\alpha,\kappa+\beta}(Q_{T})(\kappa\in \mathbb{N}\cup\{0\}, 0<\alpha<1,0<\beta<1)$ Holder
space on QT (for the precise definition, see [5]).

In order to prove Theorem 1.2, we have to construct a short time existence of (P). In [11],
we have proved the following:

Theorem 2.1. Let $(u_{0}, R_{0}, a_{0}, S_{0})$ be an initial data satisfying (IC). Then there exists $T>0$
such that the system (P) has a unique solution $(u, v, R, a, S)$ satisfying $S(t)=S_{0}$ in $[0, T$) and

$(u, v, R, a)\in C^{2+\alpha,1+\alpha/2}(Q_{T})\cross(C^{1+\alpha,\frac{\alpha}{2}}(Q_{T})\cap C^{1}(Q_{T}))\cross C^{1}([0, T))\cross C^{1}([0, T))$ ,

where QT $:=B_{1}\cross[0, T$).

We shall prove Theorem 1.2 by employing the function $a$ describing a concentration of
androgen, as a parameter instead of the time valuable $t$ . We characterize the time variable in
terms of $a$ under $S=1$ . Indeed, recalling $f_{1}’>0$ , let us define a function $\tau_{1}$ : $(0, f_{1}(a_{*})-$

$f_{1}(0))arrow \mathbb{R}$ as

(2.1) $a(\tau_{1}(\delta))=f_{1}^{-1}(f_{1}(0)+\delta)$ .

Note that, since $a(t)\downarrow 0$ as $tarrow\infty$ under $S=1,$ $\delta\downarrow 0$ is equivalent to $\tau_{1}(\delta)arrow\infty.$

From now on, for a function $h:[0, a_{*}]arrow \mathbb{R}$ , we denote $1h\Vert_{\infty}$ by

(2.2) $\Vert h\Vert_{\infty} := \sup |h(z)|.$

$z\in[0,a_{*}]$

Set

$V_{1}(t):= \int_{0}^{1}u(\rho, t)\rho^{2}d\rho.$

In the following, we state several lemmas without proof. For the proof of the lemmas, see [11].

Lemma 2.1. Let $(u_{0}, R_{0}, a_{0}, S_{0})$ satisfy (IC). Suppose that there exist constants

(2.3) $A \in(\frac{c_{1}+c_{2}}{g(a_{*})+c_{1}+2c_{2}},1)$ and $\kappa\in(0,a_{*})$

such that for a pair $(\tilde{\delta}_{0},\tilde{\delta}_{1})$ with $0<\tilde{\delta}_{1}<\tilde{\delta}_{0}<f_{1}(a_{*})-f_{1}(O)$ the solution $(u, v, R, a, S)$ of (P)
satisfies

(2.4) $\min u(\rho, \tau_{1}(\tilde{\delta}_{0}))\geq A,$

$\rho\in[0,1]$

(2.5) $a(\tau_{1}(\tilde{\delta}_{0}))\geq\kappa,$

(2.6) $S(\tau_{1}(\delta))\equiv 1$ $in$ $(\tilde{\delta}_{1},\tilde{\delta}_{0}].$

Then there exists a monotone increasing function $\Gamma_{1}(\delta;A, \kappa)\in C([O, f_{1}(a_{*})-f_{1}(O)])$ with
$\Gamma_{1}(s;A, \kappa)\downarrow 0$ as $s\downarrow 0$ such that

$u( \cdot, \tau_{1}(\delta))\geq\max\{\min_{\rho\in[0,1]}u(\rho, \tau_{1}(\tilde{\delta}_{0}))$ , $1-\Gamma_{1}(\delta;A, \kappa)\}$ $in$ $[\tilde{\delta}_{1}, \tilde{\delta}_{0}].$
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Lemma 2.2. Let $(u0, R_{0}, a_{0}, S_{0})$ satisfy (IC). Suppose that there exist constants $A$ and $\kappa$ with
(2.3) such that for a pair $(\tilde{\delta}_{0},\tilde{\delta}_{1})$ with $0<\tilde{\delta}_{1}<\tilde{\delta}_{0}<f_{1}(a_{*})-f_{1}(O)$ the solution $(u, v, R, a, S)$ of
(P) satisfies (2.4), (2.5), (2.6),

(2.7) $a(\tau_{1}(\tilde{\delta}_{1}))\leq f_{1}^{-1}(0)$ ,

and

(2.8) $\min_{\rho\in[0_{)}1]}u(\rho, \tau_{1}(\tilde{\delta}_{1}))\geq\frac{-g(0)+c_{1}+c_{2}}{2(c_{1}+c_{2})}.$

Then there $ex’\iota sts$ a positive constant $\tilde{\delta}\in[\tilde{\delta}_{1}, \min\{\tilde{\delta}_{0}, -f_{1}(O)\}]$ such that

$\frac{dR}{dt}(\tau_{1}(\delta))<0$ $in$ $[\tilde{\delta}_{1}, \tilde{\delta}].$

Lemma 2.3. Let $(u_{0}, R_{0}, a_{0}, S_{0})$ satisfy (IC). Assume that there exists a pair $(\tilde{\delta}_{0},\tilde{\delta}_{1})$ with
$0<\tilde{\delta}_{1}<\tilde{\delta}_{0}<f_{1}(a_{*})-f_{1}(O)$ such that the solution $(u, v, R, a, S)$ of (P) satisfies (2.6) and

(2.9) $\min_{\rho\in[0,1]}u(\rho, \tau_{1}(\tilde{\delta}_{0}))>\frac{c_{1}+c_{2}}{g(0)+c_{1}+2c_{2}}.$

Then, for $(u(\cdot, \tau_{1}(\tilde{\delta}_{0})), a(\tau_{1}(\tilde{\delta}_{0})))$ , there exist functions

$\Psi^{-}(\delta):=\Psi^{-}(\delta;\omega_{1}, \omega_{2})=\Psi^{-}(\delta;\minu(\rho, \tau_{1}(\tilde{\delta}_{0})), a(\tau_{1}(\tilde{\delta}_{0})))(0, f_{1}(a_{*})-f_{1}(0))arrow \mathbb{R},$

$\rho\in[0,1]$

$\Psi^{+}(\delta):=\Psi^{+}(\delta;\omega_{3}, \omega_{4})=\Psi^{+}(\delta;\minu(\rho, \tau_{1}(\tilde{\delta}_{0})), a(\tau_{1}(\tilde{\delta}_{0})))(0, f_{1}(a_{*})-f_{1}(0))arrow \mathbb{R},$

$\rho\in[0,1]$

satisfying the following:

(i) $\Psi^{-}$ and $\Psi^{+}$ are monotone increasingfunctions defined on $(0, f_{1}(a_{*})-f_{1}(O))$ with $\lim_{\delta\downarrow 0}\Psi^{+}(\delta)=$

$-\infty$ ;

(ii) It holds $that-\infty<\Psi^{-}(\delta)\leq\Psi^{+}(\delta)<\infty$ in $[\tilde{\delta}_{1}, \tilde{\delta}_{0}]$ , in particular,

$R(\tau_{1}(\overline{\delta}_{0}))\exp[\Psi^{-}(\delta)]\leq R(\tau_{1}(\delta))\leq R(\tau_{1}(\tilde{\delta}_{0}))\exp[\Psi^{+}(\delta)]$ $in$ $[\tilde{\delta}_{1}, \tilde{\delta}_{0}].$

Next, we define the time variable in terms of $a$ under $S=0$ by the same manner as in
(2.1). Recalling $f_{1}’>0$ , let us define a function $\tau_{0}:(0, f_{1}(a_{*})-f_{1}(0))arrow \mathbb{R}$ as

(2.10) $a(\tau_{0}(\epsilon))=f_{1}^{-1}(f_{1}(a_{*})-\epsilon)$ .

Note that, since $a(t)\uparrow a_{*}$ as $tarrow oo$ under $S=0,$ $\epsilon\downarrow 0$ is equivalent to $\tau_{0}(\epsilon)arrow\infty.$

Lemma 2.4. Let $(u_{0}, R_{0}, a_{0}, S_{0})$ satisfy (IC). Assume that there exists a pair $(\tilde{\epsilon}_{0},\tilde{\epsilon}_{1})$ with
$0<\tilde{\epsilon}_{1}<\tilde{\epsilon}_{0}<f_{1}(a_{*})-f_{1}(O)$ such that the solution $(u, v, R, a, S)$ of (P) satisfies

(2.11) $S(\tau_{0}(\epsilon))\equiv 0$ $in$ $(\tilde{\epsilon}_{1},\tilde{\epsilon}_{0}].$

Then it holds that

$\min u(\rho, \tau_{0}(\epsilon))\geq\min u(\rho, \tau_{0}(\tilde{\epsilon}_{0}))$ in $[\tilde{\epsilon}_{1}, \tilde{\epsilon}_{0}].$

$\rho\in[0,1] \rho\in[0,1]$
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Lemma 2.5. Let $(u_{0}, R_{0}, a_{0}, S_{0})$ satisfy (IC). Assume that there exists a pair $(\tilde{\epsilon}_{0},\tilde{\epsilon}_{1})$ with
$0<\tilde{\epsilon}_{1}<\tilde{\epsilon}0<f_{1}(a_{*})-f_{1}(O)$ such that the solution $(u, v, R, a, S)$ of (P) satisfies (2.11) and

(2.12) $\min_{\rho\in[0,1]}u(\rho, \tau_{0}(\tilde{\epsilon}_{0}))\geq\frac{-\frac{1}{2}f_{1}(a_{*})+g(a_{*})+c_{1}+c_{2}}{g(a_{*})+c_{1}+2c_{2}},$

(2.13) $a( \tau_{0}(\tilde{\epsilon}_{1}))\geq f_{1}^{-1} (\frac{1}{2}f_{1}(a_{*}))$ .

Then it holds that

$\frac{dR}{dt}(\tau_{0}(\epsilon))>0$ $in$ $[ \tilde{\epsilon}_{1}, \min\{\tilde{\epsilon}_{0}, \frac{1}{2}f_{1}(a_{*})\}].$

Lemma 2.6. Let $(u_{0}, R_{0}, a_{0}, S_{0})$ satisfy (IC). Suppose that there exists a pair $(\tilde{\epsilon}_{0},\tilde{\epsilon}_{1})$ with
$0<\tilde{\epsilon}_{1}<\tilde{\epsilon}0<f_{1}(a_{*})-f_{1}(O)$ such that the solution $(u, v, R, a, S)$ of (P) satisfies (2.11). Then,

for $(u(\cdot, \tau_{0}(\tilde{\epsilon}_{0})), a(\tau_{0}(\tilde{\epsilon}_{0})))$ , there exist functions
$\Phi^{-}(\epsilon):=\Phi^{-}(\epsilon;\sigma_{1}, \sigma_{2})=\Phi^{-}(\epsilon;V_{1}(\tau_{0}(\tilde{\epsilon}_{0})), a(\tau_{0}(\tilde{\epsilon}_{0}))):(0, f_{1}(a_{*})-f_{1}(0))arrow \mathbb{R},$

$\Phi^{+}(\epsilon):=\Phi^{+}(\epsilon;\sigma_{3}, \sigma_{4})=\Phi^{+}(\epsilon;V_{1}(\tau_{0}(\tilde{\epsilon}_{0})), a(\tau_{0}(\tilde{\epsilon}_{0}))):(0, f_{1}(a_{*})-f_{1}(0))arrow \mathbb{R},$

satisfying the following:

(i) $\Phi^{-}$ is a monotone decreasing function with $\lim_{\epsilon\downarrow 0}\Phi^{-}(\epsilon)=\infty$ ;

(ii) It holds $that-\infty<\Phi^{-}(\epsilon)\leq\Phi^{+}(\epsilon)<\infty$ in $[\tilde{\epsilon}_{1}, \tilde{\epsilon}_{0}]$ , in particular,

$R(\tau_{0}(\tilde{\epsilon}_{0}))\exp[\Phi^{-}(\epsilon)]\leq R(\tau_{0}(\epsilon))\leq R(\tau_{0}(\tilde{\epsilon}_{0}))\exp[\Phi^{+}(\epsilon)]$ $in$ $[\tilde{\epsilon}_{1}, \tilde{\epsilon}_{0}].$

We are in a position to the prove Theorem 1.2.

Proof of Theorem 1.2.
We prove Theorem 1.2 by a modification of that in [11].

[Step 1] The key of the proof is to construct “comparison functions” of $R(t)$ . Thus we start
the proof with preparation for the construction.

Let $(u_{0}, R_{0}, a_{0}, S_{0})$ satisfy (IC) and (1.1). To begin with, using the functions derived in
Lemma 2.6, we define the functions $M^{\pm}$ : $(0, f_{1}(a_{*})-f_{1}(0))arrow \mathbb{R}$ as follows:

(2.14) $\{\begin{array}{l}M^{-}(\epsilon):= \inf \Phi^{-}(\epsilon;\sigma_{1}, \sigma_{2}) ,(\sigma_{1},\sigma_{2})\in \mathcal{M}M^{+}(\epsilon):= \sup \Phi^{+}(\epsilon;\sigma_{3}, \sigma_{4}) ,(\sigma_{3},\sigma_{4})\in \mathcal{M}\end{array}$

where

$\mathcal{M} :=\{(x_{1}, x_{2})\in \mathbb{R}^{2}|A_{0}\leq 3x_{1}\leq 1, 0\leq x_{2}\leq f_{1}^{-1}(0)\},$

with

(2.15) $A_{0} := \max\{\frac{c_{1}+c_{2}}{g(0)+c_{1}+2c_{2}}, \frac{-g(0)+c_{1}+c_{2}}{2(c_{1}+c_{2})}, -\frac{1}{2}f_{1}(a_{*})+g(a_{*})+c_{1}+c_{2}g(a_{*})+c_{1}+2c_{2}\}\cdot$

On the other hand, making use of the functions given by Lemma 2.3, we define $L^{\pm}$ :
$(0, f_{1}(a_{*})-f_{1}(0))arrow \mathbb{R}$ as follows:

(2.16) $\{\begin{array}{l}L^{-}(\delta):= \inf \Psi^{-}(\delta;\omega_{1}, \omega_{2}) ,(\omega_{1},\omega_{2})\in \mathcal{L}L^{+}(\delta):= \sup \Psi^{+}(\delta;\omega_{3}, w_{4}) ,(\omega_{3},\omega_{4})\in \mathcal{L}\end{array}$
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where

$\mathcal{L} :=\{(x_{1}, x_{2})\in \mathbb{R}^{2}|\min_{\rho\in[0,1]}u_{0}(\rho)\leq x_{1}\leq 1, \kappa_{1}\leq x_{2}\leq a_{*}\},$

with

(2.17) $\kappa_{1} :=\min\{a_{0}, f_{1}^{-1}(\frac{1}{2}f_{1}(a_{*}))\}.$

Indeed $M^{\pm}$ and $L^{\pm}$ are given by

$M^{-}( \epsilon)=-\frac{c_{1}+c_{2}}{3(g(a_{*})+c_{2})}\log[1+(1-A_{0})[\frac{a_{*}-f_{1}^{-1}(f_{1}(a_{*})-\epsilon)}{a_{*}-f_{1}^{-1}(0)}]^{\frac{g(a.)}{\gamma}arrow c}+]$

$- \frac{1}{3}\frac{c_{1}+c_{2}}{g(a_{*})+c_{2}}(1-A_{0})+\frac{f_{1}(a_{*})}{3\gamma}\log(\frac{a_{*}-f_{1}^{-1}(0)}{a_{*}-f_{1}^{-1}(f_{1}(a_{*})-\epsilon)})$

$- \frac{1}{3}\frac{g(a_{*})+c_{1}+c_{2}}{g(a_{*})-c_{1}}\log[1+[\frac{1}{A_{0}}-1]\exp[\frac{a_{*}}{\gamma}\Vert g’\Vert_{\infty}]]-\frac{a_{*}}{3\gamma}\Vert f_{1}’\Vert_{\infty},$

(2.18) $M^{+}( \epsilon)=\frac{1}{3}\frac{c_{1}+c_{2}}{g(a_{*})-c_{1}}\log(1+(\frac{1}{A_{0}}-1)\exp[\frac{a_{*}}{\gamma}\Vert g’\Vert_{\infty}])$

$+ \frac{f_{1}(a_{*})}{3\gamma}\log(\frac{a_{*}}{a_{*}-f_{1}^{-1}(f_{1}(a_{*})-\epsilon)})$ ,

(2.19) $L^{-}( \delta)=-\frac{1}{C_{L}}+\frac{1}{C_{L}}[\frac{f_{1}^{-1}(f_{1}(0)+\delta)}{a_{*}}]^{\frac{g(0)+c}{\gamma+}}\log[\frac{f_{1}^{-1}(f_{1}(0)+\delta)}{a_{*}}]^{-\succ_{\gamma}}-f(0)$

$L^{+}( \delta)=\frac{3}{2}\frac{1}{C_{L}^{2}}\frac{(g(0)+c_{2})(c_{1}+c_{2})}{(g(a_{*})+c_{1}+c_{2})^{2}}+\frac{-f_{1}(0)}{3\gamma}\log(\frac{f_{1}^{-1}(f_{1}(0)+\delta)}{\kappa_{1}})+\frac{a}{\gamma}*\Vert f_{1}’\Vert_{\infty},$

where

$C_{L}:=3( \frac{1}{1-\min_{\rho\in[0,1]}u_{0}(\rho)}-\frac{g(0)+c_{1}+2c_{2}}{g(0)+c_{2}})\frac{g(0)+c_{2}}{g(a_{*})+c_{1}+c_{2}}.$

[Step 2] Let us fix an upper threshold $r_{1}\in[R_{0}, \infty$ ) arbitrarily. We shall show that, for a
suitable $r_{0}\in(0, R_{0})$ , the following holds: if there exists a time $t^{*}$ such that

(2.20) $R(t^{*})=r_{0}, f_{1}(a(t^{*}))< \frac{1}{2}f_{1}(a_{*}) , \lim_{t\uparrow t}S(t)=1, S(t^{*})=0,$

and

(2.21) $\min_{\rho\in[0,1]}u(\rho, t^{*})>\frac{-\frac{1}{2}f_{1}(a_{*})+g(a_{*})+c_{1}+c_{2}}{g(a_{*})+c_{1}+c_{2}},$

then, there exists a time $t_{*}>t^{*}$ such that

(2.22) $R(t_{*})=r_{1}, f_{1}(a(t_{*})) \geq\frac{1}{2}f_{1}(a_{*}) , \lim_{t\uparrow t}S(t)=0, S(t_{*})=1.$

Let $\epsilon_{0}:=f_{1}(a_{*})-f_{1}(a(t^{*}))$ , i.e., $a(\tau_{0}(\epsilon_{0}))=a(t^{*})$ . Remark that (2.20) implies

(2.23) $\epsilon_{0}>\frac{1}{2}f_{1}(a_{*})$ .
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Here we claim that there exists a constant $\beta_{1}\in(0, \epsilon_{0})$ such that

(2.24) $R(\tau_{0}(\beta_{1}))=r_{1}$ and $R(\tau_{0}(\epsilon))>r_{1}$ in $(\beta_{1}, \epsilon_{0}$ ].

Suppose not $R(\tau_{0}(\epsilon))\neq r_{1}$ for any $\epsilon\in(0, \epsilon_{0})$ . Then the assumptions (2.20) and (2.21) indicate
that Lemma 2.6 holds for $\tilde{\epsilon}_{0}=\epsilon_{0}$ and $\tilde{\epsilon}_{1}=0$ , and then

$R(\tau_{0}(\epsilon))arrow\infty$ as $\epsilon\downarrow 0.$

This is a contradiction. Thus (2.24) holds.
Let $r_{0}\in(0, R_{0})$ satisfy

(2.25) $r_{0} \leq R_{0}\exp[-M^{+}(\frac{1}{2}f_{1}(a_{*}))].$

Here we note that (2.18) yields $M^{+}( \frac{1}{2}f_{1}(a_{*}))>0$ . By (2.24) and (2.25), we have

$r_{1}\leq r_{0}\exp[M^{+}(\beta_{1})]$

$\leq R_{0}\exp[M^{+}(\beta_{1})-M^{+}(\frac{1}{2}f_{1}(a_{*}))]\leq r_{1}\exp[M^{+}(\beta_{1})-M^{+}(\frac{1}{2}f_{1}(a_{*}))],$

i.e.,

$M^{+}( \beta_{1})-M^{+}(\frac{1}{2}fi(a_{*}))\geq 0.$

Since the monotonicity of $M^{+}$ yields $\beta_{1}\leq\frac{1}{2}f_{1}(a_{*})$ which is equivalent to

(2.26) $a( \tau_{0}(\beta_{1}))\geq f_{1}^{-1} (\frac{1}{2}f_{1}(a_{*}))$ .

By virtue of (2.21) and (2.26), we are able to apply Lemma 2.5 for $\tilde{\epsilon}_{0}=\epsilon_{0}$ and $\tilde{\epsilon}_{1}=\beta_{1}$ . Then,
recalling (2.23), we see that

(2.27) $\frac{dR}{dt}(a(\tau_{0}(\epsilon)))>0$ in $[ \beta_{1}, \frac{1}{2}f_{1}(a_{*})].$

The definition of $\beta_{1}$ and (2.27) imply that $S(\tau_{0}(\epsilon))$ can be switched from 1 to $0$ at $\epsilon=\beta_{1}.$

Combining this fact with (2.24) and (2.26), we see that (2.22) holds for $t_{*}=\tau_{0}(\beta_{1})$ .

[Step 3] Let us fix an upper threshold $r_{1}\in[R_{0}, \infty$ ) arbitrarily. We shall show that, if there
exists a time $t_{*}$ such that

(2.28) $\min u(\rho, t_{*})\geq\min u_{0}(\rho)$ ,
$\rho\in[0,1] \rho\in[0,1]$

and (2.22) hold, then, for a suitable lower threshold $r_{0}\in(0, R_{0})$ , there exists a time $t^{*}$ such that
(2.20) and (2.21) hold.

Let $\delta_{0}:=f_{1}(a(t_{*}))-f_{1}(0)$ , i.e., $a(\tau_{1}(\delta_{0}))=a(t_{*})$ . Remark that (2.22) implies

(2.29) $\delta_{0}\geq\frac{1}{2}f_{1}(a_{*})-f_{1}(0)$ .

Here we claim that for each $r_{0}\in(0, R_{0})$ , there exists a constant $\beta_{0}\in(0, \delta_{0})$ such that

(2.30) $R(\tau_{1}(\beta_{0}))=r_{0}$ and $R(\tau_{1}(\delta))>r_{0}$ for any $\delta\in(\beta_{0}, \delta_{0}$ ].

Suppose not, $R(\tau_{1}(\delta))\neq r_{0}$ for any $\delta\in(0, \delta_{0})$ . Then the assumptions (1.1), (2.22), and (2.28)
indicate that Lemma 2.3 holds for $\tilde{\delta}_{0}=\delta_{0}$ and $\tilde{\delta}_{1}=0$ , and then

$R(\tau_{1}(\delta))arrow 0$ as $\delta\downarrow 0.$
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Thus we see that (2.30) holds.
Now we define $ri(\delta)$ : $(0, f_{1}(a_{*})-f_{1}(0))arrow \mathbb{R}$ as

$\Gamma_{1}^{*}(\delta):=\Gamma_{1}(\delta;\min u_{0}(\rho), \kappa_{1})$ ,
$\rho\in[0,1]$

where $\Gamma_{1}$ is derived in Lemma 2.1 and $\kappa_{1}$ is given by (2.17). If $\min u_{0}(\rho)<A_{0}$ , where $A_{0}$ is
$\rho\in[0,1]$

defined in (2.15), then it follows from (2.29) and the definition of $\Gamma_{1}^{*}$ that

(2.31) $1- \Gamma_{1}^{*}(\delta_{0})\leq 1-\Gamma_{1}^{*}(\frac{1}{2}f_{1}(a_{*})-f_{1}(0))\leq\min u_{0}(\rho)$ .
$\rho\in[0,1]$

Here we use the estimate $\kappa_{1}\leq f_{1}^{-1}(\frac{1}{2}f_{1}(a_{*}))$ in the second inequality. Since $\Gamma_{1}^{*}$ is monotone
increasing, there exists $\delta_{1}\leq\delta_{0}$ such that

$1-\Gamma i(\delta_{1})=A_{0}.$

From now on, setting

(2.32) $\delta^{*}:=\{\begin{array}{l}\min\{\delta_{1}, -f_{1}(O)\} if \min u_{0}(\rho)<A_{0},\rho\in[0,1]-fi(0) if \min u_{0}(\rho)\geq A_{0},\rho\in[0,1]\end{array}$

we let the lower threshold $r_{0}$ satisfy

(2.33) $r_{0}\leq R_{0}\exp[L^{-}(\delta^{*})]$

We claim that

(2.34) $\sqrt{}0\leq\delta^{*}\leq-f_{1}(0)<\delta_{0}.$

Indeed, since (1.1) and (2.28) imply that $u(\rho, \tau_{1}(\delta_{0}))$ satisfies (2.9), Lemma 2.3 can be applied
for $\delta_{0}=\delta_{0}$ and $\delta_{1}=\beta_{0}$ . Thus we observe from (2.33) that

$r_{1}\exp[L^{-}(\sqrt{}0)]\leq R(\tau_{1}(\sqrt{}0))=r_{0}\leq r_{1}\exp[L^{-}(\delta^{*})].$

Then the monotonicity of $L^{-}$ yields $\sqrt{}0\leq\delta^{*}$ Moreover recalling the definition of $\delta^{*}$ and (2.29),
we have $\delta^{*}\leq-f_{1}(0)<\delta_{0}$ . Thus, we obtain the relation (2.34).

Here we show that

(2.35) $\min u(\rho, \tau_{1}(\delta))>A_{0}$ in $[\sqrt{}0, \delta^{*}].$

$\rho\in[0,1]$

Recalling that (1.1) and (2.28) yield (2.4) with $A= \min u_{0}$ , we verify that Lemma 2.1 can be
$\rho\in[0,1]$

applied for $\tilde{\delta}_{0}=\delta_{0}$ and $\tilde{\delta}_{1}=\beta_{0}$ . Then, for any $\delta\in[\sqrt{}0, \delta_{0}],$

(2.36) $\min_{\rho\in[0,1]}u(\rho, \tau_{1}(\delta))\geq\max\{$
$\min_{\rho\in[0,1]}u(\rho, \tau_{1}(\delta_{0}))$

, $1- \Gamma_{1}(\delta;\min_{\rho\in[0,1]}u_{0}(\rho), f_{1}^{-1}(\frac{1}{2}f_{1}(a_{*})))\}.$

Thus it is sufficient to show that the right-hand side in (2.36) is bounded from below by $A_{0}.$

Indeed, if $\min u_{0}\geq A_{0}$ , then it follows from (1.1) and (2.28) that
$\rho\in[0,1]$

$\min u(\rho, \tau_{1}(\delta_{0}))\geq A_{0}.$

$\rho\in[0,1]$
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On the other hand, if $\min u_{0}(\rho)<A_{0}$ , the monotonicity of $\Gamma_{1}^{*}$ and (2.34) yield that
$\rho\in[0,1]$

$1- \Gamma_{1}(\delta;\min u_{0}(\rho), f_{1}^{-1}(\frac{1}{2}f_{1}(a_{*})))\geq1-\Gamma_{1}^{*}(\delta)\geq 1-\Gamma_{1}^{*}(\delta^{*})\geq A_{0}$ in $[\beta_{0}, \delta^{*}].$

$\rho\in[0,1]$

Hence we get (2.35). Setting $t^{*}=\tau_{1}(\sqrt{}0)$ , we see that (2.35) implies (2.21).
Finally, we turn to the proof of (2.20) with $t^{*}=\tau_{1}(\beta_{0})$ . To begin with, we prove that

(2.37) $\frac{dR}{dt}(\tau_{1}(\delta))<0$ in $[\beta_{0}, \delta^{*}].$

It follows from (2.34) and the definition of $\tau_{1}$ that $a(\tau_{1}(\beta_{0}))\leq f_{1}^{-1}(0)$ . Combining the fact

with (2.35), we can apply Lemma 2.2 for $\tilde{\delta}_{0}=\delta_{0}$ and $\tilde{\delta}_{1}=\beta_{0}$ . Thus we obtain (2.37). Therefore
$S$ switches from 1 to $0$ at the time $\tau_{1}(\beta_{0})$ . Moreover, since $f_{1}(a(\tau_{1}(\beta_{0})))\leq 0$ and $f_{1}(a_{*})>0$ , we
can easily check that (2.20) holds for $t^{*}=\tau_{1}(\sqrt{}0)$ .

[Step 4] We shall prove that, for a suitable pair $(r_{0}, r_{1})$ , the system (P) has a unique solution
with the property (ii) in Theorem 1.2. In the following, we let $r_{1}\in[R_{0}, \infty$ ) and let $r_{0}$ satisfy

(2.38) $r_{0}< \min\{R_{0}\exp[-M^{+} (\frac{1}{2}f_{1}(a_{*}))], R_{0}\exp[L^{-}(\delta^{*})]\}.$

To begin with, we claim that the solution $(u, R, a, S)$ , starting from the initial data $(u_{0}, R_{0}, a_{0}, S_{0})$

with $S_{0}=1$ , (IC), and (1.1), satisfies the following: (i) There exists $t_{1}>0$ such that $S$ is switched
from 1 to $0$ at $t=t_{1}$ ; (ii) The solution $(u, R, a, S)$ satisfies (2.20) and (2.21) with $t^{*}=t_{1}$ . In
Step 3, we set $t_{*}=0$ and replace (2.22) and (2.28) to

(2.39) $R(O)=R_{0}, S(O)=1.$

Let $\delta_{0}’$ $:=f_{1}(a_{0})-f_{1}(0)$ , i.e., $a(\tau_{1}(\delta_{0}’))=a_{0}$ . Then the same argument as in Step 3 yields that
there exists $\beta_{0}’\in(0, \delta_{0}’)$ such that

$R(\tau_{1}(\beta_{0}’))=r_{0}$ and $R(\tau_{1}(\delta))>r_{0}$ in $(\beta_{0}’, \delta_{0}’$ ].

Here we claim that $\delta^{*}\geq\beta_{0}’$ . Indeed, since we can apply Lemma 2.3 for $\tilde{\delta}_{0}=\delta_{0}’$ and $\tilde{\delta}_{1}=\sqrt{}’0,$

we infer from (2.38) that

$R_{0}\exp[L^{-}(\beta_{0}’)]\leq R(\tau_{1}(\beta_{0}’))=r_{0}\leq R_{0}\exp[L^{-}(\delta^{*})].$

Then the monotonicity of $L^{-}$ yields $\delta^{*}\geq\beta_{0}’.$

Next we show that (2.21) holds for $t^{*}=\tau_{1}(\beta_{0}’)$ . Indeed, recalling Lemma 2.1 can be applied

for $\tilde{\delta}_{0}=\delta_{0}’$ and $\tilde{\delta}_{1}=\beta_{0}’$ , it follows from the same argument as in Step 3 that

(2.40) $u(\rho, \tau_{1}(\delta))\geq A_{0}$ in $[ \sqrt{}’0, \min\{\delta_{0}’, \delta^{*}\}].$

Finally, it follows from $\delta^{*}\geq\beta_{0}’$ and (2.40), that Lemma 2.2 can be applied for $\tilde{\delta}_{0}=\delta_{0}’$ and
$\tilde{\delta}_{1}=\beta_{0}’$ . Then we see that

$\frac{dR}{dt}(\tau_{1}(\beta_{0}’))<$ O.

Therefore $S$ switches from 1 to $0$ at the time $\tau_{1}(\beta_{0}’)$ . Moreover (2.20) holds for $t^{*}=\tau_{1}(\beta_{0}’)$ .
Indeed, we have

$fi(a( \mathcal{T}_{1}(\beta_{0}’)))\leq f_{1}(a(\tau_{1}(\delta^{*})))\leq f_{1}(a(\mathcal{T}_{1}(-f_{1}(0))))=0<\frac{1}{2}f_{i}(a_{*})$ .
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By virtue of Step 2, we see that there exists a time $t_{2}>t_{1}$ such that $S$ switches from $0$ to 1
at $t=t_{2}$ . Since we observe from Lemma 2.1 that

$\min u(\rho, t_{1})\geq\min u_{0}(\rho)$ ,
$\rho\in[0,1] \rho\in[0,1]$

Lemma 2.4 indicates that $u$ satisfies (2.28) with $t_{*}=t_{2}.$

Step 3 asserts that there exists a time $t_{3}>t_{2}$ such that $S$ switches from 1 to $0$ at $t=t_{3}.$

Moreover the solution $(u, R, a, S)$ satisfies (2.20) and (2.21) at $t^{*}=t_{3}$ . Therefore we can prove
the property (ii) in Theorem 1.2 inductively.

[Step 5] Finally we prove the property (i) in Theorem 1.2. By the property (ii), we obtain the
time sequence $\{t_{j}\}_{j=0}^{\infty}$ . We define sequences $\{\delta_{0}^{2j}\}_{j=0}^{\infty},$ $\{\epsilon_{0}^{2j+1}\}_{j=0}^{\infty}$ , and $\{\sqrt{}j\}_{j=0}^{\infty}$ inductively. Let
$\delta_{0}^{0}:=f_{1}(a_{0})-f_{1}(0)$ , i.e., $\tau_{1}(\delta_{0}^{0})=t_{0}=0$ . Set

(2.41) $\beta_{0} :=f_{1}(a(t_{1}))-f_{1}(0)$ .

By the definition of $\tau_{1}$ , the relation (2.41) is equivalent to $a(\tau_{1}(\beta_{0}))=a(t_{1})$ . We set

$\epsilon_{0}^{1}:=f_{1}(a_{*})-f_{1}(0)-\beta_{0}.$

The definitions of $\tau_{0}$ and $\tau_{1}$ yield $a(\mathcal{T}_{0}(\epsilon_{0}^{1}))=a(\tau_{1}(\sqrt{}0))$ . Since $a$ is monotone in $[0, t_{1}]$ , it holds
that $\tau_{1}(\beta_{0})=t_{1}=\tau_{0}(\epsilon_{0}^{1})$ . Next we set

(2.42) $\sqrt{}1:=fi(a_{*})-f_{1}(a(t_{2}))$ ,

(2.43) $\delta_{0}^{2} :=f_{1}(a_{*})-f_{1}(0)-\sqrt{}1.$

Then we observe from (2.42) and (2.43) that $a(\tau_{0}(\beta_{1}))=a(t_{2})$ and $a(\tau_{1}(\delta_{0}^{2}))=a(\tau_{0}(\beta_{1}))$ . The
monotonicity of $a$ in $[t_{1}, t_{2}]$ gives us the relation $\tau_{0}(\beta_{1})=\tau_{1}(\delta_{0}^{2})$ . Along the same manner as
above, we define inductively $\epsilon_{0}^{2j-1},$ $\delta_{0}^{2j}$ , and $\sqrt{}j$ for each $j\geq 2$ as follows:

$\sqrt{}j:=\{\begin{array}{ll}f_{1}(a(t_{j+1}))-f_{1}(O) if j is even,f_{1}(a_{*})-f_{1}(a(t_{j+1})) if j is odd,\end{array}$

$\epsilon_{0}^{2j-1}:=f_{1}(a_{*})-f_{1}(0)-\beta_{2j-2},$

$\delta_{0}^{2j}:=fi(a_{*})-f_{1}(0)-\beta_{2j-1}.$

We note that the monotonicity of $a$ in each interval $[t_{j}, t_{j+1}]$ for $j\in \mathbb{N}U\{O\}$ implies that
$\tau_{1}(\sqrt{}2j-2)=\tau_{0}(\epsilon_{0}^{2j-1})$ and $\tau_{0}(\beta_{2j-1})=\tau_{1}(\delta_{0}^{2j})$ . $Then_{)}$ it follows from the definitions of the
sequences that, for any $j\in N\cup\{0\},$

(2.44) $R(\tau_{1}(\beta_{2j}))=r_{0},$ $R(t)>r_{0}$ and $S(t)\equiv 1$ on $[\tau_{1}(\delta_{0}^{2j}), \tau_{1}(\beta_{2j})$ ),

(2.45) $R(\tau_{0}(\beta_{2j+1}))=r_{1},$ $R(t)<r_{1}$ and $S(t)\equiv 0$ on $[\tau_{0}(\epsilon_{0}^{2j+1}), \tau_{0}(\beta_{2j+1})$ ).

To begin with, we give the lower and upper bounds of $R$ when $S\equiv 1$ , i.e., in each interval
$[\tau_{1}(\delta_{0}^{2j}), \tau_{1}(\beta_{2j}))$ . Let us fix $j\in \mathbb{N}$ arbitrarily. Then, Lemma 2.3, the monotonicity of $L^{+}$ , and
(2.44) yield that

(2.46) $r_{0}<R(\tau_{1}(\delta))\leq r_{1}\exp[L^{+}(\delta)]\leq r_{1}\exp[L^{+}(\delta_{0}^{2j})]$ on $(\beta_{2j}, \delta_{0}^{2j}].$

On the other hand, by (2.45) and Lemma 2.6, we find

$M^{-}( \beta_{2j-1})\leq\log(\frac{r_{1}}{r_{0}})$
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Since $M^{-}(\epsilon)$ is monotone and diverges to $\infty$ as $\epsilon\downarrow 0$ , there exists a constant $\hat{\epsilon}\in(0, \beta_{2j-1}$ ] being
independent of $j$ such that

$M^{-}( \hat{\epsilon})=\log(\frac{r_{1}}{r_{0}})$

Thereafter, setting

$\hat{\delta}:=fi(a_{*})-f_{1}(0)-\hat{\epsilon},$

we obtain the relation $\hat{\delta}\geq\delta_{0}^{2j}$ Indeed, the relation is followed from

(2.47) $f_{1}(0)+\hat{\delta}=f_{1}(a_{*})-\hat{\epsilon}\geq f_{1}(a_{*})-\beta_{2j-1}=f_{1}(0)+\delta_{0}^{2j}$

Since $j\in \mathbb{N}$ is arbitral, we observe from (2.46) and the relation $\hat{\delta}\geq\delta_{0}^{2j}$ that

(2.48) $r_{0}<R(\tau_{1}(\delta))\leq r_{1}\exp[L^{+}(\hat{\delta})]$ on $(\beta_{2j}, \delta_{0}^{2j}]$

for any $j\in \mathbb{N}$ . Regarding the case of $j=0$ , the relation $R_{0}\leq r_{1}$ and (2.46) imply (2.48) for
$j=0.$

Next, we show the lower and upper bounds of $R$ when $S\equiv 0$ , i.e., in each interval $[\tau_{0}(\epsilon_{0}^{2j+1}), \tau_{0}(\beta_{2j+1})$ ).
Let us fix $j\in \mathbb{N}\cup\{O\}$ arbitrarily. Then, by Lemma 2.6, the monotonicity of $M^{-}$ , and (2.45),
we see that

(2.49) $r_{0}exp[M^{-}(\epsilon_{0}^{2j+1})]\leq r_{0}\exp[M^{-}(\epsilon)]\leq R(\tau_{0}(\epsilon))<r_{1}$ on $(\beta_{2j+1}, \epsilon_{0}^{2j+1}].$

On the other hand, by (2.44) and Lemma 2.3, we find

$\log(\frac{r_{0}}{r_{1}})\leq L^{+}(\beta_{2j})$ .

Since $L^{+}(\delta)$ is monotone and diverges to $-\infty$ as $\delta\downarrow 0$ , there exists a constant $\overline{\delta}\in(0, \beta_{2j}$ ] being
independent of $j$ such that

$L^{+}( \overline{\delta})=\log(\frac{r_{0}}{r_{1}})$

If we set

(2.50) $\overline{\epsilon}:=f_{1}(a_{*})-f_{1}(0)-\overline{\delta},$

then the relation $\overline{\epsilon}\geq\epsilon_{0}^{2j+1}$ holds by a similar argument as in (2.47). Recalling that $j$ is arbitral,
this relation and (2.49) indicate that

(2.51) $r_{0}\exp[M^{-}(\overline{\epsilon})]\leq R(\mathcal{T}_{0}(\epsilon))<r_{1}$ on $(\beta_{2j+1}, \delta_{0}^{2j+1}]$

for any $j\in \mathbb{N}\cup\{0\}.$

By Lemma 2.3 and the relation $\hat{\delta}\geq\delta_{0}^{2j}$ , we have

$r_{1}=R(\tau_{1}(\delta_{0}^{2j}))\leq r_{1}\exp[L^{+}(\delta_{0}^{2j})]\leq r_{1}\exp[L^{+}(\hat{\delta})],$
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where we use the monotonicity of $L^{+}$ in the last inequality. This implies $L^{+}(\hat{\delta})\geq$ O. On the
other hand, it follows from Lemma 2.6 and the relation $\overline{\epsilon}\geq\epsilon_{0}^{2j+1}$ that

$r_{0}=R(\tau_{0}(\epsilon_{0}^{2j+1}))\geq r_{0}\exp[M^{-}(\epsilon_{0}^{2j+1})]\geq r0\exp[M^{-}(\overline{\epsilon})],$

where the last inequality is followed from the monotonicity of $M^{-}$ Thus we find $M^{-}(\overline{\epsilon})\leq$ O.
Combining these facts with (2.48) and (2.51), we see that the property (i) in Theorem 1.2 holds
for

(2.52) $C_{1}=r_{0}\exp[M^{-}(\overline{\epsilon})], C_{2}=r_{1}\exp[L^{+}(\hat{\delta})].$

Regarding the regularity of $u,$ $v$ , and $a$ , we omit the proof (for the proof, see [11]). We complete
the proof. $\square$

We close this paper with the proof of Corollary 1.1.

Proof of Corollary 1.1. In the proof of Theorem 1.1, using the functions derived by Lemma 2.3
and Lemma 2.6, we defined the functions $\mathfrak{M}^{\pm},$ $\mathfrak{L}^{\pm}:(0, f_{1}(a_{*})-f_{1}(0))arrow \mathbb{R}$ as follows:

(2.53) $\{\begin{array}{l}\mathfrak{M}^{-}(\epsilon):= \inf \Phi^{-}(\epsilon;\sigma_{1}, \sigma_{2}) ,(\sigma_{1},\sigma 2)\in \mathcal{M}’\mathfrak{M}^{+}(\epsilon):= \sup \Phi^{+}(\epsilon;\sigma_{3}, \sigma_{4}) ,\end{array}$ $\{\begin{array}{l}\mathfrak{L}^{-}(\delta):= \inf \Psi^{-}(\delta;\omega_{1}, \omega_{2}) ,(\omega_{1},\omega 2)\in \mathcal{L}’\mathfrak{L}^{+}(\delta):= \sup \Psi^{+}(\delta;\omega_{3}, \omega_{4}) ,\end{array}$

$(\sigma_{3},\sigma 4)\in \mathcal{M}’$ $(\omega 3,\omega 4)\in \mathcal{L}’$

where

(2.54) $\mathcal{M}’ :=\{(x_{1}, x_{2})|3V_{1}(0)\leq 3x_{1}\leq 1, 0\leq x_{2}\leq\kappa_{0}’\},$

with $\kappa_{0}’:=\max\{a_{0}, f_{1}^{-1}(0)\}$ , and

$\mathcal{L}’ :=\{(x_{1}, x_{2})|\underline{\omega}\leq x_{1}\leq 1, \kappa_{1}’\leq x_{2}\leq a_{*}\}$

with

$\underline{\omega}:=\max\{1-\frac{1}{2}\frac{g(0)+c_{2}}{g(0)+c_{1}+2c_{2}}, \frac{-g(0)+c_{1}+c_{2}}{2(c_{1}+c_{2})}\}, \kappa_{1}’:=\min\{a_{0}, f_{1}^{-1}(0)\}.$

In the proof of Theorem 1.2, we replace $A_{0}$ by

$A_{0}’ := \max\{A_{0}, 3V_{1}(0)\}.$

We consider an upper and lower threshold satisfying

(2.55) $r_{0} \leq\min\{R_{0}\exp[-M^{+}(\frac{1}{2}f_{1}(a_{*}))], R_{0}\exp[L^{-}(\delta^{*})]\},$

(2.56) $r_{1} \geq\max\{R_{0}\exp[\mathfrak{M}^{+}(\epsilon^{*})], R_{0}\exp[-\mathfrak{L}^{-}(-f_{1}(0))]\},$

where $\epsilon^{*}$ is a positive constant $(for the$ precise definition $of \epsilon^{*}, see [11])$ .
Under $(2.55)-(2.56)$ , Theorem 1.1 implies that, if $S_{0}=0$ , then the system (P) has a unique

switching solution satisfying

$K_{1}\leq R(t)\leq K_{2},$

where

$K_{1}=r_{0}\exp[\mathfrak{M}^{-}(\dot{\epsilon})], K_{2}=r_{1}\exp[\mathfrak{L}^{+}(\hat{\delta}’)],$
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with

(2.57) $\mathfrak{L}^{+}(f_{1}(a_{*})-f_{1}(0)-\epsilonarrow)=\log(\frac{r_{0}}{r_{1}}) , \mathfrak{M}^{-}(f_{1}(a_{*})-f_{1}(0)-\delta =\log(\frac{r_{1}}{r_{0}})$ .

On the other hand, the proof of Theorem 1.2 asserts that, if $S_{0}=1$ , then the system (P)
has a unique switching solution satisfying

$C_{1}\leq R(t)\leq C_{2},$

where $C_{1}$ and $C_{2}$ are given by (2.52).
In the following, we shall prove

(2.58) $K_{1}\leq C_{1}, C_{2}\leq K_{2}.$

Here we note that

(2.59) $M^{-}\geq \mathfrak{M}^{-}, M^{+}\leq \mathfrak{M}^{+}, L^{-}\geq \mathfrak{L}^{-}, L^{+}\leq \mathfrak{L}^{+}$

For, it holds that $\mathcal{M}\subset \mathcal{M}’$ and $\mathcal{L}\subset \mathcal{L}’.$

To begin with, we prove the first inequality in (2.58). Since $L^{+}(\delta)$ and $\mathfrak{L}^{+}(\delta)$ is monotone
and diverges to $-\infty$ as $\delta\downarrow 0$ , there exists a constant $\overline{\delta},$ $\overline{\delta}’\in(0, f_{1}(a_{*})-f_{1}(O))$ such that

$L^{+}( \overline{\delta})=\mathfrak{L}^{+}(\overline{\delta}’)=\log(\frac{r_{0}}{r_{1}})$

Then we obtain the relation $\overline{\delta}\geq\delta$ Indeed, the relation is followed from

$L^{+}(\overline{\delta})=\mathfrak{L}^{+}(\overline{\delta}’)\geq L^{+}(\overline{\delta}’)$

and the monotonicity of $L^{+}$ . Moreover it follows from (2.57) that

$f_{1}(a_{*})-f_{1}(0)-\epsilon=\delta$

Recalling (2.50), we see that the relation $\overline{\epsilon}\leq\overline{\epsilon}’$ holds. Then, it follows from the monotonicity
of $M^{-}$ and $\mathfrak{M}^{-}$ that

$M^{-}(\overline{\epsilon})\geq \mathfrak{M}^{-}(-\epsilon^{\sqrt{}})$ .

The relation clearly implies $C_{1}\geq K_{1}.$

Next we turn to the proof of the second inequality in (2.58). Since $M^{-}(\epsilon)$ and $\mathfrak{M}^{-}(\epsilon)$ are
monotone and diverges to $\infty$ as $\epsilon\downarrow 0$ , there exist constants $\hat{\epsilon},$ $\hat{\epsilon}’\in(0, f_{1}(a_{*})-f_{1}(O))$ such that

(2.60) $M^{-}( \hat{\epsilon})=\mathfrak{M}^{-}(\hat{\epsilon}’)=\log(\frac{r_{1}}{r_{0}})$ .

Then the monotonicity yields that $\hat{\epsilon}\geq\epsilon$ Since the same argument as above implies

$\hat{\delta}=f_{1}(a_{*})-f_{1}(0)-\hat{\epsilon}, \hat{\delta}’=f_{1}(a_{*})-f_{1}(0)-\epsilon$

we have $\hat{\delta}\leq\delta$ Thus we observe from the monotonicity of $L^{+}$ and $\mathfrak{L}^{+}$ that

$L^{+}(\hat{\delta})\leq \mathfrak{L}^{+}(\hat{\delta}’)$ .

The relation is equivalent to $C_{2}\leq K_{2}$ . We obtain the conclusion. $\square$
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