
Stability of stationary solutions to hyperbolic-parabolic
systems in half space and the convergence rate

Shinya Nishibata
Tokyo Institute of Technology, Japan

shinya@is.titech.ac.jp

1 Introduction

The present paper surveys the results on [8] and [10], which study large-time be-
havior of solutions to a system of viscous conservation laws over one-dimensional
half space $\mathbb{R}+:=(0, \infty)$ ,

$U_{t}+f(U)_{x}=(G(U)U_{x})_{x}, x\in \mathbb{R}+, t>0$ , (1)

where $U=U(t, x)$ is an unknown $m$-vector valued function taking values in an
open convex set $\mathcal{O}_{U}\subset \mathbb{R}^{m};f(U)$ is a smooth $m$-vector valued function defined
on $\mathcal{O}_{U};G(U)$ is a smooth $m\cross m$ matrix valued function defined on $\mathcal{O}_{U}$ . The
paper [8] shows an existence and an asymptotic stability of a stationary solution
to the system (1) and the paper [10] derives a convergence rate of a time-global
solution towards the stationary solution.

To study the system (1) we rewrite it to a normal form of the symmetric
hyperbolic-parabolic systems under the assumption that

[A1] the system (1) admit an entropy function $\eta=\eta(U)$ defined on
$\mathcal{O}_{U}$ , which satisfies following three conditions:

(i) $\eta(U)$ is a smooth strictly convex scalar function, that is, the
Hessian matrix $D_{U}^{2}\eta(U)$ is positive definite for $U\in \mathcal{O}_{U}$ ;

(ii) there exists a smooth scalar function $q(U)$ defined on $\mathcal{O}_{U}$ , which
is called an entropy flux, such that $D_{U}q(U)=D_{U}\eta(U)D_{U}f(U)$ for
$U\in \mathcal{O}_{U}$ ;

(iii) the matrix $G(U)(D_{U}^{2}\eta(U))^{-1}$ is real symmetric and non-negative
definite for $U\in \mathcal{O}_{U}.$

The assumption [A1] allows us to rewrite the system (1) to that in a sym-
metric form by using the entropy function. Furthermore we can transform the
symmetric system to the normal form which is a coupled system of hyperbolic
and parabolic equations by assuming a null condition:

[N] the null space of the viscosity matrix $G(U)$ is independent of
the dependent variable $U.$

Using the assumptions [A1] and [N], we see there exists a diffeomorphism
$U\mapsto u$ from $\mathcal{O}_{U}$ onto $\mathcal{O}_{u}\subset \mathbb{R}^{m}$ , which allows us to rewrite the system (1) to
that for a new dependent variable $u$ as

$A^{0}(u)u_{t}+A(u)u_{x}=B(u)u_{xx}+g(u_{\}}u_{x})$ . (2)
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Here $A^{0}(u)$ , $A(u)$ and $B(u)$ are real symmetric matrices of the form

$A^{0}(u)=(\begin{array}{ll}A_{1}^{0}(u) 00 A_{2}^{0}(u)\end{array}),$ $A(u)=(\begin{array}{ll}A_{l1}(u) A_{l2}(u)A_{21}(u) A_{22}(u)\end{array}),$ $B(u)=(\begin{array}{ll}0 00 B_{2}(u)\end{array})$

In (2), $A^{0}(u)$ is real symmetric and positive definite, that is, $A_{1}^{0}(u)$ and $A_{2}^{0}(u)$

are real symmetric and positive definite; $A(u)$ is real symmetric, that is, $A_{11}(u)$

and $A_{22}(u)$ are symmetric and $TA_{12}(u)=A_{21}(u);B_{2}(u)$ is real symmetric and
positive definite; $g(u, u_{x})$ is a nonlinear term

$g(u, u_{x})=(\begin{array}{l}0g_{2}(u,u_{x})\end{array}).$

Since (2) is obtained by multiplying (1) by $TU_{u}D_{U}^{2}\eta$ , we have expressions of $A^{0},$

$A,$ $B$ and 9 as

$A^{0}=TU_{u}D_{U}^{2}\eta U_{u}, A=TU_{u}D_{U}^{2}\eta f_{U}U_{u}, B=TU_{u}D_{U}^{2}\eta GU_{u},$

$g=^{T}U_{u}D_{U}^{2}\eta(GU_{u})_{x}u_{x}.$

Letting $u=T(v, w)$ where $v=v(t, x)\in \mathbb{R}^{m_{1}}$ and $w=w(t, x)\in \mathbb{R}^{m_{2}}$ , we
deduce the system (2) to the decomposed form

$A_{1}^{0}(u)v_{t}+A_{11}(u)v_{x}+A_{12}(u)w_{x}=0$ , (3a)

$A_{2}^{0}(u)w_{t}+A_{21}(u)v_{x}+A_{22}(u)w_{x}=B_{2}(u)w_{xx}+g_{2}(u, u_{x})$ . (3b)

We prescribe the initial data for (3) as

$u(O, x)=u_{0}(x)=T(v_{0}, w_{0})(x)$ , i.e., $(v, w)(O, x)=(v_{0}, w_{0})(x)$ , (4)

with assuming that a spatial asymptotic state of the initial data is a constant:

$\lim_{xarrow\infty}u_{0}(x)=u+=T(v_{+}, w_{+})$ , i.e., $\lim_{xarrow\infty}(v_{0}, w_{0})(x)=(v_{+}, w_{+})$ . (5)

Here the spatial asymptotic state $u_{+}=T(v_{+}, w_{+})$ is chosen to satisfy the con-
dition

[A2] The matrix $A_{11}(u_{+})$ is negative definite for a certain $u+\in \mathcal{O}_{u}.$

The assumption [A2] implies that the characteristic speeds of the hyperbolic
equations (3a) are negative around $u_{+}$ . Hence boundary conditions only for the
parabolic equations (3b) are necessary and sufficient for the well-posedness if
we construct the solution in a small neighborhood of $u_{+}$ . Thus we prescribe the
boundary conditions for (3) as

$w(t, 0)=w_{b}$ , (6)

where $w_{b}\in \mathbb{R}^{m_{2}}$ is a constant. We also assume 0-th order compatibility condi-
tion holds. We show the existence of a solution to the problem (3)$-(6)$ globally
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in time under the smallness assumption on a boundary strength $|w_{b}-w_{+}|$ . Thus
the condition [A2] yields that the characteristics of the hyperbolic system (3a)
around the boundary are negative.

The hyperbolic-parabolic system is a generalization of the concrete models
arising in physical models, especially in fluid dynamics. The assumption [A2]
corresponds to the outflow problem for the model system of compressible viscous
gases. This problem is studied in [3, 4, 11]. For the heat-conductive model
of compressible viscous gases in $\mathbb{R}^{3}$ , Matsumura and Nishida in [6] show the
asymptotic stability of a constant state (or a stationary solution corresponding
to an external potential force) and establish a technical energy method. For the
system (1) in the full space $\mathbb{R}^{n}$ , Umeda, Kawashima and Shizuta in [13] consider
a sufficient condition which guarantees a dissipative structure of the system (1)

and show the asymptotic stability of the constant state.
The half space problem to the hyperbolic-parabolic coupled systems is stud-

ied by Kawashima, Nishibata and Zhu in [4], where they consider outflow prob-

lems for a barotropic model of compressible and viscous gases. They show the
existence and the asymptotic stability of stationary solutions. For the heat-
conductive model, Kawashima, Nakamura, Nishibata and Zhu [3] prove the
existence and the asymptotic stability of stationary solutions for the outflow
problem, too.

Notations. For vectors $u,$ $v\in \mathbb{R}^{m},$ $|u|$ and $\langle u,$ $v\rangle$ denote standard Euclidean
norm and inner product, respectively. For a matrix $A$ , TA denotes a transport
matrix of $A$ . For $1\leq p\leq\infty,$ $L^{p}(\mathbb{R}_{+})$ denotes a standard Lebesgue space
over $\mathbb{R}+$ equipped with a norm $\Vert$ $\Vert_{Lp}$ . For a non-negative integer $s,$ $H^{s}(\mathbb{R}_{+})$

denotes an s-th order Sobolev space over $\mathbb{R}_{+}$ in the $L^{2}$ sense with a norm $\Vert\cdot\Vert_{H^{8}}.$

Notice that $H^{0}(\mathbb{R}_{+})=L^{2}(\mathbb{R}_{+})$ and $1\cdot\Vert_{H^{0}}=\Vert\cdot\Vert_{L^{2}}$ . For a function $f=f(u)$ ,
$D_{u}f(u)$ denotes a Fr\’echet derivative of $f$ with respect to $u$ . Especially, in the
case of $u=T(u_{1}, \ldots, u_{n})\in \mathbb{R}^{n}$ and $f(u)=T(f_{1}, \ldots, f_{m})(u)\in \mathbb{R}^{m}$ , the Fr\’echet

derivative $D_{u}f=$ $( \frac{\partial f_{i}}{\partial u_{j}})_{ij}$ is an $m\cross n$ matrix. For a function $f=f(v, w)$ , we

sometimes abbreviate partial Fr\’echet derivatives $D_{v}f(v, w)$ and $D_{w}f(v, w)$ to
$f_{v}(v, w)$ and $f_{w}(v, w)$ , respectively. A notation $\#^{-}(A)$ denotes the number of
negative eigenvalues of a matrix $A.$

2 Existence of stationary solution

The stationary wave $\tilde{U}(x)$ is defined as a smooth stationary solution to (1) which
converges to a constant state $U+=U(u_{+})$ as $xarrow\infty$ . Thus $\tilde{U}$ satisfies a system
of ordinary differential equations equations

$f(\tilde{U})_{x}=(G(\tilde{U})\tilde{U}_{x})_{x}, x\in \mathbb{R}_{+}$ . (7)

Let $\tilde{u}=T(\tilde{v},\tilde{w})$ be a stationary solution for (3). By using a diffeomorphism
$U\mapsto u$ , we have a relation $\tilde{u}=u(\tilde{U})$ and $\tilde{U}=U(\tilde{u})$ . We assume that $\tilde{u}$ satisfies
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the same boundary and spatial asymptotic conditions in (6) and (5). Namely

$\tilde{w}(0)=w_{b}$ , (8a)

$\lim_{xarrow\infty}\tilde{u}(x)=u+$ , i.e., $\lim_{xarrow\infty}(\tilde{v},\tilde{w})(x)=(v_{+}, w_{+})$ . (8b)

The existence of the stationary solution for the boundary value problem (7)
and (8) is summarized in the following theorem of which detailed proof is stated
in the paper [8]. We note that the non-degenerate stationary solution exists if
the number of negative characteristics is greater than the number of hyperbolic
equations (3a). The existence of the degenerate stationary solution is showed
under the assumption that the matrix $D_{U}f(U_{+})$ has a simple zero-eigenvalue.

Theorem 1. Assume that [A2] h\’olds and let $\delta:=|w+-w_{b}|.$

(i) (Non-degenerate flow) We assume that

$\#^{-}(D_{U}f(U_{+}))>m_{1}$ (9)

holds. Then there exists a local stable manifold $\mathcal{M}^{s}\subset \mathbb{R}^{m_{2}}$ around the
equilibrium $w+such$ that if $w_{b}\in \mathcal{M}^{s}$ and $\delta$ is sufficiently small, then there
exists a unique smooth solution $u(x)$ to (7) and (8) satisfying an exponential
decay estimate

$|\partial_{x}^{k}(\tilde{u}(x)-u_{+})|\leq C\delta e^{-cx}$ for $k=0$ , 1, . . . .

(ii) (Degenerate flow) We assume that $D_{U}f(U_{+})$ has a simple zero-eigenvalue
$\mu(U_{+})=0$ . Moreover we assume that the characteristic field corresponding
to $\mu(U_{+})=0$ is genuinely nonlinear, that is,

$D_{U}\mu(U_{+})R(U_{+})\neq 0,$

where $\mu(U)$ is an eigenvalue of the matrix $D_{U}f(U)\mathcal{S}$atisfying $\mu(U_{+})=0$

and $R(U)$ be a right eigenvector of $D_{U}f(U)$ corresponding to $\mu(U)$ . Then
there exists a certain region $\mathcal{M}\subset \mathbb{R}^{m_{2}}$ such that if $w_{b}\in \mathcal{M}$ and $\delta$ is
suficiently $\mathcal{S}mall$, then there exists a unique smooth solution $u(x)$ satisfying
an algebraic decay estimate

$| \partial_{x}^{k}(\tilde{u}(x)-u_{+})|\leq C\frac{\delta^{k+1}}{(1+\delta x)^{k+1}}+C\delta e^{-cx}$ for $k=0$ , 1, . . . .

The asymptotic stability of the stationary solution thus constructed in the
above theorem are studied in section 3. The convergence rate is also studied
under a stability condition In section 4, we derive the convergence rate without
stability condition. In the present summary, We study the convergence rate
only for the non-degenerate flow for simplicity. For the degenerate flow, readers
are referred to [8] and [10].
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3 Asymptotic stability and convergence rate of
stationary solution with stability condition

We study the asymptotic stability of the stationary solution, of which exis-
tence is shown in Theorem 1, under a condition [K] guaranteeing a dissipative
structure of the system. This kind of dissipative structure is firstly studied by
Kawashima in [1] under a condition

[K] There exists an $m\cross m$ real matrix $K$ such that $KA^{0}(u_{+})$ is skew-
symmetric and $[KA(u_{+})]+B(u_{+})$ is symmetric and positive definite,
where $[A]$ $:=(A+TA)/2$ is a symmetric part of a matrix $A.$

Shizuta and Kawashima in [12] prove the equivalence of the condition [K] and

[SK] Let $\lambda A^{0}(u_{+})\phi=A(u_{+})\phi$ and $B(u_{+})\phi=0$ for $\lambda\in \mathbb{R}$ and $\phi\in \mathbb{R}^{m}.$

Then $\phi=0.$

Kawashima proves the asymptotic stability of a constant state in full space
under the stability condition [K], or equivalently [SK], in [1, 2, 5, 12, 13]. The
main purpose of our researches in [8, 9, 10] is to generalize his ideas and methods
to the half space problem for the asymptotic analysis on stationary solutions in
half space. Precisely, we prove the asymptotic stability of the non-degenerate
and the degenerate stationary solutions. However we only show in the present
survey the asymptotic stability of the non-degenerate stationary in Theorem
$1-(i)$ for simplicity. For the asymptotic stability of the degenerate stationary
solution, please see [8] and [10].

Theorem 2. Assume that the same $assumption\mathcal{S}$ as in Theorem $1-(i)$ hold.
Then there exists a positive constant $\epsilon_{0}$ such that if

$\Vert u_{0}-\tilde{u}\Vert_{H^{2}}+\delta\leq\epsilon_{0},$

the initial boundary value problem (3), (4) and (6) has a unique solution $u(t, x)$

globally in time satisfying

$u-\tilde{u}\in C([0, \infty), H^{2}(\mathbb{R}_{+}))$ .

Moreover the solution converges to the $\mathcal{S}$lationary solution $\tilde{u}$ :

$\lim_{tarrow\infty}\Vert u(t)-\tilde{u}\Vert_{L}\infty=0.$

The crucial point of proof of Theorem 2 is to obtain a uniform a priori
estimate of a perturbation from the stationary solution

$(\varphi, \psi)(t, x) :=(v, w)(t, x)-(\tilde{v},\tilde{w})(x)$ .

We have the equation for $(\varphi, \psi)$ from (3) as

$A_{1}^{0}(u)\varphi_{t}+A_{11}(u)\varphi_{x}+A_{12}(u)\psi_{x}=h_{1}$ , (10a)

$A_{2}^{0}(u)\psi_{t}+A_{21}(u)\varphi_{x}+A_{22}(u)\psi_{x}=B_{2}(u)\psi_{xx}+h_{2}$ , (10b)
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where $h_{1}$ and $h_{2}$ are remainder terms. The initial and the boundary conditions
are prescribed as

$(\varphi, \psi)(0, x)=(\varphi_{0}, \psi_{0})(x) :=(v_{0}, w_{0})(x)-(\tilde{v},\tilde{w})(x)$ , (11)

$\psi(t, 0)=0$ . (12)

To summarize the a priori estimate for a solution $(\varphi, \psi)$ in Sobolev space
$H^{2}$ , we define an energy norm $N(t)$

$N(t):= \sup_{0\leq\tau\leq t}\Vert(\varphi, \psi)(\tau)\Vert_{H^{2}}.$

Proposition 3. Let $(\varphi, \psi)\in C([O, T];H^{2}(\mathbb{R}_{+}))$ be a solution to (10)-(12) for a
certain $T>0$ . Then there $exi_{\mathcal{S}}ts$ a positive constant $\epsilon_{1}\mathcal{S}uch$ that if $N(T)+\delta\leq$

$\epsilon_{1}$ , the solution satisfies

$\Vert(\varphi, \psi)(t)\Vert_{H^{2}}^{2}+\int_{0}^{t}(\Vert\varphi_{x}(\tau)\Vert_{H^{1}}^{2}+\Vert\psi_{x}(\tau)\Vert_{H^{2}}^{2})d\tau\leq C||(\varphi_{0}, \psi_{0})\Vert_{H^{2}}^{2}$

for $t\in[0, T].$

The first step in deriving the a-priori estimate is to obtain the basic $L^{2}$

estimate with using an energy form $\mathcal{E}$ defined by

$\mathcal{E} :=\eta(U)-\eta(\tilde{U})-D_{U}\eta(\tilde{U})(U-\tilde{U})$ .

Note that, if $N(t)$ is sufficiently small, the energy form $\mathcal{E}$ is equivalent to $|(\varphi, \psi)|^{2}$

because the Hessian matrix $D_{U}^{2}\eta$ is positive. Then we derive the estimates for
the higher order derivatives. To do this, we combine the energy method in half
space discussed in [7] and the dissipative estimate of the hyperbolic part under
the stability condition. For detailed proof, see [9].

By assuming a condition

[A3] The matrix $A(u_{+})$ is negative definite for a certain $u+\in \mathcal{O}_{u},$

which is a stronger condition than [A2], we derive the convergence rate towards
the stationary solution. The result is summarized in

Theorem 4. Assume the same $a\mathcal{S}$sumptions as in Theorem 2 and [A3] hold.
(i) (Exponential decay.) Let $u_{0}-\tilde{u}\in H^{2}(\mathbb{R}_{+})$ and $e^{\alpha x/2}(u_{0}-\tilde{u})\in L^{2}(\mathbb{R}_{+})$

for a certain positive constant $\alpha$ . Then for a constant $\beta\in(0, \alpha$] there exists a
positive $con\mathcal{S}tant\epsilon_{0}$ such that if

$\Vert u_{0}-\tilde{u}\Vert_{H^{2}}+\Vert e^{\beta x/2}(u_{0}-\tilde{u})\Vert_{L^{2}}+\delta\leq\epsilon_{0},$

then the initial boundary value problem (3), (4) and (6) has a unique solution
globally in time as

$u-\tilde{u}\in C([0, \infty);H^{2}(\mathbb{R}_{+}))$ .
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Moreover there $exist_{\mathcal{S}}$ a certain constant $\nu\in(0, \beta)$ such that the $\mathcal{S}$olution u
verifies the decay estimate

$\Vert u(t)-\tilde{u}\Vert_{H^{2}}+\Vert e^{\beta x/2}(u(t)-\tilde{u})\Vert_{L^{2}}\leq C(\Vert u_{0}-\tilde{u}\Vert_{H^{2}}+\Vert e^{\beta x/2}(u_{0}-\tilde{u})\Vert_{L^{2}})e^{-\nu t/2}$

for $t>0.$

(ii) (Algebraic decay.) We assume $u_{0}-\tilde{u}\in H^{2}(\mathbb{R}_{+})$ and $(1+x)^{\alpha/2}(u_{0}-\tilde{u})\in$

$L^{2}(\mathbb{R}_{+})$ hold for a certain positive constant $\alpha$ . Then there exists a positive
constant $\epsilon_{0}$ such that if

$\Vert u_{0}-\tilde{u}\Vert_{H^{2}}+\Vert(1+x)^{\alpha/2}(u_{0}-\tilde{u})\Vert_{L^{2}}+\delta\leq\epsilon_{0},$

then the initial boundary value problem (3), (4) and (6) has a unique solution
globally in time satisfying

$u-\tilde{u}\in C([0, \infty);H^{2}(\mathbb{R}_{+}))$ .

Moreover the solution $u$ verifies the decay estimate

$\Vert u(t)-\tilde{u}\Vert_{H^{2}}\leq C(\Vert u_{0}-\tilde{u}||_{H^{2}}+\Vert(1+x)^{\alpha/2}(u_{0}-\tilde{u})\Vert_{L^{2}})(1+t)^{-\alpha/2}$

for $t>0.$

This theorem is proved by the weighted energy method. The detailed proof
is given in [10].

4 Asymptotic stability of stationary solution with-
out stability condition

Even though the stability condition [SK] does not hold, we can also derive
the global existence of solution and its convergence rate towards the stationary
solution under the assumption [A3]. This result is summarized in

Theorem 5. Assume the same assumptions as in Theorem 2 and [A3] except
[SK] hold.
(i) (Exponential decay.) We $a\mathcal{S}sumee^{\alpha x/2}(u_{0}-\tilde{u})\in H^{2}(\mathbb{R}_{+})$ holds for a certain
positive $con\mathcal{S}tant\alpha$ . Then, for a certain constant $\beta\in(0, \alpha$], there exists a
positive constant $\epsilon_{0}$ such that if

$(\Vert e^{\beta x/2}(u_{0}-\tilde{u})\Vert_{H^{2}}+\delta)\beta^{-1}\leq\epsilon_{0},$

then the initial boundary value problem (3), (4) and (6) has a unique solution
globally in time as

$e^{\beta x/2}(u-\tilde{u})\in C([0, \infty);H^{2}(\mathbb{R}_{+}))$ .

Moreover there exists a certain constant $\nu\in(0, \beta)$ such that the solution $u$

verifies the decay estimate

$\Vert e^{\beta x/2}(u(t)-\tilde{u})\Vert_{H^{2}}\leq C||e^{\beta x/2}(u_{0}-\tilde{u})\Vert_{H^{2}}e^{-\nu t/2}$
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for $t>0.$

(ii) (Algebraic decay.) We $a\mathcal{S}sume(1+\gamma x)^{\alpha/2}(u_{0}-\tilde{u})\in H^{2}(\mathbb{R}_{+})$ holds for a
certain positive $con\mathcal{S}tant\gamma$ and a certain constant $\alpha\geq 2$ . Then, for an arbitrary
constant $\theta\in(0, \alpha$], there exists a positive constant $\epsilon_{0}$ such that if

$(\Vert(1+\gamma x)^{\alpha/2}(u_{0}-\tilde{u})\Vert_{H^{2}}+\delta)\gamma^{-1}+\gamma\leq\epsilon_{0},$

then the initial boundary value problem (3), (4) and (6) has a unique solution
globally in time as

$(1+\gamma x)^{\alpha/2}(u-\tilde{u})\in C([0, \infty);H^{2}(\mathbb{R}_{+}))$ .

Moreover the solution verifies the decay estimate

$\Vert u(t)-\tilde{u}\Vert_{H^{2}}\leq C\Vert(1+\gamma x)^{\alpha/2}(u_{0}-\tilde{u})\Vert_{H^{2}}(1+t)^{-(\alpha-\theta)/2}$

for $t>0.$

Please see [10] for the detailed proof.
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