
QUESTIONS ON PROVISIONAL COULOMB BRANCHES OF
3-DIMENSIONAL $\mathcal{N}=4$ GAUGE THEORIES

HIRAKU NAKAJIMA

ABSTRACT. This is a supplement to [Nak15], where an approach towards a
mathematically rigorous definition of the Coulomb branch of a 3-dimensional
$\mathcal{N}=4$ SUSY gauge theory was proposed. We ask questions on their expected
properties, especially in relation to the corresponding Higgs branch, partly
motivated by the interpretation of the level rank duality in terms of quiver
varieties [Nak09] and the symplectic duality [BLPW14]. We study questions
in a few examples.

INTRODUCTION

In [Nak15], we proposed an approach towards a mathematically rigorous defi-
nition of the Coulomb branch $\mathcal{M}_{C}$ of a 3-dimensional $\mathcal{N}=4$ SUSY gauge theory.
Moreover various physically known examples and expected properties were re-
viewed. In this paper, we add questions on expected properties, especically in
relation to the corresponding Higgs branch $\mathcal{M}_{H}$ . Some are probably implicit in
the physics literature, but we are motivated by (a) the interpretation of the level
rank duality of affine Lie algebras of type $A$ via quiver varieties, and also (b) the
symplectic duality.

Recall when $\mathcal{M}_{H}$ is a quiver variety of affine type $A$ , the corresponding $\mathcal{M}_{C}$ is
also a quiver variety of affine type $A[dBHOO97, dBHO^{+}97]$ . Under their relation
to representation theory [Nak94], the pair is given by I. Frenkel’s level rank duality
[Fre82]. Then one can interpret representation theoretic statements as relation
between $\mathcal{M}_{H}$ and $\mathcal{M}_{C}$ . This idea was a source of inspiration in author’s work
[Nak09] on provisional double affine Grassmannian [BF10], and the joint work
[BFN14].
Recall the symplectic duality [BLPW14] predicts pairs of symplectic manifolds

$(\mathfrak{M}, \mathfrak{M}^{!})$ whose categories $\mathcal{O},$
$\mathcal{O}^{!}$ are Koszul dual to each other. Here the categories

$\mathcal{O},$ $0!$ are certain full subcategories of modules of quantizations of $\mathfrak{M},$
$\mathfrak{M}^{!}$ . Many

examples of symplectic dual pairs appear as $(\mathfrak{M}, \mathfrak{M}’)=(\mathcal{M}_{H}, \mathcal{M}_{C})$ for a gauge
theory, e.g., the above quiver varieties of affine type $A$ . If $\mathcal{O}$ and $\mathcal{O}^{!}$ are Koszul
dual, one can deduce many relations between $\mathfrak{M}$ and $\mathfrak{M}^{!}$ . Therefore it is natural
to ask relations between $\mathcal{M}_{H}$ and $\mathcal{M}_{C}$ . Note also that the Koszul duality is
expected to be closely related to the level rank duality.
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Note that $(\mathcal{M}_{H}, \mathcal{M}_{C})$ are much more general: for example they may not have
resolution of singularities nor a torus action with isolated fixed points, as re-
quired in the formulation of the symplectic duality. They have always $\mathbb{C}^{\cross}$ -action
which scale the symplectic form by weight 2, but are not cone in general. Even
more fundamentally, we have lots of examples where $\mathcal{M}_{H}$ is a point, while $\mathcal{M}_{C}$

are nontrivial. Therefore we decide to restrict ourselves to ask basic (or naive)
questions which can be asked without introducing resolutions, torus action. We
study these questions in a few examples.

Notation.
(1) We basically follow the notation in Part I [Nak15]. However we mainly

use a complex reductive group instead of its maximal compact subgroup.
Therefore we denote a reductive group by $G$ , and its maximal compact
by $G_{c}$ . We only use the complex part of the hyper-K\"ahler moment map,
for which we use the notation $\mu.$

(2) We also change the notation for a compact Riemann surface from $C$ to $\Sigma$

to avoid a conflict with ‘C’ for the Coulomb branch.

1. MORE GENERAL TARGET SPACES

This section will be independent of other parts of the paper. The reader can
skip it, but can be also considered as a brief review of the construction in [Nak15]
and its generalization.

In [Nak15], we define a sheaf of a vanishing cycle on a moduli space associated
with a complex symplectic representation $M$ of a reductive group $G$ . We consider
their modification and generalization.

This construction, as well as the previous one in [Nak15], should be understood
in the framework of shifted symplectic structures [PTVV13].1 Because of the
author’s lack of ability, we cannot make it precise unfortunately.

$1(i)$ . $\sigma$-models. Let us first consider
$\bullet$ $(M, \omega)$ is $a$ (holomorphic) symplectic manifold with a $\mathbb{C}^{\cross}$ -action such that

$t^{*}\omega=t^{2}\omega$ for $t\in \mathbb{C}^{\cross}$

$\bullet$ there is a Liouville form $\theta$ such that $d\theta=\omega$ and $t^{*}\theta=t^{2}\theta.$

Let $\Sigma$ be a compact Riemann surface. We choose and fix a square root $K_{\Sigma}^{1/2}$ of
the canonical bundle $K_{\Sigma}$ . We consider the associated $\mathbb{C}^{\cross}$ -principal bundle $P_{K_{\Sigma}^{1/2}},$

that is $P_{K_{\Sigma}^{1/2}}\cross \mathbb{C}^{x}\mathbb{C}\cong K_{\Sigma}^{1/2}$ when $\mathbb{C}^{x}$ acts on $\mathbb{C}$ with weight 1.

We consider a $\mathbb{C}^{\cross}$ -equivariant $C^{\infty}$-map $\Phi:P_{K_{\Sigma}^{1/2}}arrow M$ , in other words a $C^{\infty}-$

section of a bundle $P_{K_{\Sigma}^{1/2}}\cross \mathbb{C}x$ M. Taking a local holomorphic trivialization of

$P_{K_{\Sigma}^{1/2}}$ , we see that the $(0,1)$-part of $\Phi^{*}\theta$ is a well-defined $K_{\Sigma}$-valued $(0,1)$-form,

lThe author thanks Dominic Joyce for pointing out a relevance of [PTVV13] in our
construction.
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i.e., $(1, 1)$-form on $\Sigma$ : let $\{U_{\alpha}\}$ be an open cover of $\Sigma$ , such that $P_{K_{\Sigma}^{1/2}}$ is trivialized

over $U_{\alpha}$ . We denote the transition function by $g_{\alpha\beta}$ . Then $\Phi$ is a collection
$\{\Phi_{\alpha}:U_{\alpha}arrow M\}$ such that $\Phi_{\alpha}=g_{\alpha\beta}\cdot\Phi_{\beta}$ on $U_{\alpha}\cap U_{\beta}$ , where is the $\mathbb{C}^{\cross}$ -action

on M. We have $\overline{\partial}\Phi_{\alpha}=g_{\alpha\beta}\cdot\overline{\partial}\Phi_{\beta}$ as $g_{\alpha\beta}$ is holomorphic. Therefore $(\Phi_{\alpha}^{*}\theta)^{(0,1)}=$

$\langle\theta,$ $\overline{\partial}\Phi_{\alpha}\rangle=\langle\theta,$

$9\alpha\beta.$
$\overline{\partial}\Phi_{\beta}\rangle=g_{\alpha\beta}^{2}\langle\theta,$ $\overline{\partial}\Phi_{\beta}\rangle$ . This means that $\{\langle\theta, \overline{\partial}\Phi_{\alpha}\rangle\}$ is a $K_{\Sigma^{-}}$

valued $(0,1)$-form. This is $(\Phi^{*}\theta)^{(0,1)}.$

We integrate it over $\Sigma$ :

CS $(\Phi)^{def}=.$
$\int_{\Sigma}(\Phi^{*}\theta)^{(0,1)}.$

This is the holomorphic Chern-Simons type integral in this setting. Moreover $\Phi$

is a critical point of CS if and only if $\Phi$ is a holomorphic section of $P_{K_{\Sigma}^{1/2}}\cross \mathbb{C}^{\cross}M,$

i.e., a twisted holomorphic map from $\Sigma$ to M.
Let $\mathcal{F}$ be the space of fields, i.e., the space of all $\mathbb{C}^{\cross}$ -equivariant $C^{\infty}$-maps

$\Phi:P_{K_{\Sigma}^{1/2}}arrow M.$

We can consider $\varphi_{CS}(\mathbb{C}_{\mathcal{F}})$ , the sheaf of vanishing cycle with respect to CS on
the moduli space of holomorphic sections of $K_{\Sigma^{1/2}}\cross \mathbb{C}^{\cross}M$ as in [Nak15, \S 7].

When $\Sigma$ is an elliptic curve, we do not need to introduce a $\mathbb{C}^{\cross}$ -action as we
have a nonvanishing holomorphic 1-form $dz$ . We consider a genuine $C^{\infty}$-map
$\Phi:\Sigmaarrow M$ and define

CS $( \Phi)=\int_{\Sigma}(\Phi^{*}\theta)^{(0,1)}\wedge dz.$

Remark 1.1. Suppose that we have a $\mathbb{C}^{\cross}\cross \mathbb{C}^{\cross}$ -action on $M$ such that $(t_{1}, t_{2})^{*}\theta=$

$t_{1}t_{2}\theta$ . It corresponds to a cotangent type gauge theory in [Nak15]. We take
$a\mathbb{C}^{\cross}\cross \mathbb{C}^{\cross}$ -bundle $P’$ such that the associated bundle $P_{\mathbb{C}^{\cross}\cross \mathbb{C}^{\cross}}’\mathbb{C}\cong K_{\Sigma}$ , where
$\mathbb{C}^{\cross}\cross \mathbb{C}^{\cross}$ acts on $\mathbb{C}$ by $(t_{1}, t_{2})z=t_{1}t_{2}z$ . (In other words, we take two line bundles
$M_{1},$ $M_{2}$ over $\Sigma$ such that $M_{1}\otimes M_{2}=K_{\Sigma}.$ ) Thcn a $\mathbb{C}^{\cross}\cross \mathbb{C}^{\cross}$ -equivariant $C^{\infty}$-map
$\Phi:P’arrow M$ gives a well-defined $(1, 1)$-form $(\Phi^{*}\theta)^{(0,1)}.$

1 (ii). Gauged $\sigma$-models. Next suppose the following data are given:
$\bullet$ $(M, \omega)$ is $a$ (holomorphic) symplectic manifold with a $G$-action preserving

$\omega.$

$\bullet$ there is a $\mathbb{C}^{\cross}$ -action commuting with the $G$-action, such that $t^{*}\omega=t^{2}\omega$

for $t\in \mathbb{C}^{\cross}$

$\bullet$ there is a $G$-invariant Liouville form $\theta$ such that $d\theta=\omega$ and $t^{*}\theta=t^{2}\theta.$

For a representation, the second $\mathbb{C}^{\cross}$ -action is the scaling one. Note that $\mathfrak{g}\ni\xi\mapsto$

$-\theta(\xi^{*})\in C^{\infty}(M)$ is a comoment map for the $G$-action on M. Here $\xi^{*}\equiv\xi_{M}^{*}$ is
the vector field on $M$ generated by $\xi\in \mathfrak{g}.$

We now consider a general $G$ . We also fix a $C^{\infty}$ principal $G$-bundle $P$ . We
then consider the fiber product $P\cross {}_{\Sigma}P_{K_{\Sigma}^{1/2}}$ , which is a principal $G\cross \mathbb{C}^{x}$ -bundle

over $\Sigma.$

Now a field consists of pairs
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$\bullet$

$\overline{\partial}+A$ : a partial connection on $P,$

$\bullet$
$\Phi$ : a $C^{\infty}$ map $P\cross {}_{\Sigma}P_{K_{\Sigma}^{1/2}}arrow M$ , which is equivariant under $G\cross \mathbb{C}^{\cross}$ -action.

The space of fields is denoted by $\mathcal{F}$ again.
We regard $\overline{\partial}+A$ as a collection of $\mathfrak{g}$-valued $(0,1)$-forms $A_{\alpha}$ such that $A_{\alpha}=$

$-\overline{\partial}g_{\alpha\beta}’\cdot g_{\alpha\beta}^{\prime-1}+g_{\alpha\beta}’A_{\beta}g_{\alpha\beta}^{\prime-1}$ , where $g_{\alpha\beta}’$ is the transition function for $P$ . Similarly
we regard $\Phi$ as a collection $\Phi_{\alpha}:U_{\alpha}arrow M$ such that $\Phi_{\alpha}=(g_{\alpha\beta}’, g_{\alpha\beta})\cdot\Phi_{\beta}$ , using
the $G\cross \mathbb{C}^{\cross}$ -action on M. The term involving $\overline{\partial}g_{\alpha\beta}’\cdot 9_{\alpha\beta}^{\prime-1}$ is absorbed by coupling
with the moment map $\mu$ on $M$ , as $\langle\xi,$ $\mu\rangle=-\theta(\xi^{*})$ . In fact, we have

$\langle A_{\alpha}\prime\mu(\Phi_{\alpha})\rangle$

$=-\langle\overline{\partial}g_{\alpha\beta}’\cdot g_{\alpha\beta}^{\prime-1}, \mu(\Phi_{\alpha})\rangle+\langle g_{\alpha\beta}’A_{\beta}g 1, \mu((g_{\alpha\beta}’, g_{\alpha\beta})\cdot\Phi_{\beta})\rangle$

$=\langle\Phi_{\alpha}^{*}\theta, \overline{\partial}g_{\alpha\beta}’\cdot g_{\alpha\beta}^{\prime-1}\rangle+g_{\alpha\beta}^{2}\langle A_{\beta}, \mu(\Phi_{\beta})\rangle,$

where we have used the equivariance of the moment map in the second equality.
Thus $\{(\Phi_{\alpha}^{*}\theta)^{(0,1)}-\langle A_{\alpha}, \mu(\Phi_{\alpha})\rangle\}$ defines a well-defined $(1, 1)$ -form. We introduce
the holomorphic Chern-Simons functional as

$CS$ $(A, \Phi)^{def}=.$
$\int_{\Sigma}(\Phi_{\alpha}^{*}\theta)^{(0,1)}-\langle A_{\alpha},$ $\mu(\Phi_{\alpha})\rangle.$

Then $(A, \Phi)$ is a critical point of CS if and only if
$\bullet\mu(\Phi_{\alpha})=0,$

$\bullet$ $\{\Phi_{\alpha}\}$ is a holomorphic section of $(P\cross {}_{\Sigma}P_{K_{\Sigma}^{1/2}})\cross c\cross \mathbb{C}^{x}$ M. Here a holo-

morphic structure on $P$ is given by $\overline{\partial}+A.$

Thus $(A, \Phi)$ is a twisted holomorphic map from $\Sigma$ to the quotient stack $[\mu^{-1}(0)/G].$

When $M$ is a symplectic representation of $M$ , this construction recovers the
previous one in [Nak15, \S 7].

We consider the dual of the equivariant cohomology with compact support of
$\mathcal{F}$ with vanishing cycle coefficient:

(1.2) $H_{c,\mathcal{G}(P)}^{*}(\mathcal{F}, \varphi_{CS}(\mathbb{C}_{\mathcal{F}}))^{*},$

where $\mathcal{G}(P)$ is the complex gauge group denoted by $\mathcal{G}_{\mathbb{C}}(P)$ in [Nak15].
The main proposal in [Nak15] can be generalized in a straightforward manner:

$\bullet$ Take $\Sigma=\mathbb{P}^{1}$ . Define a commutative product on $H_{c,\mathcal{G}(P)}^{*}(\mathcal{F}, \varphi_{CS}(\mathbb{C}_{\mathcal{F}}))^{*}$

and consider an affine variety given by its spectrum. It should be the
underlying affine variety of the moduli space of vacua of the gauged $\sigma-$

model for $(G, M, \omega)$ [HKLR87]. In particular, it is expected to satisfy
various properties claimed in the physics literature.

2. SYMPLECTIC LEAVES AND TRANSVERSAL SLICES

Let us consider the case $M$ is a symplectic representation of $G.$
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Question 2.1. (1) Are there only finitely many symplectic leaves in the Coulomb
branch $\mathcal{M}_{C}$ ?

(2) Are symplectic leaves and transversal slices Coulomb branches of gauge
theories?

(3) Is there $a^{(}natura1$ ’ order-reversing bijection between symplectic leaves of
the Coulomb branch $\mathcal{M}_{C}$ and the Higgs branch $\mathcal{M}_{H}$ ? Suppose (2) is true.
Are gauge theories for symplectic leaves and transversal slices of $\mathcal{M}_{C}$ and $\mathcal{M}_{H}$

interchanged under the bijection?

For quiver gauge theories of type $ADE$ , Higgs branches are quiver varieties
while Coulomb branches are slices in affine Grassmannian. See [Nak15, \S 3(ii)].
(This statement is true only the dominance condition is satisfied. See \S 5(iii).) In
this case it is well-known that both leaves are parametrized by dominant weights,
and the answer is yes. See \S 5(iii) for detail.

Also the question (3) is one of requirements in the definition of the symplectic
duality [BLPW14, \S 10].2 Properties (1),(2) are known for Higgs branches $\mathcal{M}_{H},$

as we will review below. Therefore (1),(2) for $\mathcal{M}_{C}$ are natural to ask. The second
question in (3) does make sense thanks to this fact.

In fact, the symplectic duality requires an order-reversing bijection on posets
of special symplectic leaves, but we ignore a subtle difference between special and
arbitrary symplectic leaves at this moment. Properties (1),(2) make sense even
without relation to $\mathcal{M}_{H}.$

The naturality in (2) is vague, but the author cannot make it precise. In fact,
we will find examples where (3) fail in \S 5(ii) below. It means that an ad-hoc
bijection for (2) may be unnatural. Therefore we should regard (2) are also false
for these. These examples will be related to unspecial leaves, hence this question
must be corrected in future.

Also the question (3) is a little imprecise as Coulomb branches are affine
algebraic varieties, and leaves are usually only quasi-affine. A typical exam-
ple is the $n^{th}$ symmetric product $S^{n}\mathbb{C}^{2}$ and its standard stratification $\sqcup S_{\nu}\mathbb{C}^{2}$

parametrized by partitions $\nu$ of $n$ . The stratum $S_{\nu}\mathbb{C}^{2}$ is an open subvariety in
$S^{\nu_{1}}\mathbb{C}^{2}\cross S^{v_{2}}\mathbb{C}^{2}\cross\cdots$ for $\nu=(1^{\nu_{1}}2^{\nu_{2}}\ldots)$ . The latter is the Coulomb branch of a
certain gauge theory. See \S 5 (ii) below. Note also that $S^{\nu_{1}}\mathbb{C}^{2}\cross S^{v_{2}}\mathbb{C}^{2}\cross\cdotsarrow\overline{S_{v}\mathbb{C}^{2}}$

is a finite birational morphism, but is not an isomorphism. Therefore, as the best,
we can ask whether the closure of a symplectic leaf is an image of a finite bira-
tional morphism from the Coulomb branch of a gauge theory. It is not clear (at
least to the author) whether this determine the gauge theory uniquely or not. We
ignore this complexity and simply ask whether a symplectic leaf is the Coulomb
branch hereafter.

An important special case of (2) is

$2The$ author thanks Tom Braden who explained the statement in talks by at Kyoto and
Boston.
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Question 2.2. Suppose the Higgs branch $\mathcal{M}_{H}=M///G$ consists of only $M^{G.3}$

Is the corresponding Coulomb branch $\mathcal{M}_{C}$ a smooth symplectic manifold? Is
converse true also?

2(i). Higgs branch. Let us recall a well-known result on symplccitc leaves on
the Higgs branch $M///G=\mu^{-1}(0)\parallel G.$

We consider $M///G$ as a set of closed $G$-orbits in $\mu^{-1}(0)$ . It has a natural
stratification given by conjugacy classes of stabilizers (see [Nak94, \S 6], which is
based on [SL91]):

(2.3)
$M///G=\sqcup(M///G)_{(\hat{G})}(\hat{c})$ ’

where a stratum $(M///G)_{(G)}$ consists of orbits through points $x\in M///G$ whose

stablizer $Stab_{G}(x)$ is conjugate to $\hat{G}$ . Note that $\hat{G}$ is a reductive group as $x$ has
a closed orbit.

Let us describe $(M///G)_{(G)}$ as a symplectic reduction. (See [SL91, Th. 3.5] for

detail.) Let $M^{\hat{G}}=\{m\in M|gm=m$ for $g\in\hat{G}\}$ denote the fixed point locus.

It is a symplectic vector subspace. Let $N_{G}(\hat{G})$ denote the normalizer of $\hat{G}$ in $G.$

We have an action of $N_{G}(\hat{G})/\hat{G}$ on $M^{\hat{G}}$ . Then we have

(2.4) $(M///G)_{(\hat{G})}=(M^{\hat{G}}///^{N_{G}}(\hat{c})/\hat{c})_{(\{e\})}.$

Here the subscript $(\{e\})$ means $N_{G}(\hat{G})/\hat{c}$-orbits through points whose stabilizer is

conjugate to the identity group $\{e\}$ , i.e., free orbits. In particular, $(M^{\hat{G}}///^{N_{G}}(\hat{G})/\hat{c})_{(\{e\})}$

is symplectic. We do not claim that it is a symplectic leaf as it may not be con-
nected in general. This is a subtle point, which we do not understand well. See
the example 5(iv).

A transversal slice to a stratum $(M///G)_{\hat{G}}$ is also described as a symplectic
reduction. (See [SL91, \S 2]. See also [NakOl, \S 3] and [CB03].) Let $m\in\mu^{-1}(O)$

such that $Stab_{G}(m)=\hat{G}$ . We take the orbit $Gm$ through $m$ and its tangent space
$T_{m}Gm$ at $m$ . The latter is an isotropic subspace. We consider the symplectic

normal space $\hat{M}^{def}=(T_{m}Gm)^{\omega}/T_{m}Gm$ , which has a natural symplectic structure.

It is naturally a representation of $\hat{G}$ . Then $M///G$ and $\hat{M}///\hat{G}$ are locally isomor-
phic around $[m]$ and [O]. Under the local isomorphism the stratum $(M///G)_{(G)}$ is

mapped to $(\hat{M}///\hat{G})_{(\hat{G})}$ . This is nothing but the fixed subspace $Tdef=\hat{M}^{\hat{G}}$ . We

take a complementary subspace $T^{\perp}$ of $T$ in $\hat{M}$ . The transversal slice is given by

(2.5) $T^{\perp}///\hat{G}.$

$3The$ author thanks Alexander Braverman to point out a mistake in an earlier version.
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2(ii). Coulomb branch. Combining Question 2.1 with (2.4, 2.5), we arrive at
the following:

Question 2.6. Strata (resp. transversal slices) of $\mathcal{M}_{C}$ are the Coulomb branches
of gauge theories $Hyp(T^{\perp})\#\hat{G}$ $($ resp. $Hyp(M^{\hat{G}})\#^{N_{G}(\hat{G})}/\hat{G})$ ?

We have the following naive construction: Consider morphisms between Higgs
branches.

$M^{\hat{G}}///^{N_{G}(\hat{G})/\hat{G}}arrow M///Garrow T^{\perp}///\hat{G}.$

They induces morphisms between moduli spaces of twisted holomorphic maps
from a Riemann surface $\Sigma$ . Taking the dual of cohomology groups with vanish-
ing cycle coefficients, we get homomorphisms in the same direction. They conjec-
turally respect the multiplication, and hence induce morphisms on the spectrum.
Thus morphisms between Coulomb branches goes in the opposite direction, and
the strata and slices are interchanged.

In the proposed (definition’ of Coulomb branches, the affine GIT quotient
$M///G=\mu^{-1}(0)\parallel G$ is not enough: we need the quotient stack $[\mu^{-1}(0)/G]$ . But
we do not think this makes a crucial difference.

3. COMPLETE INTERSECTION AND CONICAL $\mathbb{C}^{\cross}$ -ACTION

For a coweight $\lambda$ of $G$ , we define

(3.1)
$\triangle(\lambda)^{def}=-\sum_{\alpha\in\triangle^{+}}|\langle\alpha, \lambda\rangle|+\frac{1}{4}\sum_{\mu}|\langle\mu, \lambda\rangle|\dim M(\mu)$ ,

where $\triangle^{+}$ is the set of positive roots, and $\mu$ runs over the set of weights of M.
Here $M(\mu)$ is the weight space.

The gauge theory Hyp(M) $\# G$ is said good if $2\triangle(\lambda)>1$ for any $\lambda\neq 0$ , and
ugly if $2\triangle(\lambda)\geq 1$ and not good. (Note $2\triangle(\lambda)\in \mathbb{Z}$ as weights appear in pairs
for a symplectic representation.) The monopole formula predicts that $2\triangle(\lambda)$

corresponds to a weight of the $\mathbb{C}^{\cross}$ -action on $\mathcal{M}_{C}$ . (See [Nak15, \S 4 Therefore
$\bullet$ $Hyp(M)\# G$ is good’ o$r^{}$ ugly’ if and only if the $\mathbb{C}^{\cross}$ -action on the Coulomb
branch $\mathcal{M}c$ is conical.

Recall that a $\mathbb{C}^{\cross}$ -action is conical if the coordinate ring $\mathbb{C}[\mathcal{M}_{C}]$ is only with
nonnegative weights, and the zero weight space is 1-dimensional consisting of
constant functions. Similarly Hyp(M) $\# G$ is good if and only if the $\mathbb{C}^{\cross}$ -aciton
is conical and there is no function of weight 1.

On the other hand, it is observed in [Nak15, \S 2(iv)] that $2\triangle(\lambda)\geq$ llooks
similar to a complete intersection criterion of $\mu=0$ for the Higgs branch by
Crawley-Boevey [CBOI] for quiver gauge theories. The following question was
asked:

Question 3.2. Is the followings true?
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The $\mathbb{C}^{x}$ -action of the Coulomb branch $\mathcal{M}_{C}$ is conical only if the level set $\mu^{-1}(O)$

of the moment map equation for the Higgs branch $\mathcal{M}_{H}$ is complete intersection
in $M$ of $\dim=\dim$M–dim $G.$

We assume $M$ is a faithful representation of $G.$

Since $M///G$ depends on the image $Garrow Sp(M)$ , the faithfulness assumption
is a natural requirement. If $Garrow Sp(M)$ has a positive dimensional kernel,
$\mu^{-1}(O)$ has dimension larger than $\dim$ M–dim $G$ . If $Garrow Sp(M)$ has only
finite kernel, the complete intersection property does not matter, but we have
the following example: Suppose that $\mathbb{C}^{\cross}$ acts on $N=\mathbb{C}$ by weight $N\neq 0$ , and
take $M=N\oplus N^{*}$ . The level set $\mu^{-1}(O)$ is the same for the case $N=1$ and is
not irreducible, but it is good if $N>1$ and ugly if $N=1$ . On the other hand,
the Coulomb branch $\mathcal{M}_{C}$ does depends on $N$ . One can see from the monopole
formula as $\mathcal{M}_{C}=\mathbb{C}^{2}/(\mathbb{Z}/N\mathbb{Z})$ with the $\mathbb{C}^{x}$ -action induced from $t\cdot(x, y)=(tx, ty)$

for $(x, y)\in \mathbb{C}^{2}$

In [Nak15] it was asked two conditions in Question 3.2 are equivalent. But it
turns out that there are counter examples for the converse.

4. POISSON AND INTERSECTION HOMOLOGY GROUPS

Let $X$ be a Poisson variety and let $HP_{*}(X)$ denote its Poisson homology group,
defined in [ES10]. We are interested in the case $X$ is affine and the degree $0$ part
$HP_{0}(X)$ . It is known that $HP_{0}(X)$ is the quotient of $\mathbb{C}[X]$ by the linear span
of all brackets. The following is a $\mathcal{M}_{H}/\mathcal{M}_{C}$ version of conjecture of Proudfoot
[Pro14]:

Question 4.1. Suppose Hyp(M) $\# G$ is good.
(1) Are there natural isomorphisms of graded vector spaces?

$H\check{P}_{0}(\mathcal{M}_{H})\cong IH^{*}(\mathcal{M}_{C}) , HP_{0}(\mathcal{M}_{C})\cong IH^{*}(\mathcal{M}_{H})$ .

Here the grading of the left hand sides are given by the $\mathbb{C}^{\cross}$ -action.
(2) Let $\mathcal{A}_{\hslash}(\mathcal{M}_{H})$ , $\mathcal{A}_{\hslash}(\mathcal{M}_{C})$ be the quantization of $\mathbb{C}[\mathcal{M}_{H}],$ $\mathbb{C}[\mathcal{M}_{C}]$ respectively.

Are there natural isomorphisms of graded vector spaces?

$HH_{0}(\mathcal{A}_{\hslash}(\mathcal{M}_{H}))\cong IH_{\mathbb{C}^{x}}^{*}(\mathcal{M}_{C}) , HH_{0}(\mathcal{A}_{\hslash}(\mathcal{M}_{C}))\cong IH_{\mathbb{C}^{x}}^{*}(\mathcal{M}_{H})$ .

Here $HH_{0}$ denote the zero-th Hochschild homology group, i.e., the quotient of
the quantization by the span of its commutator.

The quantization $\mathcal{A}_{h}(\mathcal{M}_{H})$ is defined under the assumption that $M$ is of cotan-
gent type, i.e., $M=N\oplus N^{*}$ for a $G$-module N. Then we consider the ring $\mathcal{D}_{\hslash}(N)$

of $\hslash$-differential operators on $N$ , and define $\mathcal{A}_{\hslash}(\mathcal{M}_{H})$ as its quantum hamiltonian
reduction by $G$ . The Coulomb branch $\mathcal{M}_{C}$ is expected to have a quantization
always as a $\mathbb{C}^{\cross}$ -equivariant homology group in (1.2), where $\mathbb{C}^{x}$ acts on $\mathcal{F}$ through
the $\mathbb{C}^{x}$ -action on $\Sigma=\mathbb{P}^{1}$ . Here $\hslash$ appears as $H_{\mathbb{C}^{\cross}}^{*}$ (pt) $=\mathbb{C}[\hslash].$
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This question is well formulated except the meaning of the naturality, which we
do not discuss here. If we do not assume the good condition, we easily find couter-
examples anyway, as we have many cases with $\mathcal{M}_{H}=\{0\}$ , while $\mathcal{M}_{C}$ is nontriv-
ial. In this case, $\mathcal{M}_{C}$ is expected to be smooth, hence $IH^{*}(\mathcal{M}_{C})\cong H^{*}(\mathcal{M}_{C})$ ,
$HP_{0}(\mathcal{M}_{C})\cong H^{\dim \mathcal{M}_{C}}(\mathcal{M}_{C})$ . These cohomology groups are often nontrivial.

In order to exclude these cases, we have assumed the good condition.

5. (COUNTER) EXAMPLES

5(i). Quiver gauge theories of type $ADE$ . Let us consider a quiver gauge
theory (see [Nak15, 2(iv)]). We follow the notation there. We first suppose
$W=$ O. Note that scalars in $G= \prod_{i\in Q_{0}}GL(V_{i})$ act trivially on M. We need
$M$ is a faithful representation in Question 3.2 for the Higgs branch. Also the
embedding $\lambda:\mathbb{C}^{\cross}arrow G$ of scalars gives $\triangle(\lambda)=0$ . Therefore $\mathcal{M}_{C}$ is never conical.
Therefore we replace $G$ by $\prod_{i\in Q_{0}}GL(V_{i})/\mathbb{C}^{\cross}$ We also assume that the support
$\{i\in Q_{0}|\dim V_{i}\neq 0\}$ of $\dim V$ is connected, as $M$ is not faithful otherwise. We
write the dimension vector $\dim V$ by $v.$

We first assume that the quiver $Q=(Q_{0}, Q_{1})$ is of type $ADE$ . The Coulomb
branch $\mathcal{M}_{C}$ is the moduli space of centered $ADE$ monopoles on $\mathbb{R}^{3}$ where $v$ is the
corresponding monopole charge $([HW97] for$ type $A, [Ton99] in genera1^{4})$ . This
is a smooth symplectic manifold. By [Don84, Hur89, Jar98], it is the same as
the moduli space of centered based rational maps from $\mathbb{P}^{1}$ to the flag manifold of
type $ADE$ . The definition in [BFN15] produces $\mathcal{M}_{C}$ as this moduli space.

On the other hand, consider the Higgs branch $\mathcal{M}_{H}$ . It is known that any
element in $\mu^{-1}(O)$ is automatically nilpotent for $ADE$ quivers [Lus90]. Therefore
the only closed orbit in $\mu^{-1}(O)$ is $0$ . (See also [Nak94, Prop. 6.7].) Therefore the
answer to Question 2.2 is yes.

Proposition 5.1. $\mu^{-1}(O)$ is complete intersection of dimension $\dim$M–dim $G$

if and only if $v$ is a positive root.

Proof. By the criterion in [CBOI, Th. 1.1], $\mu^{-1}(O)$ is complete intersection of
$\dim=\dim$M–dim $G$ if and only if

(5.2)
$2- \langle v, Cv\rangle\geq\sum_{k}(2-\langle\beta^{(k)}, C\beta^{(k)}\rangle)$

for any decomposition $v=\sum\beta^{(k)}$ such that $\beta^{(k)}$ is a positive root (or equivalently
nonzero positive vector). Here $C=(2\delta_{ij}-a_{ij})$ with $a_{ij}$ , the number of edges
(regardless of orientation) between $i$ and $j$ if $i\neq j$ , and its twice if $i=j.$
(The latter does not occur for type $ADE.$ ) Since we are assuming $Q$ is of type
$ADE$ , the right hand side is always O. On the other hand, the left hand side is
nonpositive, and is zero if and only if $v$ is a positive root. $\square$

$4The$ author thanks Vasily Pestun who explained this statement to a collaborator of [BFN15].
It is compatible with his work with Nekrasov of $4d$ quiver gauge theories [NP12].
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Next let us study $\Delta(\lambda)$ in (3.1). We take a maximal torus $T= \prod_{i}T(V_{i})/\mathbb{C}^{\cross},$

where $T(V)$ is the diagonal subgroup of GL(V) and consider $\lambda:\mathbb{C}^{\cross}arrow T$ . Ac-
cording to weights on $\oplus_{i}V_{i}$ , we decompose $V=V^{(1)}\oplus V^{(2)}\oplus\cdots$ such that $\lambda(t)$

acts on $t^{\lambda^{(k)}}$ on $V^{(k)}$ . Set $\beta^{k}=(\beta_{i}^{(k)})=(\dim V_{i}^{(k)})$ . Then

$2 \triangle(\lambda)=\sum_{k<l}|\lambda^{(k)}-\lambda^{(\iota)}|(\sum_{i}-2\beta_{i}^{(k)}\beta_{i}^{(l)}+\sum_{i,j}a_{ij}\beta_{i}^{(k)}\beta_{j}^{(l)})$

(5.3)

$=- \sum_{k<l}|\lambda^{(k)}-\lambda^{(l)}|\langle\beta^{(k)}, C\beta^{(l)}\rangle.$

Suppose that $v$ is not a positive root. We decompose $v$ as sum $\sum\beta^{(k)}$ of
positive roots $\beta^{(k)}$ so that any combination $\beta^{(k)}+\beta^{(l)}$ is not a root. Then $4\leq$

$\langle\beta^{(k)}+\beta^{(l)},$ $C(\beta^{(k)}+\beta^{(l)})\rangle=\langle\beta^{(k)},$ $C\beta^{(k)}\rangle+\langle\beta^{(l)},$ $C\beta^{(l)}\rangle+2\langle\beta^{(k)},$ $C\beta^{(l)}\rangle=4+$

$2\langle\beta^{(k)},$ $C\beta^{(l)}\rangle$ for $k\neq l$ . Therefore $\langle\beta^{(k)},$ $C\beta^{(l)}\rangle\geq$ O. Hence $2\Delta(\lambda)\leq 0$ , so the
gauge theory is not good or ugly. Therefore the answer to Question 3.2 is yes.

Let us continue to study $\triangle(\lambda)$ .

Proposition 5.4. Hyp(M) $\mathscr{H}G$ is never good.

Proof Take a decomposition $v=\beta^{1}+\beta^{2},$ $\beta^{1}=v-\alpha_{i},$ $\beta^{2}=\alpha_{i}$ , we find $2\triangle(\lambda)=$

$-|\lambda^{(1)}-\lambda^{(2)}|(\langle\alpha_{i}, Cv\rangle-2)$ . We have $2\triangle(\lambda)>1$ for $\lambda$ of this form if and $oi_{1}1y$ if
$\langle\alpha_{i},$ $Cv\rangle\leq 0$ . But this is never possible unless $v=0.$ $\square$

Suppose $Q$ is of type $A$ and $v$ is a positive root. Then $G$ is a torus and
$2\triangle(\lambda)>0$ unless $\lambda=$ O. Therefore Hyp(M) $\# G$ is ugly. It is also possible to
check Hyp(M) ff $G$ is ugly if $Q$ is of type $D$ and $v$ is positive root as follows.

Suppose $Q$ is of type $D_{\ell}$ . We consider the case $v=(12\ldots 2_{1}^{1})$ , other cases

are similar. We represent a coweight $\lambda$ as an integer vector $(\lambda^{1},$ $\lambda_{1}^{2},$ $\lambda_{2}^{2},$

$\ldots,$

$\lambda_{1}^{\ell-2},$ $\lambda_{2}^{\ell-2},$ $\lambda^{l-1},$ $\lambda^{\ell})$ . We have

$2 \Delta(\lambda)=-2\sum_{p=2}^{\ell-2}|\lambda_{1}^{p}-\lambda_{2}^{p}|+|\lambda^{1}-\lambda_{1}^{2}|+|\lambda^{1}-\lambda_{2}^{2}|+\sum_{p=2}^{\ell-3}\sum_{a_{:}b=1}^{n}|\lambda_{a}^{p}-\lambda_{b}^{p+1}|$

$+ \sum_{p=\ell-1,\ell}|\lambda_{1}^{l-2}-\lambda^{p}|+|\lambda_{2}^{\ell-2}-\lambda^{p}|.$
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We use

$2| \lambda_{1}^{2}-\lambda_{2}^{2}|\leq|\lambda^{1}-\lambda_{1}^{2}|+|\lambda^{1}-\lambda_{2}^{2}|+\frac{1}{2}\sum_{a,b=1}^{2}|\lambda_{a}^{2}-\lambda_{b}^{3}|,$

$2| \lambda_{1}^{p}-\lambda_{2}^{p}|\leq\frac{1}{2}\sum_{a.b=1}^{2}|\lambda_{a}^{p-1}-\lambda_{b}^{p}|+\frac{1}{2}\sum_{a,b=1}^{2}|\lambda_{a}^{p}-\lambda_{b}^{p+1}|$ $(p=3, \ldots, \ell-3)$ ,

$2| \lambda_{1}^{\ell-2}-\lambda_{2}^{l-2}|\leq\frac{1}{2}\sum_{a,b=1}^{2}|\lambda_{a}^{\ell-3}-\lambda_{b}^{\ell-2}|+\sum_{p=\ell-1,\ell}|\lambda_{1}^{\ell-2}-\lambda^{p}|+|\lambda_{2}^{p-2}-\lambda^{p}\}.$

$(In$ fact, $p=\ell-1 is$ enough $in the$ second $sum in the$ last equality. $)$ Taking sum,
we find $2\triangle(\lambda)\geq 0$ and the equality holds if and only if all entries of $\lambda$ are the
same, i.e., it is zero as a coweight of $\prod_{i}GL(V_{i})/\mathbb{C}^{\cross}$ Therefore it is ugly.

We do not know for exceptional cases, though it is a finite check.

5(ii). Affine types. Next suppose the underlying graph is of type affine $ADE$

with $W=0$ . In this case, the Coulomb branch $\mathcal{M}_{C}$ is conjecturally the moduli
space of calorons, in other words, instantons on $\mathbb{R}^{3}\cross S^{1}$ The charge is again
given by $v$ . More precisely we need two modifications: a) We take the symplectic
reduction by $\mathbb{C}^{x}$ , the action induced from $\mathbb{C}^{\cross}$ -action on the base $\mathbb{R}^{3}\cross S^{1}=\mathbb{C}^{\cross}\cross \mathbb{C}.$

b) We take the Uhlenbeck partial compactification like in case of $\mathbb{R}^{4}$ . Therefore
$\mathcal{M}_{C}$ has a stratification

(5.5) $\mathcal{M}_{C}(v)=\sqcup \mathcal{M}_{\mathring{C}}(v-|v|\delta)\cross S_{\nu}(\mathbb{R}^{3}\cross S^{1})_{c},$

where $\delta$ is the primitive imaginary root vector, $\mathcal{M}_{\mathring{C}}(v-|\nu|\delta)$ denotes the moduli
space of genuine calorons with charge $v-|\nu|\delta$ , and $S_{\nu}(\mathbb{R}^{3}\cross S^{1})$ is a stratum of the
symmetric product of $\mathbb{R}^{3}\cross S^{1}$ given by a partition $v$ , and $S_{\nu}(\mathbb{R}^{3}\cross S^{1})_{c}$ means the
symplectic reduction by the $\mathbb{C}^{\cross}$ -action. Therefore the strata are parametrized by
partitions $v$ such that $v-|v|\delta$ is nonnegative.

This result remains true for Jordan quiver. It corresponds to $U(1)$-calorons,
and there is no genuine calorons. Therefore the Coulomb branch is expected to
be $S^{\dim V}(\mathbb{R}^{3}\cross S^{1})_{c}=\sqcup S_{\nu}(\mathbb{R}^{3}\cross S^{1})_{c}$ . (It is confirmed in [BFN15].)

Moreover

(a) The stratum in (5.5), replaced by $\mathcal{M}_{C}(v-|\nu|\delta)\cross\prod S^{v_{k}}(\mathbb{R}^{3}\cross S^{1})_{c}$ for
$\nu=(1^{v_{1}}2^{v_{2}}\ldots)$ , is the Coulomb branch of the quiver gauge theory, where
the graph is the disjoint union of the original $Q$ and copies of the Jordan
quiver with the dimension vector $v-|\nu|\delta,$ $\nu_{1},$ $\nu_{2}$ , . . . respectively.

(b) The transversal slice is the product of centered $ADE$ instanton moduli
spaces on $\mathbb{R}^{4}$ with instanton numbers $\nu_{1},$ $v_{2}$ , . . . . If we ignore the centered
condition, it is the Coulomb branch of the quiver gauge theory, where the
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quiver is the disjoint union of copies of the original $Q$ with the dimension
vectors $(v, w)=(\delta, \delta_{0i})$ , . . ., $(2\delta, \delta_{0i})$ , . . ., . . . . See [Nak15, 1 (vii) and $3(i)$ ].

Remark 5.6. For affine type $A$ , the moduli space of calorons is isomorphic to
the moduli space of framed locally free parabolic sheaves on $\mathbb{P}^{1}\cross \mathbb{P}^{1}$ . (See
[CH10, CH08] and [Tak15].) This is expected to be true for any affine type
if we replace locally free parabolic sheaves by principal $G_{ADE}$-bundles with para-
bolic structures. The definition of [BFN15] gives this moduli space for affine type
$A$ , and conjecturally in general.

Let us consider $\mathcal{M}_{H}=\mu^{-1}(0)\parallel G$ . A closed $G$-orbit corresponds to a semisim-
ple representation of the preprojective algebra of type affine $ADE$ . By [CBOI], we
have the classification of simple representations: they are either $S_{i}$ (one dimen-
sional at the vertex i) or have dimension $\delta$ . In the latter case, $\mathcal{M}_{H}$ is a particular
case of Kronheimer’s construction [Kro89], and is $\mathbb{R}^{4}/\Gamma$ for a finite subgroup
$\Gamma\subset SL(2)$ corresponding to the affine $ADE$ graph. The origin corresponds to
a dircct sum of $S_{i}’ s$ , but any point except the origin is a simple representation.
Since semisimple representation is a direct sum of simple representations, we have
a stratification

(5.7) $\mathcal{M}_{H}(v)=\sqcup S_{\nu}(\mathbb{R}^{4}\backslash \{0\}/\Gamma)$ ,

where $v$ is a partition such that $v-|\nu|\delta$ is nonnegative. Here we have a direct
sum of $S_{i}$ ’s corresponding to $v-|\nu|\delta$ . It corresponds to the ‘origin’ in $\mathbb{R}^{4}.$

A semisimple representation of the preprojective algebra for the Jordan quiver
is a pair of commuting semisimple matrices. Hence $\mu^{-1}(0)\parallel G=S^{n}(\mathbb{C}^{2})=$

$\sqcup S_{\nu}(\mathbb{R}^{4})$ . Therefore we have the same result for the Jordan quiver.

(c) The stratum in (5.7), replaced by $S^{\nu_{1}}(\mathbb{R}^{4}/\Gamma)\cross S^{\nu_{2}}(\mathbb{R}^{4}/\Gamma)\cross\cdots$ , is the
Higgs branch of the quiver gauge theory in (b) above. The quiver is
the disjoint union of copies of $Q$ , the dimension vectors are (v, w) $=$

$(\nu_{1}\delta, \delta_{0i})$ , $(\nu_{2}\delta, \delta_{0i})$ , . . . .
(d) The transversal slice is the product

Here $S_{0}^{n}(\mathbb{R}^{4})$ is the nth centered symmetric power, i.e., $\{(x_{1}, \ldots, x_{n})$ mod
$S_{n}| \sum x_{i}=0\}$ . If we ignore the centered condition, it is the Higgs branch
of the quiver gauge theory in (a) above. The quiver is the union of $Q$ and
copies of the Jordan quiver, the dimension vector is $v-|\nu|\delta,$

$\check{\nu_{1}times}\delta,,\ldots,$ $\check{\nu_{2}times}2\delta,\ldots,$

In fact, for (d), we can put the centered condition, namely we impose that
endomorphisms of $\mathbb{C}^{k}$ in $M$ are trace-free. Since Coulomb branches are unchanged
if we add trivial representations to $M$ , we can do the same for (a).
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Comparing two stratifications, we find that answers to Question 2.1(1),(2) are
yes, but (3) is no. The most natural order-reversing bijection is $\nuarrow\nu^{t}$ , but
the dimension vectors do not match in (a), (d) and (b), (c) respectively. Even
ignoring the ordering, it seems we do not have a ‘natural bijection compatible
with the change of dimension vectors. In fact, special leaves have only $v=(1)^{5}$

hence we have an order-reversing bijection on special leaves.
These examples presents a difficulty to generalize the description of Coulomb

branches for general type quiver gauge theories. It is a partial compactification of
the space of based maps from $\mathbb{P}^{1}$ to the corresponding Kac-Moody flag manifold.
We need to add ‘defects’ which correspond to semisimple representations of the
corresponding preprojective algebra. Such a partial compactification has not been
studied before, as far as the author knows.

The answer to Question 3.2 is yes thanks to the following:

Proposition 5.8. (1) $\mu^{-1}(O)$ is complete intersection of dimension $\dim M-$

$\dim G$ if and only if $v$ is either $\alpha,$
$\delta-\alpha$ or $\delta$ , where $\alpha$ is a positive root of the

root system of finite $ADE$ type, obtained from $Q$ by removing the $0$ -vertex.
(2) If Hyp(M) $\mathscr{H}G$ is good or ugly, $v$ is either of the above form.
(3) If Hyp(M) $\mathscr{H}G$ is good, $v$ is $\delta.$

Proof. (1) We can use the criterion (5.2) above. If $\beta^{(k)}$ is an imaginary (resp. $a$

real) root, $\langle\beta^{(k)},$ $C\beta^{(k)}\rangle=0$ (resp. $=2$ ). Also positive roots are $n\delta+\alpha(n\geq 0)$ ,
$n\delta-\alpha(n>0)$ , $n\delta(n>0)$ for a positive root $\alpha$ of the underlying finite root
system. We see that dimension vectors $\alpha,$

$\delta-\alpha,$ $\delta$ give complete intersection.
(2) We use the same argument as in finite type case using (5.3). If $v$ is not

a positive root, we have a decomposition $v=\sum\beta^{(k)}$ such that $\langle\beta^{(k)},$ $C\beta^{(l)}\rangle\geq 0$

for $k\neq l$ as before: We have $\langle\beta,$ $C\beta\rangle\geq 0$ . It is equal to $0$ (resp. 2 if and only $\beta$

is an imaginary (resp. a real) root. Therefore $2\triangle(\lambda)\leq 0$ , so the gauge theory is
not good or ugly.
If $v=n\delta+\alpha$ for a positive root $\alpha$ of the underlying finite root system and

$n>0$ , we take the decomposition $\beta^{(1)}=n\delta,$ $\beta^{(2)}=\alpha$ . Then $\langle\beta^{(1)},$ $C\beta^{(2)}\rangle=$ O.
Similarly, for $v=n\delta-a$ for $n>1$ , we take $\beta^{(1)}=(n-1)\delta,$ $\beta^{(2)}=\delta-\alpha$ to deduce
a contradiction. For $v=n\delta$ with $n>1$ , consider $\beta^{(1)}=(n-1)\delta,$ $\beta^{(2)}=\delta.$

(3) If $v=\alpha$ or $\delta-\alpha$ , it is a quiver gauge theory of type $ADE$ . Therefore
Proposition 5.4 implies that it is not good. $\square$

For affine type $A$ , we see that Hyp(M) $\# G$ is good if $v=\delta$ . It is probably true
in general. Assuming it, we have $\mathcal{M}_{H}=\mathbb{C}^{2}/\Gamma$ , where $\Gamma$ is a finite subgroup of
SL(2) corresponding to $Q$ . In view of Question 4.1, it is interesting to compute
$IH^{*}(\mathcal{M}_{C})$ , $HP_{0}(\mathcal{M}_{C})$ .

5(iii). Quiver gauge theories with $W\neq 0$ . Let us turn to quiver gauge the-
ories with $W\neq$ O. We take two $Q_{0}$-graded vector spaces $V,$ $W$ . We take

$5The$ author thanks Ben Webster for an explanation of this result.
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$G= \prod_{i}GL(V_{i})$ unlike the case $W=$ O. When $W\neq 0$ , we can deform and
take (partial) resolution of the Coulomb branch. But we set the parameter to
be $0$ , and consider the most singular Coulomb branch. We denote the dimension
vector $\dim W$ by $w.$

Assume the underlying graph is of type $ADE$ . In [Nak15, 3(ii)], it was con-
jectured that the Coulomb branch is the moduli space of $S^{1}$ -equivariant ADE-
instantons on $\mathbb{R}^{4}$ where $w$ (resp. w–Cv) corresponds to the coweight $\lambda$ (resp.
$\mu)$ : $S^{1}arrow G_{ADE,c}$ giving the $S^{1}$ -action on the fiber at $0$ (resp. $\infty$ ). Here $C$ is
the Cartan matrix. This can be true only if $\mu=$ w–Cv is dominant, as the
$S^{1}$-action on the fiber corresponds to a dominant coweight.

After reading the preprint [BDG15], which appears in arXiv shortly after
[Nak15] and then looking at the original physics literature [CK98], the author
understand that the conjecture must be corrected. Namely the Coulomb branch
is the moduli space of singular $ADE$-monopoles on $\mathbb{R}^{3}$ . In order to connect with
the previous conjecture, let us recall that singular monopoles are $S^{1}$-equivariant
instantons on the Taub-NUT space [Kro85]. The Taub-NUT space and $\mathbb{R}^{4}$ are
both $\mathbb{C}^{2}$ as a holomorphic symplectic manifold, but the Riemannian metrics are
different. It is expected that moduli spaces of $S^{1}$-equivariant instantons on two
spaces are isomorphic as holomorphic symplectic manifolds when $\mu$ is dominant,

but the Taub-NUT case has more general moduli spaces, as we do not need to as-
sume $\mu$ is dominant. (It corresponds to the monopole charge.)6 The definition in
[BFN15] produces a certain moduli space of bundles over $\mathbb{P}^{1}$ , which conjecturally
isomorphic to the moduli space of singular monopoles.

Let us describe the stratification on $\mathcal{M}_{C}$ . As in the case with $W=0$ , we
need to consider the Uhlenbeck partial compactification of the moduli space of
instantons. Since we are considering $S^{1}$-equivariant instantons, the bubbling only

occurs at $0$ , the $S^{1}$ -fixed point in the Taub-NUT space. (A bubbled instanton is

defined over $\mathbb{R}^{4}.$ ) The remained $S^{1}$-equivariant instanton has a different dominant
coweight for the $S^{1}$ -action on the fiber at O. But the coweight for $\infty$ is unchanged.
Therefore

$\mathcal{M}_{C}(\mu, \lambda)=\sqcup \mathcal{M}_{\mathring{C}}(\mu, \lambda\lambda’:dominant\mu\leq\lambda’\leq\lambda$

where $\mathcal{M}_{\mathring{C}}(\mu, \lambda’)$ denote the moduli space of genuine $S^{1}$-equivariant instantons
with 1) the monopole charge $\mu$ , and 2) the coweight $\lambda’$ for the $S^{1}$ -action at O.

For example, $\lambda’=\lambda$ is the open stratum, and the minimum $\lambda’\geq\mu$ is the closed
stratum.

The stratum (resp. the transversal slice) is the Coulomb branch of the quiver
gauge theory of the same type with the dimension vectors given by $(\mu, \lambda’)$ (resp.
$(\lambda’,$

$\lambda$

$6The$ author thanks Sergey Cherkis for his explanation on instantons on (multi-)Taub-NUT

spaces, a.k. $a$ . bow varieties over years.
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Let us consider the Higgs branch $\mathcal{M}_{H}=\mu^{-1}(0)$ . It is a quiver variety of type
$ADE$, and the stratification is given [Nak94, Prop. 6.7] as in \S 2(i):

$\mathcal{M}_{H}(\mu, \lambda)= \sqcup \mathcal{M}_{H}^{o}(\mu’, \lambda)$ ,
$\mu’$ : dominant

$\mu\leq\mu’\leq\lambda$

where $\mathcal{M}_{H}^{o}(\mu’, \lambda)=\mathfrak{M}_{0}^{reg}(v^{(0)}, w)$ with $\lambda=w,$ $\mu’=w-Cv^{(0)}$ in the notation in
[Nak94]. For example, $\mu’=\lambda$ is the closed stratum and the maximum $\mu’\leq\lambda$ is
the open stratum.

The stratum (resp. the transversal slice) is the Higgs branch of the quiver gauge
theory of the same type with the dimension vectors given by $(\mu’, \lambda)$ (resp. $(\mu,$

$\mu$

Comparing two stratifications, we find that the answer to Question 2.1 is yes.
The bijection is simply given by $\lambda’=\mu’.$

There should be a similar stratification for quiver gauge theories of affne types,
where $\mathcal{M}_{C}$ is a moduli space of $\mathbb{Z}/\ell \mathbb{Z}$-equivariant instantons on the Taub-NUT
space, where $\ell$ is the level of $\dim W$ . But the author is not familiar enough with
such a moduli space, and in particular, it is not clear whether a puzzle on the
affine Dynkin diagram automorphism group raised in [Nak15, 3(ii)] is clarified
or not. When $\mu$ is dominant and $Q$ is of type $A$ , we can consider equivariant
instantons on $\mathbb{R}^{4}$ instead. Then we get quiver varieties of affine type $A$ . Then
answers to Question 2.1(1),(2) are yes, while we have the same phenomenon as
in $W=0$ case for (3).

Let us turn to Question 3.2. The answer is yes thanks to

Proposition 5.9. Suppose $Q$ is finite or affine type.
(1) If $Hyp(M)\mathscr{H}G$ is good or ugly, $\mu^{-1}(O)$ is complete intersection of dimension

$\dim$M–dim $G.$

(2) If Hyp(M) $\mathscr{H}G$ is good, w–Cv is dominant.

Proof. Crawley-Boevey’s criterion of the complete intersection property of $\mu^{-1}(O)$

can be modified by the trick adding a new vertex $\infty$ . Then instead of (5.2), we
have

(5.10) $\langle v, 2w-Cv\rangle\geq\langle v^{(0)}, 2w-Cv^{(0)}\rangle+\sum_{k}(2-\langle\beta^{(k)}, C\beta^{(k)}\rangle)$

for any decomposition $v=v^{(0)}+\sum_{k}\beta^{(k)}$ into positive vectors such that $\beta^{(k)}$ is
nonzero. ( $\dim V^{(0)}$ could be zero.) (See [Nak09, Th. 2.15] for a similar deduction.)
It is also equivalent to the inequality holds for $v=v^{(0)}+\sum_{k}\beta^{(k)}$ such that
$w-Cv^{(0)}$ is a weight of the highest weight representation $V(w)$ with highest
weight $w$ , and $\beta^{(k)}$ is a positive root.
If $Q$ is of finite type $ADE,$ $\langle\beta^{(k)},$ $C\beta^{(k)}\rangle=2$ for any $k$ . Therefore (5.10) is

equivalent to

(5.11) $\langle\beta, w-Cv\rangle\geq-\frac{1}{2}\langle\beta, C\beta\rangle$

71



for any $\beta\leq v$ such that $w-C(v-\beta)$ is a weight of $V(w)$ .
Taking a positive root $\beta$ , we have $\langle\beta,$ $w-Cv\rangle\geq-1$ . Next suppose $\beta=$

$\beta^{(1)}+\beta^{(2)}+\cdots$ such that $\beta^{(k)}$ is a positive root and $\beta^{(k)}+\beta^{(l)}$ is not a root.
Then $\langle\beta^{(k)},$ $C\beta^{(l)}\rangle\geq 0$ as in \S 5(i). Therefore $\langle\beta,$ $C\beta\rangle\geq 2\#\{\beta^{(k)}\}$ . Therefore if
$\langle\beta^{(k)},$ $w-Cv\rangle\geq-1$ for any $k$ , we have $\langle\beta,$ $w-Cv\rangle\geq-\#\{\beta^{(k)}\}\geq-\frac{1}{2}\langle\beta,$ $C\beta\rangle.$

Hence it is enough to suppose (5.11) is true for an arbitrary positive root $\beta.$

Suppose $Q$ is of affine type. If $\beta^{(k)}=\delta$ in (5.10), we absorb it into $v^{(0)}$ . Since
$C\delta=0$ , the first term of the right hand side of (5.10) increases $2\langle\delta,$ $w\rangle$ , which is
$\geq 2$ . On the other hand, the second term decreases by 2. Therefore it is enough
to assume (5.10) when all $\beta^{(k)}$ is a real root. Then the same argument as above
shows that it is enough to assume $\langle\beta,$ $w-Cv\rangle\geq-1$ for an arbitrary positive
real root $\beta.$

On the other hand, let us take $\lambda:\mathbb{C}^{\cross}arrow T=\prod_{i}T(V_{i})$ as in (5.3). Then if $\lambda(t)$

acts on $t^{\lambda^{(k)}}$ on $V^{(k)},$

$2 \triangle(\lambda)= \sum_{k<l}|\lambda^{(k)}-\lambda^{(l)}|(\sum_{i}-2\beta_{i}^{(k)}\beta_{i}^{(l)}+\sum_{i,j}a_{ij}\beta_{i}^{(k)}\beta_{j}^{(l)})$

(5.12) $+ \sum|\lambda^{(k)}|\sum\beta_{i}^{(k)}\dim W_{i}$

$k$ $i$

$=- \sum|\lambda^{(k)}-\lambda^{(l)}|\langle\beta^{(k)}, C\beta^{(l)}\rangle+\sum|\lambda^{(k)}|\langle\beta^{(k)}, w\rangle$

$k<l k$
with $\beta^{(k)}=\dim V^{(k)}$ . We take $\beta^{(1)}=\beta$ a positive real root, and $\beta^{(2)}=v-\beta.$

Furthermore assume $\lambda^{(1)}\geq\lambda^{(2)}\geq 0$ . Then

$2\Delta(\lambda)=\lambda^{(1)}\langle\beta$ , w–C$(v-\beta)\rangle+\lambda^{(2)}\langle w+C\beta,$ $v-\beta\rangle.$

For good or ugly cases, as $2\triangle(\lambda)\geq 1$ for any $\lambda$ , we have $\langle\beta,$ $w-C(v-\beta)\rangle\geq 1,$

i.e., $\langle\beta,$ $w-Cv\rangle\geq-1$ . For good cases, $\langle\beta,$ $w-Cv\rangle\geq 0.$ $\square$

The converses of (1),(2) are probably true.
Suppose Hyp(M) $\# G$ is good. By Proposition 5.9(2), w–Cv is dominant,

hence $\mathcal{M}_{C}$ is expected to be a slice in the affine Grassmannian when $Q$ is finite
type, as we explained in the beginning of this subsection. When $Q$ is affine type,
we still need to solve a puzzle in [Nak15, 3(ii)], but is the Uhlenbeck partial com-
pactification of an instanton moduli space on $\mathbb{R}^{4}/(\mathbb{Z}/\ell \mathbb{Z})$ as a first approximation.
Then $IH^{*}(\mathcal{M}_{C})$ is a weight space of a finite dimensional irreducible representa-
tion of the Lie algebra $\mathfrak{g}$ corresponding to $Q$ by geometric Satake correspondence.
This is so when $Q$ is of finite type. If $Q$ is affine type, this is the statement of a
conjecture in [BF10], geometric Satake correspondence for the affine Lie algebra
$\mathfrak{g}_{aff}.$

On the other hand, $\mathcal{M}_{H}$ is a quiver variety. In particular, $\mathcal{M}_{H}$ has a symplec-

tic resolution $\tilde{\mathcal{M}}_{H}arrow \mathcal{M}_{H}$ . It is conjectured that $HP_{0}(\mathcal{M}_{H})\cong H^{\dim\tilde{\mathcal{M}}_{H}}(\tilde{\mathcal{M}}_{H})$
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in [ES14]. The right hand side is a weight space of a finite dimensional or in-
tegrable irreducible representation of $\mathfrak{g}$ or $\mathfrak{g}_{aff}$ by [Nak94]. Therefore, modulo a
conjecture in [ES14], we have $HP_{0}(\mathcal{M}_{H})\cong IH^{*}(\mathcal{M}_{C})$ , the first isomorphism in
Question 4.1. We also expect $HP_{0}(\mathcal{M}_{C})\cong IH^{*}(\mathcal{M}_{H})$ , where the right hand side
is the multiplicity of the finite dimensional (resp. integrable) irreducible repre-
sentation $L(w-Cv)$ of $\mathfrak{g}$ (resp. $\mathfrak{g}_{aff}$ ) in the (resp. affine) Yangian $Y(\mathfrak{g})$ (resp.
$Y(\mathfrak{g}_{aff}))$ [NakOl, \S 15]. It is interesting to study $HP_{0}(\mathcal{M}_{C})$ .

5(iv). SU(2) gauge theories with fundamental matters. Consider $(G, N)=$

(SL(2), $(\mathbb{C}^{2})^{\oplus N}$ ) with $M=N\oplus N^{*}$ for $N=0$ , 1, 2, . . . . In this case, the Coulomb
branch is a complex surface

(5.13) $y^{2}=x^{2}z-z^{N-1}$ if $N\geq 1,$ $y^{2}=x^{2}z+x$ if $N=0.$

See [SW97]. This is of cotangent type, and the definition in [BFN15] reproduces
the above at least for $N\neq 1$ , 2, 3. The degrees for the $\mathbb{C}^{\cross}$ -action are $\deg x=N-2,$

$\deg y=N-1,$ $\deg z=2.$

Let us study the Higgs branch $M///G$ . We use the standard notation for quiver
varieties: $i:\mathbb{C}^{N}arrow \mathbb{C}^{2},$ $j:\mathbb{C}^{2}arrow \mathbb{C}^{N}$ with the $SL(2)$ -action by $g\cdot(i, j)=(9^{i,jg^{-1})}.$

The moment map $\mu(i, j)$ is the trace-free part of $ij$ . If $N=0$ , we have $M///G=$

$\{O\}$ by a trivial reason. If $N=1$ , it is not trivial, but not difficult to check the
following:

Lemma 5.14. Suppose $N=1.$

Then $\mu=0$ implies either $i=0$ or $j=$ O. In particular, the only, closed
$SL(2)$ -orbit in $\mu^{-1}(O)$ is just O. Therefore $M///G=\{0\}.$

Therefore $\mu^{-1}(O)$ is not complete intersection of $\dim=\dim$M–dim $G=1.$

The degree of $x$ is $-1$ , hence $\mathcal{M}_{C}$ is not conical.
On the other hand, since the Higgs branch has only single point, $\mathcal{M}_{C}(G, N)$

should have only one stratum, i.e., it is a nonsingular symplectic manifold. It
is not difficult to check that (5.13) is indeed so when $N=0$ , 1. Therefore
Question 2.2 is affirmative.

Next consider the case $N\geq 2.$

Proposition 5.15. Assume $N\geq 2.$

(1) $\mu^{-1}(O)$ is a complete intersection in $M$ of $\dim=\dim$M–3 $=4N-3$ . It
is irreducible if $N\geq 3$ and has two irreducible components if $N=2.$

(2) $M///G=\mu^{-1}(0)\parallel G$ has singularity only at O. $M///G\backslash \{O\}$ is irreducible if
$N>2$ and has two irreducible components if $N=2.$

Since the gauge theory Hyp(M) $\# G$ is good or ugly if and only if $N\geq 3$ , so
the answer to Question 3.2 is yes, but $N=2$ is a counter-example to its converse.

Proof. (1) From $\mu(i,j)=0$ , we have $ij=\zeta$ id for some $\zeta\in \mathbb{C}$ . Suppose $\zeta\neq 0.$ $A$

standard argument shows that the stabilizer is trivial. Therefore the differential
of $\mu$ is surjective, hence $\mu^{-1}(O)$ is a complete intersection. If we take the quotient
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of $ij=\zeta$ id by GL(2), it is a quiver variety $\mathfrak{M}_{\zeta}$ and is smooth and irreducible and
forms a smooth family over $\zeta\neq 0$ . (In fact, it is a semisimple coadjoint orbit in
$\mathfrak{g}1(N)$ with eigenvalues $\lambda$ with multiplicity 2 and $0$ with multiplicity $N-2.$ )
If $i$ is surjective, we can form the (GIT) quotient even across $\zeta=0$ and get a

smooth family over $\zeta\in \mathbb{C}$ . The same is true if $j$ is injective. Therefore on the
open subset either of $i$ or $j$ is rank 2, $\mu^{-1}(O)$ is a smooth irreducible variety of
$\dim=4N-3.$

Therefore consider the case when both $i,$ $j$ have rank $\leq 1$ . This can happen
only when $\zeta=0$ . Let us write

$i=(\begin{array}{llll}i_{11} i_{12} \cdots i_{1N}i_{21} i_{22} \cdots i_{2N}\end{array}), j=(\begin{array}{ll}j_{11} j_{12}\vdots \vdots j_{N1} i_{N2}\end{array})$

Since $i$ is rank 1, the upper row and the lower row are the same up to constant
multiple. The same is true for columns of $j$ . Then the equation $ij=0$ is a single
scalar equation. Therefore it forms an irreducible variety of dimension $2N+1.$

Since $2N+1\leq 4N-3$ and the equality holds if and only if $N=2$ , the assertion
follows.

(2) We suppose $(i, j)\in\mu^{-1}(O)$ corresponds to a singular point. We assume
that it has a closed $SL(2)$-orbit. By the above argument, we may suppose both
$i,$ $j$ have rank 1. If ${\rm Im} i\cap Kerj=\{0\}$ , the stabilizer is trivial. Therefore it gives
a smooth point in $M///G$ . If ${\rm Im} i=Kerj$ , we can find a one-parameter subgroup
$\lambda:\mathbb{C}^{\cross}arrow SL(2)$ such that $\lambda\cdot(i,j)arrow(O, 0)$ . Therefore it cannot have a closed
orbit.

There are indeed points ${\rm Im} i\cap Kerj=\{O\}$ in $\mu^{-1}(0)$ . They form a smooth
variety of dimension $2N-2$ . When $N=2$ , it gives the second irreducible
component. $\square$

This example shows that a stratum $(M///G)_{(G)}$ may not be connected in general.

In fact, we have $\hat{G}=\{e\}$ in the above example, and $(M///G)_{(G)}$ is an open stratum
and has two connected components. Therefore $M///G$ actually has three strata. It
is interesting to note that (5.13) with $N=2$ also has three strata, a smooth locus
and two singular points $x=\pm 1,$ $y=z=$ O. Thus answers to Question 2.1(1)
and the bijection part of (3) are yes even in this case.

(2) and the second half of (3) are not clear as stated: The transversal slice
$T^{\perp}/\hat{G}$ , for $\mathcal{M}_{H}$ at points in either of two components of $(M///G)_{\{e\}}$ , is $\{0\}/\{e\}$ . It
is the Higgs branch of the trivial gauge theory $Hyp(\{O\})\#\{e\}$ . The corresponding
Coulomb branch is just a single point, and strata for two singular points may
be identified with this Coulomb branch. However it is not clear (at least to
the author) whether we can naturally view each component of $(M///G)_{\{e\}}$ is the
Higgs branch of a gauge theory $Hyp(M’)ffG’$ for some $(G’, M Say, are (G’, M’)$

different for two components? Similarly it is not clear whether the transversal
slices to singular points $x=\pm 1,$ $y=z=0$ in $\mathcal{M}_{C}$ (both $A_{1}$ type) can be
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naturally identified with the Coulomb branch of a gauge theory Hyp(M’) $\# G’.$

It is desirable to understand this phenomenon better.
For Question 4.1, $HP_{0}(\mathcal{M}_{C})$ , $IH^{*}(\mathcal{M}_{C})$ are easy to compute as $\mathcal{M}_{C}$ is of type

$D_{N}$ singularity. We do not know $IH^{*}(\mathcal{M}_{H})$ , $HP_{0}(\mathcal{M}_{H})$ .
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