The invertible Toeplitz operators on the Bergman spaces

小樽商科大学 (Otaru University)

米田 力生 (Rikio Yoneda)

Abstract

In this paper, we study the invertible (and Fredholm) Toeplitz operators T_{φ} on the Bergman spaces with harmonic symbol.

Key Words and Phrases: Bergman spaces, Toeplitz operator, closed range, invertible operator, Fredholm operator.

Let D be the open unit disk in complex plane C. For $z, w \in D$, and 0 < r < 1, let $\varphi_w(z) = \frac{w-z}{1-\overline{w}z}$ and $\rho(z,w) = \left|\frac{w-z}{1-\overline{w}z}\right|$ and $D(w,r) = \left\{z \in D, \rho(w,z) < r\right\}$.

Let H(D) be the space of all analytic functions on D.

The space $L^2(dA(z))$ is defined to be the space of Lebesgue measurable functions f on D such that

$$\parallel f \parallel_{L^2(dA(z))} = \left\{ \int_D |f(z)|^2 dA(z) \right\}^{\frac{1}{2}} < +\infty,$$

where dA(z) denote the area measure on D. The Bergman space $L_a^2\left(dA(z)\right)$ is defined by

$$L_a^2(dA(z)) = H(D) \cap L^2(dA(z)).$$

For $\varphi \in L^2(dA(z))$, the Toeplitz operator T_{φ} with symbol φ is defined on $L^2_a(dA(z))$ by

$$T_{\varphi}f = P(\varphi f),$$

where
$$P(f)(z) = \int_D \frac{f(w)}{(1 - \overline{w}z)^2} dA(w)$$
.

Let X, Y be Banach spaces and let T be a linear operator from X into Y. Then T is called to be bounded below from X to Y if there exists a positive constant C > 0 such that $||Tf||_{Y} \ge C ||f||_{X}$ for all $f \in X$, where $||*||_{X}, ||*||_{Y}$ be the norm of X, Y, respectively. The Berezin transform of T_{φ} is given by $\widetilde{\varphi}(z) = \widetilde{T_{\varphi}}(z) = \langle T_{\varphi}k_{z}, k_{z} \rangle$, where $k_{z}(w) = \frac{1 - |z|^{2}}{(1 - z\overline{w})^{2}}$.

If H is a Hilbert space, then a bounded operator T is a Fredholm operator if and only if the range of T is closed, dim ker T, and dim ker T^* is finite.

For $a, b \in C$, $\varphi, \psi \in L^{\infty}(D)$, then

- (a) $T_{a\varphi+b\psi} = aT_{\varphi} + bT_{\psi}$,
- (b) $T_{\overline{\varphi}} = T_{\varphi}^*$,
- (c) $T_{\varphi} \geq 0 \ (\varphi \geq 0)$.

For $\varphi \in H^{\infty}$, then

- (d) $T_{\psi}T_{\varphi} = T_{\psi\varphi}$,
- (e) $T_{\overline{\varphi}}T_{\psi} = T_{\overline{\varphi}\psi}$

Let $\tilde{\varphi}$ denote the harmonic extension of the function φ to the open unit disk D. In [8], Douglas posed the following problem:

If φ is a function in L^{∞} for which $|\varphi| \geq \delta > 0$, $z \in D$, then is T_{φ} invertible?

And V.A. Tolokonnikov gave the following:

If $|\tilde{\varphi}(z)| \ge \delta > \frac{45}{46}$, then T_{φ} is invertible.

In [18], N.K.Nikolskii gave the following:

If $|\tilde{\varphi}(z)| \geq \delta > \frac{23}{24}$, then T_{φ} is invertible.

In [20], T.H.Wolff gave the following:

If $\inf_D |\tilde{\varphi}(z)| > 0$ and then T_{φ} is not invertible.

The study of Toeplitz operators on the Bergman spaces and Hardy space have been studied by many authors. In this paper, we study when the Toeplitz operators T_{φ} on the Bergman spaces with harmonic symbol is invertible or Fredholm.

In [14], the following theorem are well-known.

Theorem A. Suppose φ is a bounded and nonnegative function. Then the following conditions are equivalent:

- (1) T_{φ} is bounded below.
- (2) There is a constant C > 0 such that

$$\int_{D} |f(z)|^{2} \varphi(z) dA(z) \ge C \int_{D} |f(z)|^{2} dA(z),$$

for all $f \in L_a^2(dA(z))$.

In [14], D.Leucking proved the following results.

Theorem B. Let $\alpha > -1$ and p > 0. Then the following are equivalent:

(1) There is a constant C > 0 such that

$$\int_{D} |f(z)|^{p} dA(z) \le C \int_{G} |f(z)|^{p} dA(z)$$

for all $f \in L_a^p(dA(z))$

(2) There is a constant C > 0 such that

$$\int_{D} |f(z)|^{p} (1 - |z|^{2})^{\alpha} dA(z) \le C \int_{G} |f(z)|^{p} (1 - |z|^{2})^{\alpha} dA(z)$$

for all $f \in L_a^p \left((1 - |z|^2)^{\alpha} dA(z) \right)$

(3) For any $a \in D$ a subset G of D satisfy the condition that there exist $\delta > 0$ and r > 0 such that $\delta |D(a,r)| \leq |D(a,r) \cap G|$, where |D(a,r)| is the (normalized) area of D(a,r).

Theorem C. Let φ be a bounded measurable function on D. Then there is a constant $\epsilon > 0$ such that

$$\int_{D} |\varphi(z)f(z)|^{p} dA(z) \ge \epsilon \int_{D} |f(z)|^{p} dA(z)$$

for all $f \in L^p_a(dA(z))$ if and only if there exists r > 0 such that the set $\{z \in D : |\varphi(z)| > r\}$ satisfies condition (3) of Theorem 3.

Theorem D. Let φ be a bounded positive measurable function on D. Then T_{φ} is invertible if and only if there exists r > 0 such that the set $\{z \in D : |\varphi(z)| > r\}$ satisfies condition (3) of Theorem3.

The following theorem is well-known (see [21]).

Theorem E. Suppose that $\varphi \in \mathcal{C}(\overline{D})$. Then the following conditions are equivalent:

- (1) T_{φ} is Fredholm.
- (2) φ is nonvanishing on the unit circle.

Theorem 1. Let $g \in H^{\infty}$. Then the following are equivalent:

- (1) $T_{\overline{g}}$ is invertible operator on $L_a^2(dA(z))$
- (2) T_g is invertible operator on $L_a^2(dA(z))$
- (3) $\inf_{z \in D} \left| \widetilde{T}_{\overline{g}}(z) \right| = \inf_{z \in D} |g(z)| > 0$

The problem which we must consider next is following.

Problem. Let $g, h \in H^{\infty}$ and $g, h \in C(\overline{D})$. Then the following are equivalent:

- (1) $T_{g+\overline{h}}$ is invertible operator on $L_a^2(dA(z))$
- $(2) \inf_{z \in D} \left| \widetilde{T_{g+\overline{h}}}(z) \right| = \inf_{z \in D} \left| g(z) + \overline{h(z)} \right| > 0$

At first, we can prove the following.

Theorem 2. Let $g \in H^{\infty}$ and $g \in C(\overline{D})$. Then the following are equivalent:

- (1) $T_{g+\bar{g}}$ is bounded below on $L_a^2(dA(z))$
- (2) $T_{g+\overline{g}}$ is invertible operator on $L_a^2(dA(z))$
- (3) $\inf_{z \in D} \left| \widetilde{T_{g+\overline{g}}}(z) \right| = \inf_{z \in D} \left| g(z) + \overline{g(z)} \right| > 0$

Next, we can prove the following.

Theorem 3. Let $g \in H^{\infty}$ and a constant c > 1. Then the following are equivalent:

- (1) T_g is bounded below on $L^2_a(dA(z))$
- (2) $T_{cq+\bar{q}}$ is bounded below on $L_a^2(dA(z))$

Using Theorem 3, we prove the following main result.

Theorem 4. Let $g \in H^{\infty}$ and $g \in C(\overline{D})$. Then the following are equivalent:

- (1) $T_{\overline{g}}$ is invertible operator on $L_a^2(dA(z))$
- (2) T_g is invertible operator on $L_a^2(dA(z))$
- (3) $T_{cg+\bar{g}}$ is invertible operator on $L_a^2(dA(z))(c>0, c\neq 1)$
- (4) $\inf_{z \in D} \left| \widetilde{T_{cg+\overline{g}}}(z) \right| = \inf_{z \in D} \left| cg(z) + \overline{g(z)} \right| > 0 (c > 0, c \neq 1)$
- (5) $\inf_{z \in D} \left| \widetilde{T}_g(z) \right| = \inf_{z \in D} \left| \widetilde{T}_{\overline{g}}(z) \right| = \inf_{z \in D} |g(z)| > 0$

Moreover, we can prove the following.

Theorem 5. Let $g, h \in H^{\infty}$ with $\inf_{z \in D} |h(z)| - \sup_{z \in D} |g(z)| > 0$. inf $|T_{+\overline{z}}(z)| > 0$, then $T_{+\overline{z}}$ is invertible on $L_{z}^{p}(dA(z))$, and $T_{b+\overline{z}}$

 $If \inf_{z \in D} \left| \widetilde{T_{g+\overline{h}}}(z) \right| > 0, \text{ then } T_{g+\overline{h}} \text{ is invertible on } L^p_a(dA(z)), \text{ and } T_{h+\overline{g}} \text{ is invertible on } L^p_a(dA(z))$

Theorem 6. Suppose that $g \in H^{\infty}$ and $g \in C(\overline{D})$. Then the following conditions are equivalent:

- (1) $T_{\overline{q}}$ is Fredholm.
- (2) $T_{cg+\overline{g}}$ is $Fredholm(c > 0, c \neq 1)$.
- (3) g is nonvanishing on the unit circle.

References

- [1] A.Aleman and A.G.Siskakis, Integration operators on Bergman spaces, indiana Univ.Math.J.46(1997),337-356.
- [2] S.Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math.J.53(1986),315-331.
- [3] C.J.Bishop, Bounded functions in the little Bloch space, Pacific J.Math.142(1990), no.2,209-225.

- [4] Paul S.Bourdon, Similarity of parts to the whole for certain multiplication operators, Proc.Amer.Math.Soc.99(1987),563-567.
- [5] Paul S.Bourdon and J.H.Shapiro, Spectral Synthesis and Common Cyclic vectors, Michigan Math.J.37(1990), 71-90.
- [6] J.Bonet, P.Domanski, M.Lindstrom, Pointwise multiplication operators on weighted Banach spaces of analytic function, Studia Math. 137(1999),177-194.
- [7] L.Carleson, An interpolation problem for bounded analytic functions, Amr.J.Math. 80(1958),921-930.
- [8] R.G.Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
- [9] P.Duren, A.Schuster, Bergman Spaces, American Mathematical Society, Providence, 2004.
- [10] P.Ghatage and D.Zheng and Nina Zorboska, Sampling sets and closed range composition operators on the Bloch space, Proceedings of the Amer.Math.Soc.133, 5(2004), 1371-1377.
- [11] J.B.Garnett and D.Marshall, Harmonic Measure, Cambridge University Press, 2005.
- [12] J.Bonet, P.Domanski, M.Lindstrom, Pointwise multiplication operators on weighted Banach spaces of analytic function, Studia Math. 137(1999),177-194.
- [13] H.Hedenmalm and B.Korenblum and K.Zhu, Theory of Bergman Spaces, Springer-Verlag, New York.
- [14] P.Jones, Ratios of Interpolating Blaschke products, Pacific J.Math.95(2) (1981), 311-321.
- [15] D.Leucking, Inequalities on Bergman spaces, Illinois J.Math.25(1981), 1-11.
- [16] D.Marshall, Blaschke products generate H^{∞} , Bull Amer.Math.Soc., 82(1976), 494-496.
- [17] G.McDonald and C.Sundberg, Toeplitz operators on the disc, indiana Univ.Math.J. 28(1979),595-611.
- [18] N.H.Nikolskii, Treatise of the Shift Operator, Springer-Verlag, Berlin, 1986.
- [19] K.Seip, Beuring type density theorems in the unit disk, Invent.Math.113(1993), 21-39.
- [20] T.H.Wolff, Counterexamples to two variants of the Helson-Szego theorem, Report No.11, Calfornia Institute of Technology, Pasadena, 1983.

- [21] R.Zhao, On α -Bloch functions and VMOA, Acta Math.Sci.16(1996), 349-360.
- [22] K.Zhu, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators, J.Funct.Anal. 83(1989),31-50.
- [23] K.Zhu, Operator Theory in Function Spaces, American Mathematical Society, Providence, 2007.
- [24] K.Zhu, Bloch type spaces of analytic functions, Rocky Mout.J.Math. 23(1993), 1143-1177.