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Abstract

In this paper, we study the invertible (and Fredholm) Toeplitz
operators $T_{\varphi}$ on the Bergman spaces with radial symbol.
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\S 1. Introduction

Let $D$ be the open unit disk in complex plane $C$ . Let $H(D)$ be the
space of all analytic functions on $D.$

The space $L^{p}(dA(z))$ is defined to be the space of Lebesgue measurable
functions $f$ on $D$ such that

$\Vert f\Vert_{L^{2}(dA(z))}=\{\int_{D}|f(z)|^{2}dA(z)\}^{\frac{1}{2}}<+\infty,$

where $dA(z)$ denote the area measure on $D$ . The Bergman space $L_{a}^{2}(dA(z))$

is defined by
$L_{a}^{2}(dA(z))=H(D)\cap L^{2}(dA(z))$ .

For $\varphi\in L^{2}(dA(z))$ , the Toeplitz operator $T_{\varphi}$ with symbol $\varphi$ is defined
on $L_{a}^{2}(dA(z))$ by

$T_{\varphi}f=P(\varphi f)$ ,
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where $P(f)(z)= \int_{D}\frac{f(w)}{(1-\overline{w}z)^{2}}dA(w)$ .

Let $X,$ $Y$ be Banach spaces and let $T$ be a linear operator from $X$

into $Y$ . Then $T$ is called to be bounded below from $X$ to $Y$ if there exists
a positive constant $C>0$ such that $\Vert Tf\Vert_{Y}\geq C\Vert f\Vert_{X}$ for all $f\in X,$

where $\Vert*\Vert_{X},$ $\Vert*\Vert_{Y}$ be the norm of $X,$ $Y$ , respectively.
Let $C(H)$ be the space of the compact operator on the Hilbert space

$H$ . If $H$ is a Hilbert space, then a bounded operator $T$ is a Fredholm
operator if and only if there exists a bounded operator $B$ such that
$TB-I,$ $BT-I\in C(H)$ . And a bounded operator $T$ is a Left (Right)
Fredholm operator if and only if there exists a bounded operator $B$ such
that $BT-I\in C(H)(TB-I\in C(H))$ .

The Berezin transform of the Toeplitz operators $T_{\varphi}$ is given by

$\tilde{\varphi}(z)=\overline{T_{\varphi}}(z)=<T_{\varphi}k_{z}, k_{z}>$

, where $k_{z}(w)= \frac{1-|z|^{2}}{(1-z\overline{w})^{2}}.$

In [4], B.Korenblum and K.Zhu proved the following result.

Theorem A. Suppose $\varphi$ is a bounded and radial, that is $\varphi(re^{i\theta})=$

$\varphi(r)$ . Then the following conditions are equivalent:
(1) $T_{\varphi}$ is compact.
(2) $\tilde{\varphi}(z)arrow 0$ as $|z|arrow 1^{-}$

(3) $\lim_{xarrow 1^{-}}\frac{1}{1-x}\int_{x}^{1}\varphi(r)dr=0.$

In [12], N.Zorboska generalized this theorem.

Theorem B. Let $\varphi$ be a radial function in $L^{1}(D)$ , and that $T_{\varphi}$ be

bounded on $L_{a}^{2}$ . If $f(r)- \frac{1}{1-r}\int_{r}^{1}\varphi(s)sds$ is bounded for $0\leq r<1,$

then the following conditions are equivalent:
(1) $T_{\varphi}$ is compact.
(2) $\tilde{\varphi}(z)arrow 0$ as z $|arrow$ l一

In [10], the following theorem is well-known.
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Theorem C. Suppose $\varphi$ is a bounded and nonnegative function.
Then the following conditions are equivalent:
(1) $T_{\varphi}$ is bounded below.
(2) There is a constant $C>0$ such that

$\int_{D}|f(z)|^{2}\varphi(z)dA(z)\geq C\int_{D}|f(z)|^{2}dA(z)$ ,

for all $f\in L_{a}^{2}(dA(z))$ .

The following theorem is well-known( see [10]).

Theorem D. Suppose that $\varphi\in C(\overline{D})$ . Then the following
conditions are equivalent:
(1) $T_{\varphi}$ is Fredholm.
(2) $\varphi$ is nonvanishing on the unit circle.

The study of Toeplitz operators on the Bergman spaces and Hardy
space have been studied by many authors. In this paper, we study when
the Toeplitz operators $T_{\varphi}$ on the Bergman spaces with radial symbol is
invertible or Fredholm.

\S 2. Statement of main results.

To prove our main theorem, we need the following.

Proposition 1. Suppose $\varphi$ is a bounded and radial function.
Then the following are equivalent:
(1) $T_{\varphi}$ is bounded below on $L_{a}^{2}(dA(z))$ .
(2) $T_{\varphi}$ is an invertible operator on $L_{a}^{2}(dA(z))$ .
(3) There exists a positive constant $K>0$ such that

$(n+1)| \int_{0}^{1}\varphi(t)t^{2n+1}dt|\geq K,$

for $n=0^{\fbox{Error::0x0000}}$ , 1, 2, $\cdots.$

Using the above proposition, we can prove the following result.
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Proposition 2. Suppose $\varphi$ is a bounded and radial function. If
there exists a positive constant $C>0$ such that $\frac{1}{1-x}\int_{x}^{1}\varphi(t)dt\geq C(x\in$

$[0$ , 1 $))$ or $\frac{1}{1-x}\int_{x}^{1}\varphi(t)dt\leq-C(x\in[0, 1))$ , then $T_{\varphi}$ is an invertible

operator on $L_{a}^{2}(dA(z))$ .

Moreover, we can also prove the following result.

Proposition 3. Suppose $\varphi\in C([O, 1))$ is a bounded and radial

real-valued function. If there exists a positive constant $C>0$ such

that $\inf_{x\in[0,1)}\frac{1}{1-x}|\int_{x}^{1}\varphi(t)dt|\geq C$ , then $T_{\varphi}$ is an invertible operator on

$L_{a}^{2}(dA(z))$ .

The following is our main result.

Theorem 4. Suppose $\varphi\in C(\overline{D})$ is a bounded and radial, and
$\varphi\geq 0(or\varphi\leq 0)$ . Then the following are equivalent:
(1) $T_{\varphi}$ is bounded below on $L_{a}^{2}(dA(z))$

(2) $T_{\varphi}$ is an invertible operator on $L_{a}^{2}(dA(z))$

(3) There exists a positive constant $C>0$ such that

$\inf_{z\in}|\tilde{\varphi}(z)|\geq C.$

(4) There exists a positive constant $C>0$ such that

$\inf_{x\in[01)}|\frac{1}{1-x}\int_{x}^{1}\varphi(t)dt|\geq C.$

(5) There exists a positive constant $K>0$ such that

$(n+1)| \int_{0}^{1}\varphi(t)t^{2n+1}dt|\geq K,$

for $n=0$ , 1, 2, $\cdots.$

Remark 5. There exists an example that $T_{\varphi}$ is invertible on
$L_{a}^{2}(dA(z))$ and $that\backslash (4)$ of the above theorem does not hold. For ex-
ample, let $\varphi(t)=t-\frac{7}{10}$ . Since there exists a positive constant $K>0$

such that
$(n+1)| \int_{0}^{1}\varphi(t)t^{2n+1}dt|\geq K,$
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for $n=0$ , 1, 2, $\cdots,$
$T_{\varphi}$ is invertible on $L_{a}^{2}(dA(z))$ . But for $x= \frac{2}{5}$ , an

elementaly calculation implies that $\frac{1}{1}\int_{x}^{1}\varphi(t)dt=0.$ $\square$

Using Theorem $D$ and Theorem 4, we can prove the following.

Theorem 6. Suppose $\varphi\in C(\overline{D})$ is a bounded and radial, and
$\varphi\geq 0(or\varphi\leq 0)$ . Then the following are equivalent:
(1) $T_{\varphi}$ is an invertible operator on $L_{a}^{2}(dA(z))$

(2) $T_{\varphi}$ is a Fredholm operator on $L_{a}^{2}(dA(z))$ .
(3) $\varphi$ is nonvanishing on the unit circle.

The following is well-known( see [2]).

Proposition E. Suppose $\varphi$ is a bounded function. Then the
following are equivalent:
(1) $T_{\varphi}$ is a Left Fredholm operator on $L_{a}^{2}(dA(z))$

(2) $\lim_{narrow}\inf_{\infty}\Vert T_{\varphi}e_{n}\Vert_{L_{a}^{2}}>0$ , where $e_{n}$ be an orthonormal basis of $L_{a}^{2}.$

When $\varphi$ is a bounded and radial function, $T_{\varphi}$ is a normal operator.
So we see the following.

Proposition F. Suppose $\varphi$ is a bounded and radial function.
Then the following are equivalent:
(1) $T_{\varphi}$ is a Fredholm operator on $L_{a}^{2}(dA(z))$

(2) $\lim_{narrow}\inf_{\infty}(n+1)|\int_{0}^{1}\varphi(t)t^{2n+1}dt|>$ O.

The problem which we must consider next is following.

Problem 7. Suppose $\varphi$ is a bounded and radial function. Then
the following are equivalent:
(1) $T_{\varphi}$ is a Fredholm operator on $L_{a}^{2}(dA(z))$

(2) $\lim_{narrow}\inf_{\infty}\Vert T_{\varphi}e_{n}\Vert_{L_{a}^{2}}>0$ , where $e_{n}$ be an orthonormal basis of $L_{a}^{2}.$

(3) $\lim_{narrow}\inf_{\infty}(n+1)|\int_{0}^{1}\varphi(t)t^{2n+1}dt|>0.$

(4) $\lim_{xarrow 1}\underline{\inf}\frac{1}{1-x}|\int_{x}^{1}\varphi(t)dt|>$ O.

(5) $\lim_{|z|arrow}\underline{\inf_{1}}|\tilde{\varphi}(z)|>$ O.
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The following results were obtaind.

Theorem 8. Suppose $\varphi$ is a bounded and positive radial function.
If $\lim_{|z|arrow}\underline{\inf_{1}}\varphi(|z|)>0$ , then $T_{\varphi}$ is a Fredholm operator on $L_{a}^{2}(dA(z))$ .

Theorem 9. Suppose $\varphi$ is a bounded and radial function and

that $\lim_{xarrow 1^{-}}\frac{1}{1-x}\int_{x}^{1}\varphi(t)dt=A.$

Then $T_{\varphi}$ is a Fredholm operator on $L_{a}^{2}(dA(z))$ if and only if
$\lim_{xarrow 1}\underline{\inf}\frac{1}{1-x}|\int_{x}^{1}\varphi(t)dt|=\lim_{xarrow 1^{-}}\frac{1}{1-x}|\int_{x}^{1}\varphi(t)dt|>0$

Theorem 10. Suppose $\varphi$ is a bounded radial function and

that $\lim_{xarrow 1^{-}}\frac{1}{1-x}\int_{x}^{1}\varphi(t)dt=A$ . Then $T_{\varphi}$ is a Fredholm operator on

$L_{a}^{2}(dA(z))$ if and only if $\lim_{|z|arrow}\underline{\inf_{1}}|\tilde{\varphi}(z)|>0.$
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