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Abstract: Here, we shall state simply a general meaning for reproducing
kernels. We would like to answer the general and essential question that:

what are reproducing kernels? By considering the basic problem, we will
be able to obtain a general concept of the generalized delta function as a
generalized reproducing kernel and, as a general reproducing kernel Hilbert
space, we will be able to consider all separable Hilbert spaces consisting of
functions. We shall refer to an open question (a general problem) that was
proposed by Professor Kenji Fukumizu in the meeting held on $7th-9th$ Oct.
in RIMS.

1 Introduction

We would like to introduce the concept of general reproducing kernels and at
the same time, we seek to answer clearly the general and essential question

that: what are reproducing kernels? By considering this basic problem, we
will be able to obtain a general concept of the generalized delta function as a
generalized reproducing kernel and, as a general reproducing kernel Hilbert

space, we will be able to consider all separable Hilbert spaces comprising
functions.

See [5, 6] for the background motivation and ideas from a general initial
problem for partial differential equations.
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2What is a reproducing kernel?

We shall consider a family of any complex valued functions $\{U_{n}\}_{n=0}^{\infty}$

defined on a nonempty abstract set $E$ that are linearly independent. Then,
we consider a function given by:

$K_{N}(x, y)= \sum_{n=0}^{N}U_{n}(x)\overline{U_{n}(y)} (x, y\in E)$ . (2.1)

Then, we will check that $K_{N}$ is a reproducing kernel.
We shall consider the linear space of all the functions, for arbitrary com-

plex numbers $\{C_{n}\}_{n=0}^{N}$

$F= \sum_{n=0}^{N}C_{n}U_{n}$ (2.2)

and we introduce the norm

$\Vert F\Vert=\sqrt{\sum_{n=0}^{N}|C_{n}|^{2}}$ . (2.3)

The function space forms a Hilbert space $H_{K_{N}}(E)$ determined by the kernel
$K_{N}$ with the inner product induced from the norm (2.3). Then we note that
for any $y\in E,$

$K_{N} y)\in H_{K_{N}}(E)$ (2.4)

and for any $F\in H_{K_{N}}(E)$ and for any $y\in E$

$F(y)=(F( \cdot), K_{N} y))_{H_{K_{N}}(E)}=\sum_{n=0}^{N}C_{n}U_{n}(y)$ . (2.5)

The properties (2.4) and (2.5) are called a reproducing property of the
kernel $K_{N}$ for the Hilbert space $H_{K_{N}}(E)$ , because the functions $F$ in the
inner product (2.5) appeared in the left-hand side. This formula tells us that
the functions $F$ may be represented by the kernel $K_{N}$ and that the Hilbert
space $H_{K_{N}}(E)$ is represented by the kernel $K_{N}.$

Of course, conversely the reproducing kernel $K_{N}$ is uniquely determined
by the reproducing properties (2.4) and (2.5) in the space $H_{K_{N}}(E)$ .
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3A general reproducing kernel

We shall introduce a preHilbert space by

$H_{K_{\infty}}:= \bigcup_{N\geqq 0}H_{K_{N}}(E)$
.

For any $F\in H_{K_{\infty}}$ , there exists a space $H_{K_{M}}(E)$ containing the function $F$

for some $M\geqq 0$ . Then, for any $N$ such that $M<N,$

$H_{K_{M}}(E)\subset H_{K_{N}}(E)$

in view of linear independence of the functions $\{U_{n}\}_{n=0}^{\infty}$ and, for the function
$F\in H_{K_{M}},$

$\Vert F\Vert_{H_{K_{M}}(E)}=\Vert F\Vert_{H_{K_{N}}(E)}.$

Therefore, the limit exists:

$\Vert F\Vert_{H_{K_{\infty}}}:=\lim_{Narrow\infty}\Vert F\Vert_{H_{K_{N}}(E)}.$

We denote by $H_{\infty}$ the completion of $H_{K_{\infty}}$ with respect to this norm.
Note that for any $M<N$ , and for any $F_{M}\in H_{K_{M}}(E)$ , $F_{M}\in H_{K_{N}}(E)$

and furthermore in particular, note that

$\langle f, g\rangle_{H_{K_{M}(E)}}=\langle f, g\rangle_{H_{K_{N}(E)}}$

for all $N>M$ and $f,$ $g\in H_{K_{M}}(E)$ . Then, we obtain the main result:

Theorem. Under the above conditions, for any function $F\in H_{\infty}$ and
for $F_{N}^{*}$ defined by

$F_{N}^{*}(x)=\langle F, K_{N} x)\rangle_{H_{\infty}} (x\in E)$ ,

$F_{N}^{*}\in H_{K_{N}}(E)$ for all $N>0$ , and as $Narrow\infty,$ $F_{N}^{*}arrow F$ in the topology of
$H_{\infty}.$

Proof. Observe that

$|F_{N}^{*}(x)|^{2}\leq\Vert F\Vert_{H_{\infty}}^{2}\Vert K_{N}(\cdot, x)\Vert_{H_{\infty}}^{2}$

$\leq\Vert F\Vert_{H_{\infty}}^{2}\Vert K_{N}(\cdot, x)\Vert_{H_{K_{N}}(E)}^{2}$

$=\Vert F\Vert_{H_{\infty}}^{2}K_{N}(x, x)$ .
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Therefore, we see that $F_{N}^{*}\in H_{K_{N}}(E)$ and that $\Vert F_{N}^{*}\Vert_{H_{K_{N}}(E)}\leq\Vert F\Vert_{H_{\infty}}.$

Indeed, for these, recall the identity

$K_{N}(x, y)=\langle K_{N}(\cdot, y) , K_{N} x)\rangle_{H_{\infty}}.$

The mapping $F\mapsto F_{N}^{*}$ being uniformly bounded, and so, we can assume
that $F\in H_{K_{L}}(E)$ for any fixed $L$ . However, in this case, the result is clear,
since, $F\in H_{K_{N}}(E)$ for $L<N$

$\lim_{Narrow\infty}F_{N}^{*}(x)=\lim_{Narrow\infty}\langle F,$
$K_{N}$

$x) \rangle_{H_{\infty}}=\lim_{Narrow\infty}\langle F,$
$K_{N}$ $x)\rangle_{H_{K_{N}}(E)}=F(x)$ .

The theorem may be looked as a reproducing kernel in the natural topol-
ogy and by the sense of the Theorem, the reproducing property may be
written as follows:

$F(x)=\langle F, K_{\infty} x)\rangle_{H_{\infty}},$

with

$K_{\infty} x) \equiv\lim_{Narrow\infty}K_{N} x)=\sum_{n=0}^{\infty}U_{n}(\cdot)\overline{U_{n}(x)}$ . (3.1)

Here the limit does, in general, not need to exist, however, the series
are non-decreasing, in the sense: for any $N>M,$ $K_{N}(y, x)-K_{M}(y, x)$ is a
positive definite quadratic form function.

Of course, any member of the completion space $H_{\infty}$ may be approximated,
naturally, by the members of reproducing kernel Hilbert spaces $H_{K_{N}}(E)$ .
This viewpoint will be very important for the approximation of functions,
because the functions in a reproducing kernel Hilbert space may be given in
a concrete way.

4 Conclusion

Any reproducing kernel (separable case) may be considered as the form (3.1)
by arbitrary linear independent functions $\{U_{n}\}$ on an abstract set $E$ , here,
the sum does not need to converge. Furthermore, the property of linear
independent is not essential.

Recall the double helix structure of gene for the form (3.1).
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The completion $H_{\infty}$ may be found, in concrete cases, from the realization
of the spaces $H_{K_{N}}(E)$ .

The typical case is that the family $\{U_{n}\}_{n=0}^{\infty}$ is a complete orthonormal
system in a Hilbert space with the norm;

$\Vert F\Vert=\sqrt{\int_{E}|F(x)|^{2}dm(x)}$ (4.1)

with a $dm$ measurable set $E$ in the usual form $L_{2}(E, dm)$ . Then, the functions
(2.2) and the norm (2.3) are realized by this norm $\vee and$ the completion of the
space $H_{K_{\infty}}(E)$ is given by this Hilbert space with the norm (4.1).

For any separable Hilbert space comprising functions, there exists a com-
plete orthonormal system, and so, by our generalized sense, for the Hilbert
space there exists an approximating reproducing kernel Hilbert spaces and
so, the Hilbert space is the generalized reproducing kernel Hilbert space in
the sense of this paper.

This will mean that we were able to extend the classical reproducing
kernels ([2,3,4 beautifully and completely.

The fundamental applications of the theorem to initial value problems
using eigenfunctions and reproducing kernels, see [5, 6].

The form (3.1) may be regarded as a generalized Delta function and
we were able to get its representation property in a good way, by the repro-
ducing property.

5 Remarks

The common fundamental definitions and results on reproducing kernels are
given as follows [2, 3, 4]:

Definition: Let $E$ be an arbitrary abstract nonempty set. Denote by
$\mathcal{F}(E)$ the set of all complex-valued functions on $E$ . A reproducing kernel
Hilbert spaces on the set $E$ is a Hilbert space $\mathcal{H}\subset \mathcal{F}(E)$ coming with a
function $K:E\cross Earrow \mathcal{H}$ , which is called the reproducing kernel, having the
reproducing property that

$K_{p}\equiv K$ $p)\in \mathcal{H}$ for all $p\in E$ (5.1)
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and that
$f(p)=\langle f, K_{p}\rangle_{\mathcal{H}}$ (5.2)

holds for all $p\in E$ and all $f\in \mathcal{H}.$

Definition:
A complex-valued function $k:E\cross Earrow \mathbb{C}$ is called a positive definite

quadratic form function on the set $E$ , or shortly, positive definite func-
tion, when it satisfies the property that, for an arbitrary function $X$ : $Earrow \mathbb{C}$

and for any finite subset $F$ of $E,$

$\sum_{p,q\in F}\overline{X(p)}X(q)k(p, q)\geq 0$
. (5.3)

Then, the fundamental result is given by: a reproducing kernel and a
positive definite quadratic form function are the same and are one
to one correspondence with the reproducing kernel Hilbert space.

Now, a generalized reproducing kernel does not need to be any
function, it is the form (3.1).

An open question (a general problem) was proposed by Profes-
sor Kenji Fukumizu in the meeting:

Professor Fukumizu proposed to consider some convergence rate in
the theorem in the case of concrete examples. We can expect to get
valuable information from the reference [1] and the problem will be impor-
tant, because it shows the convergence of reproducing kernels to the Delta
function.

Meanwhile, as we see from the talks of Professors Y. Sawano and T.
Matuura in the research meeting, we will be able to consider some general
version of the theorem in the cases of integral forms and some more general
situation.
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