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1 Introduction

In this paper, we consider a firm’s investment problem in the presence of asymmetric information

and possibility of random shock. We examine both the optimal timing (trigger) and quantity

strategies for the investment.

This paper is based on many previous studies related to the investment decision problem.

The standard framework by McDonald and Siegel (1986) examines the optimal timing of in-

vestment when the investment cost is fully irreversible. Following McDonald and Siegel (1986),

there are many extended models from different angles. The first extension is to incorporate

the reversibility of investment. See Abel and Eberly (1999) and Wong $(2010, 2011)$ . The re-

versibility of investment means that the firm could sell the capital after the investment when the

profitability of capital becomes low. Thus, a reversible investment implies that the firm owns

an abandonment option. The main result of Wong (2011) is that higher reversibility accelerates

the investment but not necessarily increases the investment quantity.

The second extension is to incorporate the asymmetric information. As we know, in most

modern firms, firm owners would like to delegate the management to managers, taking advantage

of managers professional skills. In this situation, it is possible to exist asymmetric information

between owners and managers. For example, managers have private information that owners
cannot observe. Grenadier and Wang (2005), Shibata (2009) and Cui and Shibata $(2016a, 2016b)$

provide frameworks on examining the investment strategies under asymmetric information. The

important results are that under asymmetric information, the investment timing is more delayed

and the quantity is more increased than under full information.

The third extension is to incorporate the possibility of random shock. The arrival of random

shock can be regarded as the occurrence of some exogenous event that affects the profit flows

generated by the capital. For example, the technology improvement may increase the revenue

or decrease the operational cost. Alvarez and Stenbacka (2001) present an example in which the

firm faces a cost saving technology improvement at an exponentially distributed arrival time.

Cui and Shibata (2015) consider an investment problem with random shock where the random

shock is associated with a fixed level of revenue. One important result of Cui and Shibata (2015)

is that the investment quantity is decreasing with the arrival probability of random shock.

Thus, in this study, we combine the three features: the reversibility of investment, the

asymmetric information and the possibility of random shock. Here, we obtain three important
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results. First, higher reversibility accelerates the investment, but not necessarily increases the

investment quantity. The investment quantity exhibits a $U$-shape with the degree of reversibility.

Second, higher arrival probability of random shock accelerates the investment, but decreases the

investment quantity. The result of investment quantity is contrary to our intuition. From our

intuition, because the arrival of random shock saves the operational cost of per unit quantity,

we conjecture that the firm should increase the quantity. However, we find that the investment

quantity is decreasing with the arrival probability of random shock. Third, even for a reversible

investment and with the possibility of random shock, the quantity is more increased and the

investment timing is more delayed under asymmetric information than under full information.

The remainder of the paper is organized as follows. Section 2 describes the model setup

and derives the firm value after investment. Section 3 formulates the investment problem under

asymmetric information. As a benchmark, we also provide the solution to the problem under

full information. Section 4 solves for the optimal strategies under asymmetric information and

discusses the properties. Section 5 concludes.

2 The model

In this section, we first describe the model setup. We then derive the firm value after investment.

2.1 Setup

Consider a firm that is endowed with an option to invest in a project. To commence the project,

the firm simultaneously chooses the quantity and the timing of investment. We assume that

the firm owner delegates the investment decision to a manager. Throughout our analysis, we

assume that both the owner and the manager are risk neutral and aim to maximize their expected

pay-offs.

The investment quantity, $q>1$ , affects the random profit flows $\{q(X_{t}-f) : t\geq 0\}$ generated

from the project, where $\{X_{t} : t\geq 0\}$ denotes the random revenue flows and $f>0$ denotes the

operational cost per unit time, both of which are of per unit quantity. The stochastic process,
$\{X_{t}:t\geq 0\}$ is governed by the following geometric Brownian motion:

$dX_{t}=\mu X_{t}dt+\sigma X_{t}dz_{t}, X_{0}=x>0$ , (2.1)

where $\mu>0,$ $\sigma>0$ are constant parameters, and $z_{t}$ is a standard Brownian motion. For

convergence, we assume that $r>\mu$ where $r>0$ is a constant interest rate. In addition, we

assume that the initial value $x$ is too small to make an immediate investment optimal.

The cost to undertake the investment is $I(q;F)$ $:=C(q)+F.$ $C(q)$ denotes the cost of

investment quantity with $C’(q)>0$ and $C”(q)>0$ for all $q>1$ . At the time of investment,

$q>1$ is endogenously chosen to maximize the owner’s value. In addition, we assume the fixed

set-up cost $F\in\{F_{1}, F_{2}\}$ with $F_{2}>F_{1}>0$ . We denote $\triangle F=F_{2}-F_{1}>0$ . One could interpret
$F_{1}$ as “lower-fixed cost”’ and $F_{2}$ as “higher-fixed cost The probabilities of drawing $F=F_{i}$

$(i\in\{1,2\})$ are exogenously given, i.e., $P(F_{i})=p_{i}\in(0,1)$ with $\sum_{i\in\{1,2\}}p_{i}=1.$
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Figure 1: Scenario of model

We assume that the project’s profit flows $\{q(X_{t}-f) : t\geq 0\}$ are observed by both the owner

and the manager. However, the fixed set-up cost $F$ is observed privately only by the manager. $\dagger$

Immediate after making a contract with the owner, the manager observes whether $F$ is equal to
$F_{1}$ or $F_{2}$ , but the owner cannot observe the true value of $F$ . In this situation, the manager could

divert a value of $\triangle F$ to himself by reporting $F_{2}$ when he truly observes $F_{1}$ . The owner suffers

losses from the manager’s diversion. Thus, to prevent the losses, the owner must encourage the

manager to tell truth at the time of investment by providing incentives.

After the investment, if the project’s profit becomes unfavorable, the firm could abandon

the project. The abandonment decision, once made, is irreversible. We assume that the salvage

at the time of abandonment is $sI(q;F)$ , where $s\in[0$ , 1$]$ denotes the recovery rate of the initial

investment cost. Thus, a higher value of $s$ implies a higher reversibility of investment. If $s=0$

or $s=1$ , the investment is called fully irreversible or fully reversible.

Before the abandonment and after the investment, there exists a possibility of random shock

that influences the project’s profit. Let $\tau^{R}$ denote the arrival timing of the random shock. Here,

we assume that once the random shock occurs, the operational cost of per unit quantity, $f$

decreases to O. That is, the random profit flows after the random shock becomes $\{qX_{t};t\geq\tau^{R}\}.$

For simplicity, we model the arrival of random shock as a Poisson process with intensity $\lambda$ . That
is, over a small time interval $\triangle t$ , the random shock occurs with a probability $\lambda\triangle t.$

We use Figure 1 to explain the scenario of the model. Let $q_{i}=q(F_{i})$ denote the investment

quantity, $\overline{x}_{i}=\overline{x}(F_{i})$ and $\underline{x}_{i}=\underline{x}(F_{i})$ individually denote the investment trigger and abandonment

trigger for $F=F_{i}(i\in\{1,2$ In addition, let $\overline{\tau}_{i}=\inf\{t\geq 0;X_{t}=\overline{x}_{i}\}$ and $\underline{\tau}_{i}=\inf\{t\geq$

$\overline{\tau}_{i};X_{t}=\underline{x}_{i}\}$ individually denote the (random) first passage time when $X_{t}$ reaches $\overline{x}_{i}$ from below

$\dagger$

In the asymmetric information structure, it is quite common to assume that a portion of investment value is

privately observed by one party (here, the manager) and not observed by the other party (here, the firm owner).

Laffont and Martimort (2002) give an excellent overview of situations with asymmetric information.
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and reaches $\underline{x}_{i}$ from above. The model scenario is, when $X_{t}$ , starting off $x$ , increases and arrives

at $\overline{x}_{i}$ , the firm undertakes the investment and decides $q_{i}$ endogenously. Before investment,

there is asymmetric information between the owner and the manager on the value of $F$ . After

investment, if $X_{t}$ , starting off $\overline{x}_{i}$ , decreases and arrives at $\underline{x}_{i}$ , the firm exercises the abandonment.

There exists a possibility of random shock that reduces the operational cost $f$ to O. We could

recognize that a smaller $\overline{x}_{i}$ implies an earlier (later) investment, and a smaller $\underline{x}_{i}$ implies a later

(earlier) abandonment.

2.2 Value after investment

In this subsection, we derive the owner’s value after investment, while the abandonment option

is kept alive.

Given $q_{i},$ $\overline{x}_{i}s$ and $\lambda$ , the firm’s value at time $\overline{\tau}_{i}$ is formulated as

$V(q_{i}, \overline{x}_{i};s, \lambda)=\sup_{\underline{\tau}_{i}}\mathbb{E}^{\overline{x}_{i}}[e^{-r(t-\overline{\tau}_{i})}q_{l}X_{t}dt-\int_{\tau_{i}}^{\tau^{R}\wedge\underline{\tau}_{i}}e^{-r(t-\overline{\tau}_{i})}q_{i}fdt+e^{-r(\underline{\tau}_{i}-\overline{\tau}_{i})}sI(q_{i};F_{i})],$

(2.2)

where $\mathbb{E}^{\overline{x}_{i}}$ denotes the expectation operator conditional on $\overline{x}_{i}$ . The first term on the right-hand

side of (2.2) is the present value of the revenue flows $\{qX_{t} : t\in[\overline{\tau}_{i}, \underline{\tau}_{i}]\}$ . The second term is

the present value of the operational cost $f$ , which is stopped either due to the arrival of random

shock at time $\tau^{R}$ , or due to the abandonment at time $\underline{\tau}_{i}$ . The third term is the present value of

salvage $sI(q_{i};F_{i})$ upon the abandonment.

Using the arguments in Dixit and Pindyck (1994), we write (2.2) as

$V(q_{i}, \overline{x}_{i};s, \lambda)=v_{1}q_{i}\overline{x}_{i}-v_{2}q_{i}f+(sI(q_{i};F_{i})+v_{2}q_{i}f-v_{1}q_{i}\underline{x}(q_{i};s, \lambda))(\frac{\overline{x}_{i}}{\underline{x}(q_{i};s,\lambda)})^{\gamma}$ (2.3)

where $v_{1}=1/(r-\mu)$ , $v_{2}=1/(r+\lambda)$ and $\gamma=1/2-\mu/\sigma^{2}-\sqrt{(1/2-\mu/\sigma^{2})^{2}+2r/\sigma^{2}}<0$ . The

third term on the right-hand side of (2.3) captures the value of the abandonment option, defined

by $AO(q_{i}, \overline{x}_{i};s, \lambda)$ . Additionally, $\underline{x}(q_{i};s, \lambda)$ is the optimal abandonment trigger given by

$\underline{x}(q_{i};s, \lambda)=\frac{\gamma}{\gamma-1}\frac{sI(q_{i};F_{i})+v_{2}q_{i}f}{v_{1}q_{i}}$ , (2.4)

for any fixed $q_{i},$ $s$ and $\lambda$ . (2.4) implies an important property. That is, holding $I(q_{i};F_{i})$ fixed,

an increase in $\lambda$ (a decrease in $v_{2}$ ) decreases the value of $\underline{x}(q_{i};s, \lambda)$ .

Substituting (2.4) into (2.3), we obtain the value of the abandonment option $AO(q_{i},\overline{x}_{i};s, \lambda)$

as:

$AO(q_{i}, \overline{x}_{i};s, \lambda)=(\frac{v_{1}q_{i}\overline{x}_{i}}{-\gamma})^{\gamma}(\frac{1-\gamma}{sI(q_{i};F_{1})+v_{2}q_{l}’f})^{\gamma-1}>0$ . (2.5)

(2.5) implies that holding $I(q_{i};F_{i})$ fixed, an increase in $s$ or a decrease in $\lambda$ (an increase in $v_{2}$ )

increases the value of $AO(q_{i}, \overline{x}_{i};s, \lambda)$ .

3 Investment problem

In this section, we formulate the investment problem under asymmetric information. As a

benchmark, we also provide the solution to the investment problem under full information.
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3.1 Asymmetric information model

In this subsection, we formulate the investment problem when the manager has private infor-

mation on $F.$

As explained earlier, under asymmetric information, the owner must induce the manager

to reveal the private information truthfully by providing incentives. Otherwise, the manager

diverts value for his own interest by misreporting the value of $F$ . In this study, we assume that

the owner signs a contract with the manager at time zero. The contract commits the owner

to give the manager a bonus incentive at the time of investment, to induce the manager to

tell truth. There is no renegotiation after the contract is signed. Here, we describe the bonus

incentive as $w_{i}=w(F_{i})$ . We make no distinguish between the manager’s reported $\tilde{F}_{i}$ and true
$F_{i}$ because at the equilibrium, the manager reports the true $F_{i}$ as private information. Thus,

the contract under asymmetric information is described as

$\mathcal{S}^{**}=(q_{i}, \overline{x}_{i},\underline{x}_{i}, w_{i}) , i\in\{1, 2 \},$

where the superscript $**$ refers to the asymmetric information problem.

Then, the investment problem under asymmetric information is to maximize the owner’s

option value through the choice of $\mathcal{S}^{**}$ , i.e.,

$q_{1,q_{2,\overline{x}}1,2,2} m_{\frac{a}{x}}x_{w_{1)}w}\sum_{i\in\{1,2\}}p_{i}\{V(q_{i}, \overline{x}_{i};s, \lambda)-I(q_{i};F_{i})-w_{i}\}(\frac{x}{\overline{x}_{i}})^{\beta}$ (3.1)

subject to

$w_{1}( \frac{x}{\overline{x}_{1}})^{\beta}\geq(w_{2}+\triangle F)(\frac{x}{\overline{x}_{2}})^{\beta}$ (3.2)

$w_{2}( \frac{x}{\overline{x}_{2}})^{\beta}\geq(w_{1}-\triangle F)(\frac{x}{\overline{x}_{1}})^{\beta}$ (3.3)

$w_{i}\geq 0, i\in\{1, 2 \}$ , (3.4)

where $\beta=1/2-\mu/\sigma^{2}+\sqrt{(1/2-\mu/\sigma^{2})^{2}+2r/\sigma^{2}}>1.$

Here, the objective function (3.1) is the $ex$ ante owner’s option value. The problem includes

four previous models: Grenadier and Wang (2005), Wong (2011), and Cui and Shibata $(2016a,$

$2016b)$ . First, when $s=0,$ $\lambdaarrow+\infty$ and $q_{i}=1$ , the problem is the same as that in Grenadier

and Wang (2005). Second, if $p_{1}=1$ and $\lambda=0$ , the problem becomes that in Wong (2011).

Third, when $s=0$ and $\lambdaarrow+\infty$ , the problem corresponds to Cui and Shibata (2016a). Forth,

when $\lambdaarrow+\infty$ , the problem becomes that in Cui and Shibata (2016b).

We explain the four constraints (3.2) $-(3.4)$ as follows. (3.2) and (3.3) are the $ex$ post

incentive-compatibility constraints for the manager who observes $F_{1}$ and $F_{2}$ , respectively. Taking

(3.2) as an example, the manager’s value is $w_{1}(x/\overline{x}_{1})^{\beta}$ if he observes $F_{1}$ and tells the truth,

while the manager’s value is $(w_{2}+\triangle F)(x/\overline{x}_{2})^{\beta}$ if he observes $F_{1}$ but reports $F_{2}$ . Then, if (3.2)

is satisfied, the manager who observes $F_{1}$ has no incentive to tell lie. Similarly, (3.3) is imposed

for the manager who observes $F_{2}$ . (3.4) are the $ex$ post limited-liability constraints. They are

imposed to ensure that the manager could accept the contract.
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3.2 Full information benchmark

In this subsection, we consider the investment problem when the owner observes the true value
of $F.$

Under full information, there is no delegation of the investment because the manager has no
informational advantage. Thus, the contract under full information is described as

$S^{*}=(q_{i}, \overline{x}_{i}, \underline{x}_{i}) , i\in\{1, 2 \},$

where the superscript $(*$ refers to the full (symmetric) information problem.

The owner’s maximization problem under full information is defined as

$q_{1_{\rangle}}q_{2,1}, \overline{x}_{2}m_{\frac{a}{x}}x\sum_{i\in\{1,2\}}p_{1}H(x, q_{1}, \overline{x}_{1};F_{1}, s, \lambda)+p_{2}H(x, q_{2}, \overline{x}_{21}F_{2}, s, \lambda)$
, (3.5)

where $x<\overline{x}_{i}$ for any $i(i\in\{1,2\})$ and

$H(x, q_{i}, \overline{x}_{i};F_{i}, s, \lambda)=(V(q_{i}, \overline{x}_{i};s, \lambda)-I(q_{i};F_{i}))(\frac{x}{\overline{x}_{i}})^{\beta}$ (3.6)

Then, we have the following result.

Proposition 1 Suppose the investment problem under full information. For any $i(i\in\{1,2$

$q_{i}^{*}$ and $\overline{x}_{i}^{*}$ are the solutions to the following system of equations:

$C’(q_{i}^{*})= \frac{\beta}{\beta-1}\frac{1}{q_{i}^{*}}[I(q_{i}^{*};F_{i})+\frac{1}{\beta}\frac{1-\eta(q_{i}^{*},\overline{x}_{i}^{*};s,\lambda)}{1-s\eta(q_{i}^{*},\overline{x}_{i}^{*};s,\lambda)}v_{2}q_{i}^{*}f]$ , (3.7)

and

$\overline{x}_{i}^{*}=\frac{\beta}{\beta-1}\frac{1}{v_{1}q_{i}^{*}}[I(q_{i}^{*};F_{i})+v_{2}q_{i}^{*}f-\frac{\beta-\gamma}{\beta}AO(q_{i}^{*}, \overline{x}_{i}^{*};s, \lambda)]$ , (3.8)

where $\eta(q_{i}^{*}, \overline{x}_{i}^{*}; s, \lambda)=(1-\gamma)(sI(q_{i}^{*};F_{i})+v_{2}q_{\iota’}^{*}f)^{-1}AO(q_{i}^{*}, \overline{x}_{i}^{*};s, \lambda)$ . In addition, by (2.4), we
have $\underline{x}_{i}^{*}=\underline{x}(q_{i}^{*};s, \lambda)$ .

When $\lambdaarrow+\infty(v_{2}arrow 0)$ , $q_{i}^{*}$ becomes independent of $s$ , the solutions become the same as
in Wong (2010).

4 Model solution

In this section, we provide the solution to the asymmetric information problem. We then discuss
the solution properties.

4.1 Optimal contract

Although the optimization problem under asymmetric information is subject to four inequality

constraints $(3.2)-(3.4)$ , we could simplify the problem through two steps. First, (3.3) is satisfied
automatically because the manager who observes $F_{2}$ has no incentive to tell lie. The manager
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who observes $F_{2}$ suffers a loss of $\Delta F$ if he reports $F_{1}$ . Second, (3.2) is binding. This is because

if holding (3.2) as a strict inequality, we can increase the owner’s value by decreasing $w_{1}$ . Thus,

we obtain that at the optimum, $w_{i}(i\in\{1,2\})$ satisfy

$w_{2}=0, w_{1}=( \frac{\overline{x}_{1}}{\overline{x}_{2}})^{\beta}\triangle F$. (4.1)

As a result, the owner’s maximization problem under asymmetric information is simplified

as follows:
$\ddagger$

$q_{1)}q_{2,1}, \overline{x}_{2}m_{\frac{a}{x}}x\sum_{i\in\{1,2\}}p_{1}H (x, q_{1}, \overline{x}_{1};F_{1}, s, \lambda)+p_{2}H(x, q_{2},\overline{x}_{2};F_{2}+\phi\triangle F, s, \lambda)$

, (4.2)

where $\phi=p_{1}/p_{2}>0$ and $x<\overline{x}_{i}$ for any $i(i\in\{1,2$ Then we have the following result.

Proposition 2 Suppose the investment problem under asymmetric information.
(1). For $i=1$ , the solutions are $q_{1}^{**}=q_{1}^{*},$ $\overline{x}_{1}^{**}=\overline{x}_{1}^{*},$ $\underline{x}_{1}^{**}=\underline{x}_{1}^{*},$

$w_{1}^{**}=(\overline{x}_{1}^{*}/\overline{x}_{2}^{**})^{\beta}\triangle F.$

(2). For $i=2,$ $q_{2}^{**}$ and $\overline{x}_{2}^{**}$ are the solutions to the following system of equations:

$C’(q_{2}^{**})= \frac{\beta}{\beta-1}\frac{1}{q_{2}^{**}}[I(q_{2}^{**};F_{2})+\frac{\phi\triangle F}{(1-s\eta(q_{2}^{**},\overline{x}_{2)}^{**}s,\lambda))}+\frac{1}{\beta}\frac{1-\eta(q_{2}^{**},\overline{x}_{2}^{**};s,\lambda)}{1-s\eta(q^{**},\overline{x}^{**};s\lambda)}v_{2}q_{2}^{**}f],$

(4.3)

and

$\overline{x}_{2}^{**}=\frac{\beta}{\beta-1}\frac{1}{v_{1}q_{2}^{**}}[I(q_{2}^{**};F_{2}+\phi\Delta F)+v_{2}q_{2}^{**}f-\frac{\beta-\gamma}{\beta}AO(q_{2}^{**}, \overline{x}_{2}^{**};s, \lambda)]$ , (4.4)

where $\eta(q_{2}^{**}, \overline{x}_{2}^{**};s, \lambda)=(1-\gamma)(sI(q_{2}^{**};F_{2})+v_{2}q_{2}^{**}f)^{-1}AO(q_{2}^{**}, \overline{x}_{2}^{**};s, \lambda)$ . In addition, $\underline{x}_{2}^{**}=$

$\underline{x}(q_{2}^{**};s, \lambda)$ .

In Proposition 2, there are two important remarks. First, we have $q_{2}^{**}\neq q_{2}^{*},$ $\overline{x}_{2}^{**}\neq\overline{x}_{2}^{*}$

and $\underline{x}_{2}^{**}\neq\underline{x}_{2}^{*}$ although $q_{1}^{**}=q_{1}^{*},$ $\overline{x}_{1}^{**}=\overline{x}_{1}^{*}$ and $\underline{x}i^{*}=\underline{x}_{1}^{*}$ . This implies that it is less costly

for the owner to distort $(q_{2}^{**}, \overline{x}_{2}^{**}, \underline{x}_{2}^{**})$ away from $(q_{2}^{*}, \overline{x}_{2}^{*}, \underline{x}_{2}^{*})$ than to distort $(q_{1}^{**},\overline{x}_{1}^{**},\underline{x}_{1}^{**})$ away

from $(q_{1}^{*}, \overline{x}_{1}^{*},\underline{x}_{1}^{*})$ . Second, we have $w_{1}^{**}>0$ and $w_{2}^{**}=$ O. This is because the manager who

observes $F_{1}$ has an informational rent defined by $\Delta F$ that the manager who observes $F_{2}$ doesn’t

have. These results are the same as in Grenadier and Wang (2005), Shibata (2009) and Cui and

Shibata $(2016a, 2016b)$ .

4.2 Discussion

To see the solution properties, we consider numerical examples. In order to do to, we assume

that the cost of investment quantity $is^{\S}$

$C(q_{i})=q_{i}^{3}$ . (4.5)

Suppose that the basic parameters are $r=0.05,$ $\mu=0.02,$ $\sigma=0.25,$ $F_{1}=5,$ $F_{2}=10,$ $f=1,$

$s=0.5,$ $\lambda=0.05,$ $p_{1}=0.5$ and $x=1.$

$\ddagger$

For simplification, we use the relation $I(q_{2};F_{2})+\phi\Delta F=I(q_{2};F_{2}+\phi\triangle F)$ .
$\S_{We}$ use $C(q_{i})=q_{i}^{3}$ here just to show the results more obviously. The properties of results also hold with

$C(q_{i})=q_{i}^{2}.$
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$s$

Figure 2: Optimal quantity and investment trigger

We begin by examining the effects of reversibility, i.e., $s$ , on the optimal investment timing

(trigger) and quantity strategies. We have the following remark.

Remark 1 Higher reversibility accelerates the investment, but not necessarily increases the

investment quantity.

The upper-left panel of Figure 2 illustrates that $\overline{x}_{2}^{**}$ is monotonically decreasing with $s.$

This result is the same as Wong $(2010, 2011)$ and Cui and Shibata (2016b). That is, even
under asymmetric information and with the possibility of random shock, higher reversibility

accelerates the investment. The intuition is that higher reversibility increases the value of the

abandonment option.

The upper-right panel shows that $q_{2}^{**}$ exhibits a $U$-shape against $s$ , with a minimum reached

at around $s=0.5$ . This result is the same as under full information and without the possibility

of random shock, i.e., Wong (2011). That is, an increase in $s$ decreases $q_{2}^{**}$ when $s$ is relatively

low, and increases $q_{2}^{**}$ when $s$ is sufficiently large.
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We then consider the impact of the arrival probability of random shock, i.e., $\lambda$ . We obtain

the following remark.

Remark 2 Higher arrival probability of random shock accelerates the investment, but decreases

the investment quantity.

The lower-left panel of Figure 2 illustrates that $\overline{x}_{2}^{**}$ is monotonically decreasing with $\lambda$ . The

reason is as follows. On the one hand, as shown in (2.5), an increase in $\lambda$ (a decrease in $v_{2}$ )

decreases the value of the abandonment option. This effect decreases the investment value. On

the other hand, an increase in $\lambda$ reduces the value of operational cost. This effect increases

the investment value. Because the latter effect dominates the former effect, a higher value of $\lambda$

increases the investment value and then accelerates the investment.

The lower-right panel shows that $q_{2}^{**}$ is monotonically decreasing with $\lambda$ . This is an inter-

esting result that contrary to our intuition. From our intuition, we conjecture that an increase

in $\lambda$ should increase $q_{2}^{**}$ because the occurrence of random shock saves the operational cost of

per unit quantity. However, we obtain that higher arrival probability of random shock $(i.e., \lambda)$

induces the firm to undertake a smaller investment quantity $q_{2}^{**}.$

Finally, we compare the investment strategies under full and asymmetric information for any

fixed value of $s$ and $\lambda$ . We have the following remark.

Remark 3 Under asymmetric information, the investment timing is more delayed and the

quantity is more increased than under full information.

On the one hand, the upper-left panel of Figure 2 shows $\overline{x}_{2}^{**}>\overline{x}_{2}^{*}$ for any $s$ and the lower-left

panel illustrates $\overline{x}_{2}^{**}>\overline{x}_{2}^{*}$ for any $\lambda$ . These results imply that even for a reversible investment

and with the possibility of random shock, the investment timing is delayed under asymmetric

information than under full information. On the other hand, the upper-right panel shows $q_{2}^{**}>$

$q_{2}^{*}$ for any $s$ and the lower-right panel demonstrates $q_{2}^{**}>q_{2}^{*}$ for any $\lambda$ . These results imply that

the investment quantity is increased under asymmetric information than under full information.

The intuition is that the firm increases the quantity to compensate for the losses due to the

delayed investment. There are tradeoffs between the efficiencies on the investment timing and

quantity strategies.

5 Conclusion

In this study, we examine a firm’s optimal timing and quantity strategies for a reversible in-

vestment, under which there exists asymmetric information before investment and possibility of

random shock after investment. We obtain three important results. First, higher reversibility

accelerates the investment, but not necessarily increases the investment quantity. Second, high-

er arrival probability of random shock accelerates the investment, but decreases the investment

quantity. Third, under asymmetric information, the investment timing is more delayed and the

quantity is more increased than under full information.
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The asymmetric information model we have considered in this study assumes that the man-

ager’s bonus is a one-time payment incurred at the time of investment. That is, the manager’s

bonus has no influence on the value after investment. However, it should be interesting to con-

sider a continuous bonus incentive that is related to the the profit flows and examine the optimal

investment strategies. We leave this challenge for future work.
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