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1. Chemotaxis-Growth System
In a study of the chemotactic bacterial pattern formation, Mimura and Tsujikawa [10]
analyzed a parabolic-parabolic chemotaxis system with bacterial proliferation, which
is of the following simplified form:

$\{\begin{array}{ll}\frac{\partial u}{\partial t}=\triangle u-\chi\nabla\cdot(u\nabla v)+f(u) in \Omega\cross(0, \infty) ,\tau\frac{\partial v}{\partial t}=\triangle v-v+g(u) in \Omega\cross(0, \infty) ,\partial u \partial v \overline{\partial v}=\overline{\partial\nu}=0 on \partial\Omega\cross(0, \infty) ,u(x, 0)=u_{0}(x)\} v(x, 0)=v_{0}(x) in \Omega.\end{array}$ (E)

Here, $\Omega\subset \mathbb{R}^{n}$ $(n=2$ or 3 $)$ is a bounded domain with smooth boundary $\partial\Omega$ , and the
coefficients $\chi$ and $\tau$ are positive constants. The unknown functions $u(x, t)$ and $v(x, t)$

are the population density of biological individuals and the concentration of chemical
substance in position $x$ at time $t$ , respectively. We here note that the limit $\tauarrow 0$ of the
time scale indicates the parabolic-elliptic simplification of [21] (cf. [12]). We assume
that the function $f(u)$ is a real smooth function of $u\in[0, \infty$ ) such that $f(0)=0$ and

$f(u)=u-\mu u^{\alpha}$ for sufficiently large $u$ ;

and the function $g(u)$ is given by

$g(u)=u(1+u)^{\beta-1}$ for $u\geq 0,$

where the exponents $\alpha$ and $\beta$ satisfy the relations $1<\alpha\leq 2$ and $0<\beta\leq 1$ , and $\mu$

is a positive constant. The function $f(u)$ models the proliferation and the reduction
in numbers due to death of bacteria as following a logistic process (we refer to the
proliferation and reduction in numbers together simply as growth). When $\alpha=2$ , that
is, quadratic degradation is assumed, the function $f(u)$ gives usual logistic growth.
Subquadratic degradation then refers to the case of $\alpha<2$ . The function $g(u)$ models
the nonlinear secretion of the chemical substance from the bacteria, whose increasing
order is $\beta[5$ , 11, 23$].$

In the context of global existence and blow-up of solutions, the degradation of the
growth can be considered as an inhibitory effect from the increase of $u$ . In fact, if we
suppose that the growth is absent $(f(u)\equiv 0)$ and the secretion is linear $(\beta=1)$ , then
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the system reduces to the classical parabolic-parabolic Keller-Segel system [7], for which
several mathematicians showed the blow-up of solutions: Herrero and Vel\’azquez [4]
$(n=2)$ , Horstmann and Wang [6] $(n=2)$ and Winkler $[26](n\geq 3)$ . Therefore, we
have known that if $f(u)\equiv 0$ or $\alpha=1$ with a special choice of $\mu=1$ and $\beta=1,$

then no inhibitory effect can cause a chemotactic collapse in the $n$-dimensional domain
$(n\geq 2)$ . In contrast, for the parabolic-parabolic chemotaxis-growth system with $\alpha=2$

and $\beta=1$ , the global existence of solutions is assured even if the initial total mass
$\Vert u_{0}\Vert_{L_{1}}$ and the chemotactic coefficient $\chi$ are sufficiently large when $n=2$ by one of
the authors et al. [19] and $n\geq 3$ by Winkler [25]. From these results, we find that if
degradation is quadratic $(\alpha=2)$ and secretion is linear $(\beta=1)$ , then the blow-up of
solutions is prevented independently of the space dimension. We can then conjecture

that the critical degradation order $\alpha$ is in the interval [1, 2] when $\beta=1$ ; however, the
corresponding result for the parabolic-parabolic system (E) has yet to be established.

We then introduced sub-linear secretion $\beta<1$ , and showed a sufficient condition

for the existence of global and bounded solutions under certain relations between $\alpha$

and $\beta$ when $n=2$ or $n=3[14]$ . In fact, we can obtain the following:

Theorem 1.1. Let $\epsilon$ be an arbitrarily fixed exponent satisfying $0<\epsilon<1/4$ . For the
exponents $\alpha$ and $\beta$ , assume the relation

$\frac{2(n+4)}{n+6}<\alpha\leq 2, 0<\beta<\frac{n+6}{2(n+2)}(\alpha-1)$ . (1)

Then, for each initial function $0\leq u_{0}\in H^{(n/2)-1}(\Omega)\subset L_{n}(\Omega)$ and $0\leq v_{0}\in W\subset C(\overline{\Omega})$ ,

the problem (E) admits a unique global solution $(u, v)$ in the junction space

$\{\begin{array}{l}0\leq u\in C([0, \infty);H^{(n/2)-1}(\Omega))\cap C((O, \infty);H_{N}^{3}(\Omega))\cap C^{1}((0, \infty);H^{1}(\Omega)) ,0\leq?1\in C([0, \infty);W)\cap C((O, \infty);H_{N^{2}}^{4+\epsilon}(\Omega))\cap C^{1}((0, \infty);H_{N}^{2+\epsilon}(\Omega)) .\end{array}$

Here, the function spaces $H_{N}^{s}(\Omega)$ , $H_{N^{2}}^{s}(\Omega)$ and $W$ are defined by

$H_{N}^{s}( \Omega)=\{w\in H^{s}(\Omega);\frac{\partial w}{\partial n}=0$ on $\partial\Omega\}$ for $s> \frac{3}{2},$

$H_{N^{2}}^{s}(\Omega)=\{w\in H_{N}^{2}(\Omega);\triangle w\in H_{N}^{s-2}(\Omega)\}$ for $s> \frac{7}{2},$

$W=\{\begin{array}{ll}H^{1+\epsilon}(\Omega) when n=2,H_{N}^{(3/2)+\epsilon}(\Omega) when n=3,\end{array}$

for some fixed exponent $0<\epsilon<1/4.$

In this report, we show a sketch of a proof of the theorem and also the asymptotic

behavior of the solutions. In the paper [14], the global attractors and the exponential

attractors also were constructed. Indeed, we derived the higher order $H^{2}\cross H^{3}$-uniform
estimates of the solutions $(u, v)$ , and then proved not only the boundedness of the

solutions but also the existence of a ball in the $H^{2}\cross H^{3}$ topology in which any solutions

that start from a bounded set of the universal space shall eventually be contained
within a finite time. We call the set an absorbing set. The omega-limit set of the

absorbing set is the global attractor (e.g. [22]). Hence, the dynamics including many

complex pattern formations reduces to the restricted region in the function space and

all the orbits traced out by the solutions converge to the global attractor as $tarrow\infty.$
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Figure 1: Region of global existence in $\alpha-\beta$ plane [13, 14, 15]. The X mark denotes an
occurrence of a blow-up of solutions in the Keller-Segel system $(\alpha=\mu=\beta=1)$ . The
critical degradation order $\alpha$ between global existence and blow-up has not been found

for (E).

Figure 2: Dot and hexagonal pattern formation of solutions to the system (E). A dot

pattern (left) and a hexagonal pattern (right) [9, 16]. In actual phenomena, some dot

patterns have been observed; on the other hand, hexagonal patterns have not been
observed, as far as the authors know.

An exponential attractor contains the global attractor and attracts the orbits at an
exponential rate. Moreover, its fractal dimension is finite [3]. We thus find that the

dynamics of solutions exponentially converges to the restricted compact region, of
which the degree of freedom is finite. It is known that such characteristics have some
advantages for numerical computations (e.g. [22]). Of the results including numerical
computations of chemotaxis-growth systems, we cite here only a selection of the articles
and books: the famous book on mathematical biology by Murray [11]; one-dimensional

pattern formations by Kurata et al. [8], Okuda and Osaki [18], Painter and Hillen [20]

and Uemichi and Osaki [24]; two-dimensional pattern formations by Aida et al. [1],

Okuda and Osaki [17] and Kuto et al. [9] (see Fig. 2); and three-dimensional pattern
formations by Narumi and Osaki [16] (see Figs. 2 and 3).

2. Global Existence of Solutions

After showing the local unique existence of solutions, we show the global existence of
solutions by obtaining several a priori estimates.

Stepl ( $L_{1}$-uniform estimates of $u$ ). By integrating the first equation of (E) in $\Omega,$
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Figure 3: Three-dimensional face centered cubic (FCC) pattern formation in the
chemotaxis-growth system (E) [16].

we obtain

$\frac{d}{dt}f_{\iota}udx=\int_{l}f(u)dx\leq\int_{1}(a-\frac{\mu}{2}u^{\alpha})dx\leq\int_{Jl}(a_{1}-u)dx.$

From Gronwall’s inequality, we obtain $\Vert u\Vert_{L_{1}}\leq e^{-t}\Vert u_{0}\Vert_{L_{1}}+a_{1}|\Omega|(1-e^{-t})$ , where $a_{1}$ is
a constant. At the same time, we have

$\int_{0}^{t}e^{-\omega(t-s)}\int_{tl}u^{\alpha}dxds\leq\frac{2\omega}{\mu}\{(\frac{a}{\omega}+a_{1})|\Omega|+\Vert u_{0}\Vert_{L_{1}}\}\leq C(1+\Vert u_{0}\Vert_{L_{1}})$ .

Step 2 ( $H^{1}$-uniform estimate of $v$ : degradation vs. secretion). By multiplying the
second equation of (E) by $-\Delta v$ and integrating the result over $\Omega$ , under the assumption
$0<2\beta\leq\alpha$ , we obtain

$\frac{\tau}{2}\frac{d}{dt}\int_{\Omega}|\nabla v|^{2}dx\leq-\frac{1}{2}\int_{\Omega}(\Delta v)^{2}dx-\int_{\Omega}|\nabla v|^{2}dx+\frac{1}{2}\int_{\Omega}(1+u)^{2\beta}dx$

$\leq-\frac{1}{2}\int_{l}(\Delta v)^{2}dx-\int_{l}|\nabla v|^{2}dx+Cl_{\iota}(1+u^{\alpha})dx.$

Therefore, we have

$\int_{\zeta\}}|\nabla v|^{2}dx\leq e^{-2t/\tau}\int_{tl}|\nabla v_{0}|^{2}dx+C\int_{0}^{t}e^{-2(t-s)/\tau}\int_{tt}(1+u^{\alpha})dxds$

$\leq e^{-2t/\tau}\int_{l}|\nabla v_{0}|^{2}dx+C(1+\Vert u_{0}\Vert_{L_{1}})$ .

Here, we note that the assumptions $0<\beta\leq\alpha/2$ and $\alpha<2$ imply sub-linear secretion
$\beta<1.$

Step 3 ( $L_{\theta}\cross H^{2}$-uniform estimate: chemotaxis vs. degradation). By multiplying

the first equation of (E) by $(1+u)^{\theta-1}$ and integrating the result over $\Omega$ , we have

$\frac{1}{\theta}\frac{d}{dt}\int_{\Omega}(1+u)^{\theta}dx$

$=-( \theta-1)l_{l}(1+u)^{\theta-2}|\nabla u|^{2}dx+\chi(\theta-1)\int_{Il}u(1+u)^{\theta-2}\nabla u\cdot\nabla vdx$

$+ \int_{1}(1+u)^{\theta-1}f(u)dx$

$\leq-(\theta-1)\int_{l}(1+u)^{\theta-2}|\nabla u|^{2}dx+\chi\int_{l}(1+u)^{\theta}|\Delta v|dx-\int_{ti}u^{\alpha+\theta-1}dx+C.$
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The chemotaxis term can be estimated as

$\int_{tt}(1+u)^{\theta}|\Delta v|dx\leq\Vert(1+u)^{\theta}\Vert_{L_{\frac{2(n+4)}{n+6}}}\Vert\Delta v\Vert_{L_{\frac{2(n+4)}{n+2}}}$

$\leq C_{n}\Vert(1+u)^{\theta}\Vert_{L_{\frac{2(n+4)}{n+b}}}\Vert\Delta v\Vert_{H^{\frac{n}{n+4}}}\leq C_{n}\Vert(1+u)^{\theta}\Vert_{L_{\frac{2(n+4)}{n+6}}}\Vert v\Vert^{\frac{2}{H^{1}n+4}}\Vert v\Vert^{\frac{n+2}{H^{3}n+4}}$

$\leq\eta\Vert v\Vert_{H^{3}}^{2}+C_{\eta}\Vert(1+u)^{\theta}\Vert_{\frac{n+62(n+4)+4)}{n+6}}^{\frac{2(n}{L}}\Vert v\Vert^{\frac{4}{H^{1}n+6}}$

We here adopt the assumption (chemotaxis $<$ degradation that is,

$\frac{2(n+4)}{n+6}\theta<\alpha+\theta-1 \Leftrightarrow \theta<\frac{n+6}{n+2}(\alpha-1)$ .

Then, we obtain

$\frac{1}{\theta}\frac{d}{dt}l_{l}(1+u)^{\theta}dx\leq-(\theta-1)\int_{\iota}(1+u)^{\theta-2}|\nabla u|^{2}dx+\eta\int_{l}|\nabla\Delta v|^{2}dx$

$- \frac{\mu}{4}\int_{t1}u^{\alpha+\theta-1}dx+\psi(\Vert v\Vert_{H^{1}}+\eta^{-1})$ .

Meanwhile, by applying operator $\nabla$ to the second equation of (E), multiplying by $\nabla\Delta v,$

and integrating the result over $\Omega$ , we have

$\frac{\tau}{2}\frac{d}{dt}\int_{\zeta f}|\Delta v|^{2}dx=-\int_{)}|\nabla\Delta v|^{2}dx-\int_{\zeta 1}|\Delta v|^{2}dx-\int_{t}\nabla\Delta v\cdot g’(u)\nabla udx$

$\leq-\frac{1}{2}\int_{1}|\nabla\Delta v|^{2}dx-\int_{\zeta)}|\Delta v|^{2}dx+\frac{\beta^{2}}{2}\int_{l}(u+1)^{2\beta-2}|\nabla u|^{2}dx.$

With an additional assumption $2\beta\leq\theta$ , we obtain an $L_{\theta}\cross H^{2}$-uniform estimate.
Step 4 ( $L_{2\theta}$-uniform estimate of $u$ ). From the first equation, we have

$\frac{1}{2\theta}\frac{d}{dt}\int_{t1}(1+u)^{2\theta}dx\leq-(2\theta-1)\int_{1l}(1+u)^{2\theta-2}|\nabla u|^{2}dx$

$+ \chi\int_{l}(1+u)^{2\theta}|\Delta v|dx+Cl_{l}(1-u^{\alpha+2\theta-1})dx.$

The chemotaxis term can be estimated as

$l_{1}(1+u)^{2\theta}|\Delta v|dx\leq\Vert(1+u)^{\theta}\Vert_{L_{4}}^{2}\Vert\Delta v\Vert_{L_{2}}$

$\leq C(\Vert(1+u)^{\theta}\Vert\frac{3n}{H^{1}2n+4}\Vert(1+u)^{\theta}\Vert\frac{4-n}{L_{1}2n+4})^{2}\Vert\Delta v\Vert_{L_{2}}$

$\leq\eta\Vert(1+u)^{\theta}\Vert_{H^{1}}^{2}+C_{\eta}\Vert 1+u\Vert_{L_{\theta}}^{2\theta}\Vert v\Vert^{\frac{2n+4}{H^{2}4-n}}$

Then, we have a recurrence relation $\theta_{j+1}=2\theta_{j}$ of $\theta$ , which allows $L_{\theta}$-uniform estimates
with arbitrary $\theta$ (cf. [2]).

By similar arguments to the above, we can also obtain the higher order uniform
estimate [14]. $\square$
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3. Dynamical System and Attractors
By the above results, we can show the existence of attractors in the dynamical system
of the solutions. In fact: let us define the universal space $H$ as

$H=L_{2}(\Omega)\cross H^{1}(\Omega)$ .

The initial functions are taken in the following set:

$K= \{(u, v)\in H^{\frac{n}{2}-1}(\Omega)\cross W;u\geq 0, v\geq 0\}, 0<\epsilon<\frac{1}{4}.$

Then, the global unique solutions belong to $\mathcal{D}=H_{N}^{2}(\Omega)\cross H_{N}^{3}(\Omega)$ , which shows that a
continuous semigroup $S(t)$ : $Karrow K$ such that $(u_{0}, v_{0})\mapsto(u(t), v(t))\in K\cap \mathcal{D}$ can be
defined. From the higher order uniform estimate in $\mathcal{D}[14]$ , we have an absorbing set
$\mathcal{B}$ ; that is, for every bounded set $B\subset K$ , there exists a time $t_{B}$ that may depend on
$B$ such that $\bigcup_{t\geq t_{B}}S(t)B\subset \mathcal{B}$ . More precisely, we can show the following:

Proposition 3.1. A bounded ball $\mathcal{B}$ of $K$

$\mathcal{B}=\{(u, v)\in H_{N}^{2}(\Omega)\cross H_{N}^{3}(\Omega);\Vert u\Vert_{H^{2}}+\Vert v\Vert_{H^{3}}\leq C, u\geq 0, v\geq 0\}\subset K$

is an absorbing set of the dynamical system $(S(t), K, H)$ . Here, the constant $C$ is a
universal constant, which is suitably determined from the a priori estimates.

From the existence of the absorbing set $\mathcal{B}$ , we can construct a positively invariant
set $\mathcal{H}$ as

$\mathcal{H}=\bigcup_{t\geq t_{B}}S(t)\mathcal{B},$

whose topology of the closure is of $K$ . Therefore, the asymptotic behavior of the
solutions is reduced to the eventual dynamical system $(S(t), \mathcal{H}, H)$ . In the dynamical
system, the global attractor $\mathcal{A}$ , which is a compact and invariant set in $H$ and attracts
every bounded subset of $\mathcal{H}$ , is obtained as the $\omega$-limit set of $\mathcal{B}:\mathcal{A}=\bigcap_{t>0}\bigcup_{s>t}S(t)\mathcal{B}.$

A subset $\mathcal{M}\subset \mathcal{H}$ is called the exponential attractor for $(S(t), \mathcal{H}, H)$ if $\overline{\mathcal{A}}\subset\overline{\mathcal{M}}\subset \mathcal{H}$ ;
$\mathcal{M}$ is a compact subset of $H$ and is invariant for $S(t);\mathcal{M}$ has finite fractal dimension
$d_{F}(\mathcal{M})$ ; and $h(S(t)\mathcal{H}, \mathcal{M})\leq c_{0}\exp(-c_{1}t)$ for $t\geq 0$ with some constants $c_{0},$ $c_{1}>$ O.
Here, $h(B_{0}, B_{1})= \sup_{U\in B_{0}}\inf_{V\in B_{1}}\Vert U-V\Vert_{H}$ denotes the Hausdorff pseudodistance of
two sets $B_{0}$ and $B_{1}$ . Eden et al. [3, Proposition 3.1 and Theorem 3.1] showed that
under the above setting, if some Lipschitz conditions hold for the equations, then an
exponential attractor $\mathcal{M}$ exists for the dynamical system $(S(t), \mathcal{H}, H)$ . We can verify
the Lipschitz conditions by arguments quite similar to those in [19, Section 5]. Then
we obtain the existence theorem of the global attractor and an exponential attractor
as follows:

Theorem 3.2. There exist the global attractor $\mathcal{A}$ and an exponential attractor $\mathcal{M}$ for
the dynamical system $(S(t), \mathcal{H}, H)$ of the chemotaxis-growth system (E).
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