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1. INTRODUCTION

Consider the incompressible Euler equations1

$D_{t}u:=u_{t}+u\cdot\nabla u=-\nabla\pi, t\geq 0, x\in \mathbb{R}^{2}$

(1.1) $divu=0$

$u(0)=u_{0}$

where $u=u(t, x)$ is the velocity of the fluid and $\pi=\pi(t, x)$ is the pressure function. The
study of the Cauchy problem (1.1) has a long history going back to the work of Gyunter
[5], Lichtenstein [8] and Wolibner [12] in the $1920s$ and $1930s$ . Modern expositions of
those as well as more refined results that have been obtained can be found for example
in the recent textbooks of Chemin [4], Majda and Bertozzi [9] or Bahouri, Chemin and
Danchin [1].

Recently, in a series of papers Bourgain and Li [2, 3] introduced a method based on large
Lagrangian deformations to prove strong local ill-posedness results in borderline Sobolev
spaces $W^{n/p+1,p}$ for any $1\leq p<\infty$ and in Besov spaces $B_{p,q}^{n/p+1}$ for any $1\leq p<\infty$

and $1<q\leq\infty$ and $n=2$ or 3. Roughly speaking, using multi-scale vortices the
authors construct a background Lagrangian flow with symmetries which they use together
with careful estimates of singular integral operators to show that the flow has a large
deformation effect. They then define a suitable high frequency perturbation in such a
way so that its support intersects a neighbourhood of the point where the flow has the
largest gradient which leads to norm inflation. In this paper we describe a different though
related mechanism based on a limiting procedure that involves a scale of Banach spaces.
On the one hand the norm inflation result we prove is weaker than that obtained by
Bourgain and Li. On the other hand our method seems to be applicable in the borderline
function spaces that were left out of the analysis in [2, 3]. Details for the case of the Besov
space $B_{2,1}^{2}$ will appear elsewhere. Our objective here is to introduce this technique in a
simpler setting of the Sobolev $W^{s_{\}}p}$ spaces. More precisely, we will prove the following
result.

lThis note may be regarded as complementary to the paper [10].
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Theorem 1.1. Let $M_{j}\nearrow\infty$ be a sequence of positive numbers. There is a sequence

of smooth solutions $\{u_{j}\}_{j=1}^{\infty}$ of (1.1) with rapidly decaying initial data $\{u_{0,j}\}_{j=1}^{\infty}$ and a
sequence $p_{j}\searrow 2$ such that

$\Vert u_{0,j}\Vert_{W^{2,p_{J\sim}}}<1$ and $\Vert u_{j}(t)\Vert_{W^{2,p_{J}}}\geq M_{j}$

for some $0<t\leq M_{j}^{-3}.$

In what follows we will need the fact that the Euler equations (1.1) are locally wellposed
in the sense of Hadamard in the little H\"older space. A proof of this result is given in [11].

2. LARGE LAGRANGIAN DEFORMATION

The vorticity formulation of the Cauchy problem for the Euler equations in two dimen-
sions has the form

$\omega_{t}+u\cdot\nabla\omega=0, t\geq 0, x\in \mathbb{R}^{2}$

(2.2) $u=K*\omega$

$\omega(0)=\omega_{0}$

where $\omega=\partial_{1}u_{2}-\partial_{2}u_{1}$ and

(2.3) $K(x)= \frac{1}{2\pi}(-\frac{x_{2}}{|x|^{2}}, \frac{x_{1}}{|x|^{2}})$ and $\nabla^{\perp}=(-\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{1}})$

denote the Biot-Savart kernel and the symplectic gradient, respectively. Recall that the
Lagrangian flow of $u$ is obtained by solving

(2.4) $\frac{d}{dt}\eta(t, x)=u(t, \eta(t, x))$

$\eta(0, x)=x$

and defines a curve in the group of diffeomorphisms of $\mathbb{R}^{2}.$

In order to construct a flow with a large deformation gradient we need to choose a
suitable initial vorticity. Given a smooth radial bump function $0\leq\psi\leq 1$ with support
in the ball $B(O, 1/4)$ let

(2.5)
$\psi_{0}(x_{1}, x_{2})=\sum_{\epsilon 1,\epsilon 2^{=\pm 1}}\epsilon_{1}\epsilon_{2}\psi(x_{1}-\epsilon_{1}, x_{2}-\epsilon_{2})$

.

Next, fix a positive integer $N_{0}$ and for any numbers $p>0$ and $M\gg 1$ and any integer
$N\geq 1$ define

(2.6)
$\omega_{0}(x)=M^{-2}N^{-\frac{1}{p}}\sum_{N_{0}\leq k\leq N_{0}+N}\psi_{k}(x)$

,

where

$\psi_{k}(x)=2^{(-1+\frac{2}{p})k}\psi_{0}(2^{k}x)$

whose supports are disjoint for any $k\geq 1$ and contained in the sets

(2.7) supp
$\psi_{k}\subset\bigcup_{1_{\rangle}\epsilon 2}B((\epsilon_{1}2^{-k}, \epsilon_{2}2^{-k}), 2^{-(k+2)})$

.

It follows that $\omega_{0}$ is smooth, compactly supported and odd in both variables $x_{1},$ $x_{2}$ and
furthermore

55



Lemma 2.1. If $2<p<\infty$ then for any integer $N\geq 1$ we have

(2.8) $\Vert\omega_{0}\Vert_{W^{1,p_{\sim}}}<M^{-2}.$

Proof. A straightforward calculation is omitted. I

Let $u=K*\omega$ be the associated velocity field and consider its Lagrangian flow $\eta(t)$

given by (2.4). It is not difficult to verify that $\eta(t)$ is smooth and preserves the coordinate
axes $x_{1},$ $x_{2}$ as well as the symmetries of the initial vorticity $\omega_{0}$ . In fact, it is hyperbolic
near the origin (which is a stagnation point) and we have the following estimate

Proposition 2.2. Let $M\gg 1$ . For any sufficiently large integer $N\geq 1$ and any $2<p<$
$\infty$ sufficiently close to 2 we have

(2.9)
$\sup_{0\leq t\leq M^{-3}}\Vert D\eta(t)\Vert_{\infty}\geq M.$

Proof. Cf. [10]; Prop. 6. I

Recall that the little H\"older space $c^{1,\alpha}$ is a closed subspace of the H\"older space $C^{1,\alpha}$ and
consists of those functions that in addition satisfy the vanishing condition $\lim_{harrow 0}\sup_{|x-y|<h}|x-$

$y|^{-\alpha}|Df(x)-Df(y)|=0$ . It is a Banach space and is equipped with the same norm $\Vert\cdot\Vert_{1,\alpha}$

as the standard H\"older space. We will also need the following wellposedness result

Proposition 2.3. The data-to-solution map of the Euler equations (1.1) is continuous in
$c^{1,\alpha}\cap L^{2}$ for any $0<\alpha<1.$

Proof. Cf. [11]. Note that the restriction to $L^{2}$ is needed to ensure appropriate decay at
infinity. 1

3. PROOF OF THEOREM 1.1.

Let $M_{j}\nearrow\infty$ and choose sequences $N_{j}\geq 1$ and $2<p_{j}<\infty$ for which the estimate (2.9)
of Proposition 2.2 holds.2 Proceeding as in [2] we will perturb the initial vorticity (2.6)
and work with the associated Lagrangian flows. Theorem 1.1 will be a direct consequence
of the following result.

Theorem 3.1. There is a sequence $\omega_{0,j}^{n}$ of smooth, compactly supported functions with
the following properties

1. there is a constant $C>0$ such that $\Vert\omega_{0,j}^{n}\Vert_{W^{1,p_{J}}}\leq C$ , and

2. there is $0<t^{*}\leq M_{j}^{-3}$ such that $\Vert\omega_{j}^{n}(t^{*})\Vert_{W^{1,p_{J}}}\geq M_{j}^{1/3}$

for all sufficiently large positive integers $n.$

Proof of Theorem 3.1. First, given $M_{j}\gg 1$ observe that if $\Vert\omega_{j}(t)\Vert_{W^{1,p_{J}}}\geq M_{j}^{1/3}$ for some
$0<t\leq M_{j}^{-3}$ then there is nothing to prove and therefore we may assume that

(3.10) $\Vert\omega_{j}(t)\Vert_{W^{1,p_{J}}}\leq M_{j}^{1/3}$ for all $0\leq t\leq M_{j}^{-3}.$

Since $p_{j}>2$ the associated velocity field $u_{j}=\nabla^{\perp}\triangle^{-1}\omega_{j}$ is $C^{1}$ and therefore so is its flow
$\eta_{j}(t)=(\eta_{j}^{1}(t), \eta_{j}^{2}(t))$ . Using (2.9) we can then pick $0\leq t^{*}\leq M_{j}^{-3}$ and $x^{*}=(x_{1}^{*}, x_{2}^{*})\in \mathbb{R}^{2}$

for which the absolute value of one of the entries in the Jacobi matrix $D\eta_{j}(t^{*}, x^{*})$ is at

$2For$ example, it is sufficient to take $N_{j}=10M_{j}^{10}$ and $p_{j}=2^{\frac{N_{0}+N}{N_{0}+N_{J}-1}}.$
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least as large as $M_{j}$ and by continuity deduce that in a sufficiently small $\delta$-neighbourhood
of $x^{*}$ we have

(3.11) $| \frac{\partial\eta_{j}^{2}}{\partial x_{2}}(t^{*}, x)|\geq M_{j}$ for all $|x-x^{*}|<\delta.$

To construct a sequence of high-frequency perturbations of the initial vorticity in $W^{1,p_{J}}$

consider a smooth bump function $\hat{\chi}\in C_{c}^{\infty}(\mathbb{R}^{2})$ in the Fourier space with support in the
unit ball and such that $0\leq\hat{\chi}\leq 1$ and $\int_{\mathbb{R}^{2}}\hat{\chi}(\xi)d\xi=1$ . Let $\xi_{0}=(2,0)$ and define

$\hat{\rho}(\xi)=\hat{\chi}(\xi-\xi_{0})+\hat{\chi}(\xi+\xi_{0}) , \xi\in \mathbb{R}^{2}.$

Observe that $\hat{\rho}$ is supported in the union of the unit balls with centers at $\xi_{0}$ and $-\xi_{0}$ and
satisfies

(3.12) $\rho(0)=\int_{\mathbb{R}^{2}}\hat{\rho}(\xi)d\xi=2$

and for any $k\in \mathbb{Z}_{+}$ and $\lambda>0$ define

(3.13) $\beta_{j}^{k,\lambda}(x)=\frac{\lambda^{-1+\frac{2}{p_{J}}}}{\sqrt{k}}\sum_{2\epsilon 1,\epsilon=\pm 1}\epsilon_{1}\epsilon_{2}\rho(\lambda(x-x_{\epsilon}^{*}))\sin kx_{1}$

where $x_{\epsilon}^{*}=(\epsilon_{1}x_{1}^{*}, \epsilon_{2}x_{2}^{*})$ .
To proceed we need the following estimates.

Lemma 3.2. Let $2<p_{j}<\infty,$ $2\leq p\leq\infty$ and $\sigma>0$ . For any sufficiently large positive
integer $k$ and $\lambda>0$ we have

1. $\Vert\beta_{j}^{k,\lambda}\Vert_{W^{1,p_{J\sim}}}<\lambda^{-1\sqrt{k}}$

2. $\Vert-2\sim$
3. $\Vert\partial_{lL^{p_{\sim}}}\triangle^{-1}\beta_{j}^{k,\lambda}\Vert<k^{-\frac{1}{2}}\lambda^{-2+\frac{2}{p_{J}}-\frac{2}{p}}$

where $l=1$ , 2.

Proof. The first estimate is routine and therefore we focus on the remaining two. It will
be convenient to use the Fourier transform

(3.14) $\hat{\beta}_{j}^{k,\lambda}(\xi)=\frac{1}{2i}k^{-\frac{1}{2}}\lambda^{-3+\frac{2}{p_{J}}}\sum_{\epsilon\epsilon_{1,2}=\pm 1}\sum_{m=1}^{2}(-1)^{m+1}\epsilon_{1}\epsilon_{2}\hat{\rho}(\lambda^{-1}\xi_{m}^{k})e^{-2\pi i\langle x_{\epsilon}^{*},\xi_{m}^{k}\rangle}$

where $\xi_{m}^{k}=(\xi_{1}+\frac{(-1)^{m}}{2\pi}k, \xi_{2})$ . Let $p’$ be the conjugate Lebesgue exponent of $p$ . Using the
Hausdorff-Young inequality we have

$\Vert\triangle^{\underline{1}\pm z}2\partial_{l}\triangle^{-1}\beta_{j}^{k,\lambda}\Vert_{Lp}\sim<\Vert|\cdot|^{\sigma}\hat{\beta}_{j}^{k,\lambda}\Vert_{Lp’}$

$\sim<k^{-\frac{1}{2}}\lambda^{-3+\frac{2}{p_{j}}}\sum_{m=1}^{2}(\int_{R^{2}}|\xi|^{\sigma p’}|\hat{\rho}(\lambda^{-1}\xi_{m}^{k})|^{p’}d\xi)^{1/p’}$
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Changing the variables and estimating further we obtain

$\sim<k^{-\frac{1}{2}}\lambda^{-3+\frac{2}{p_{J}}+\frac{2}{p}}\sum_{m=1}^{2}(\int_{R^{2}}((\xi_{1}-\frac{(-1)^{m}}{2\pi}k)^{2}+\xi_{2}^{2})^{\sigma p’/2}|\hat{\rho}(\lambda^{-1}\xi)|^{p’}d\xi)^{1/p’}$

$\sim<k^{-\frac{1}{2}}\lambda^{-1+\frac{2}{r_{J}}-\frac{2}{r}}\sum_{m=1}^{2}(\int_{\mathbb{R}^{2}}((\lambda\xi_{1}-\frac{(-1)^{m}}{2\pi}k)^{2}+(\lambda\xi_{2})^{2})^{\sigma p’/2}|\hat{\rho}(\zeta)|^{p’}d\xi)^{1/p’}$

$\sim<k^{-\frac{1}{2}}\lambda^{-1+\frac{2}{p_{J}}-\frac{2}{p}}(\lambda^{\sigma}+k^{\sigma})$ .

By the same calculation as above we also have

$\Vert\partial_{l}\triangle^{-1}\beta_{j}^{k,\lambda}\Vert_{Lp\sim}<\Vert|\cdot|^{-1}\hat{\beta}_{j}^{k,\lambda}\Vert_{Lp’}$

$\sim<k^{-\frac{1}{2}}\lambda^{-1+\frac{2}{p_{J}}-\frac{2}{p}}\sum_{m=1}^{2}\int_{\sup p\{\hat{\rho}\}}((\lambda\xi_{1}-\frac{(-1)^{m}}{2\pi}k)^{2}+(\lambda\xi_{2})^{2})^{-p’/2}|\hat{\rho}(\xi)|^{p’}d\xi$

$\sim<k^{-\frac{1}{2}}\lambda^{-2+\frac{2}{p_{j}}-\frac{2}{p}}$

for any sufficiently large $k$ and $\lambda.$ $I$

Next, setting $\beta_{j}^{n}=\beta_{j}^{k,\lambda}$ where $k=\lambda^{2}$ and $\lambda=3n$ with $n\gg 1$ and using (3.11) and
(3.12) we have

Lemma 3.3. Let $2<p_{j}<\infty,$ $0<t^{*}\leq M_{j}^{-3}$ and $n\gg 1$ be as above. Then

1. $\Vert\partial_{2}\beta_{j}^{n}\eta_{j}^{2}(t^{*})\Vert_{L^{p_{J_{\sim}}}}$

2. $\Vert\partial_{1}\beta_{j}^{n}\partial_{2}\eta_{j}^{2}(t^{*})\Vert_{L^{p_{J}}}\sim>M(1+\mathcal{O}(n^{-\frac{1}{2}}))-Cn^{-1}$

where $C$ depends on $\Vert\hat{\rho}\Vert_{L^{p_{J}’}}$ and $\sup_{0\leq t\leq 1}\Vert u_{j}(t)\Vert_{C^{1}}$ and where $\frac{1}{p_{J}}+\frac{1}{p_{J}}=1.$

Proof. Cf. [10]; Lem.llLemll. 1

Consider the sequence of initial vorticities $\omega_{0,j}^{n}(x)=\omega_{0,j}(x)+\beta_{j}^{n}(x)$ with $n\geq 1$ . By
Lemma 2.1 and Lemma 3.2 (part 1) it is clearly in $W^{1,p_{J}}$ for any $2<p_{j}<\infty$ and so let
$\omega_{j}^{n}(t)\in C([0,1], W^{1,p_{j}}(\mathbb{R}^{2}))$ be the corresponding solution of the vorticity equations (2.2).
Observe that choosing the parameter $0< \sigma<\frac{1}{2}$ ensures that both right hand sides of
the expressions in parts 2 and 3 of Lemma 3.2 converge to zero as $narrow\infty$ . Furthermore,
choosing $p>2/\sigma$ and $0<\alpha<\sigma-2/p$ and using continuity of the solution map in little
H\"older spaces in Lemma 2.3 we obtain

(3.15) $\sup_{0\leq t\leq 1}\Vert\nabla^{\perp}\triangle^{-1}(\omega_{j\sim}^{n}(t)-\omega_{j}(t))\Vert<arrow 0$

as $narrow\infty$ and therefore standard application of Gronwall’s inequality to the flow equation
(2.4) gives

(3.16)
$\theta_{n}=\sup_{0\leq t\leq 1}\Vert\eta_{j}^{n}(t)-\eta_{j}(t)\Vert_{C^{1}}arrow 0$ a$s$ $narrow\infty$

where $\eta_{j}^{n}(t)$ is the flow of the velocity field $u_{j}^{n}=\nabla^{\perp}\triangle^{-1}\omega_{j}^{n}$ corresponding to the initial
vorticity $\omega_{0,j}^{n}.$
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Combining (3.16) with the fact that the Lagrangian flows are volume-preserving and
using conservation of vorticity we now have

$\Vert\omega_{j}^{n}(t^{*})\Vert_{W^{1,p_{J\sim}}}>\Vert d\omega_{0,j}^{n}(\nabla^{\perp}\eta_{j}^{n,2}(t^{*}))\Vert_{L^{p_{J}}\sim}>\Vert d\omega_{0,j}^{n}(\nabla^{\perp}\eta_{j}^{2}(t^{*}))\Vert_{L^{p_{J}}}-\theta_{n}\Vert d\omega_{0,j}^{n}\Vert_{L^{p_{\mathcal{J}}}}$

(3.17) $\sim>\Vert d\beta_{j}^{n}(\nabla^{\perp}\eta_{j}^{2}(t^{*}))\Vert_{L^{p_{J}}}-\Vert d\omega_{0,j}(\nabla^{\perp}\eta_{j}^{2}(t^{*}))\Vert_{L^{p_{J}}}-\theta_{n}\Vert d\omega_{0,j}^{n}\Vert_{L^{p_{J}}}.$

Finally, it suffices to observe that by the assumption (3.10) the middle term on the right

of (3.17) is bounded by

$\Vert d\omega_{0,j}(\nabla^{\perp}\eta_{j}^{2}(t^{*}))\Vert_{L^{p_{J}}\sim}<\Vert\omega_{j}(t^{*})\Vert_{W^{1,p_{J\sim}}}<M_{j}^{1/3}$

while by Lemma 3.3 we have

$\Vert d\beta_{j}^{n}(\nabla^{\perp}\eta_{j}^{2}(t^{*}))\Vert_{L^{p_{J}}}\sim>\Vert\partial_{1}\beta_{j}^{n}\partial_{2}\eta_{j}^{2}(t^{*})\Vert_{L^{p_{J}}}-\Vert\partial_{2}\beta_{j}^{n}\eta_{j}^{2}(t^{*})\Vert_{L^{p_{J}}\sim}M_{j}$

for any suficiently large $n\gg 1$ . The proof of Theorem 3.1 is completed. I
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