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1 Introduction

A number of authors have studied the viscous $p$-system of one-dimensional equations:

$\{\begin{array}{l}\partial_{t}v-\partial_{x}u=0,\partial_{t}u+\partial_{x}(p(v))-\nu\partial_{x}(\frac{\partial_{x}u}{v})=\mathcal{G}.\end{array}$ (1)

Here, $v>0$ is a viscosity constant, $p(v)$ a function of $v>0$ assumed to take finite positive
values, and $\mathcal{G}$ represents a forcing term, later in this section specified as a self-gravitational
field. In case the function $p(v)$ takes the form

$p(v)=av^{-\gamma}$

with constants $a>0$ and $\gamma\geq 1$ , so-called isothermal or isentropic case, we know, under
suitable boundary conditions, that the Cauchy problem of the system (1) with smooth initial
data admits a unique global smooth solution for a considerably wide class of forcing terms.
For example, for the system on a finite interval with solid boundary or the system with
periodic condition, square integrability of $\mathcal{G}$ in time-space variables is enough to solve the
system in $H^{1}$-class. Neither blowing up nor breaking down of solutions takes place in a finite
time. A major problem left for us would be the study of the global behavior of solutions, as
experts in this field agree.
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In this context, some global bounds of solutions would be of great use. For the isothermal
system with solid boundary condition, the classical result of Matsumura-Nishida [3] (1989)
established the global $H^{1}$ -bound of solutions for any $L^{\infty}$ forcing term. The global $H^{1}$ -bound
of a solution then ensures the compactness of the orbit, for example, in $L^{\infty}$ . This enables us
to take the $\omega$-limit of the orbit to yield a nonempty set:

$\bigcap_{s\geq 0}\overline{\{(v(t,\cdot),u(t,\cdot));t\geq s\}}^{L^{\infty}\cross L^{\infty}}\neq\emptyset$ , (2)

and some information on the large time behavior of the solution would be deduced from
the set. Under the same situation as in Matsumura-Nishida, an effort to derive the global
$H^{1}$-bound from the isentropic system was done by Matsumura-Yanagi [4] (1996). However,
the result requires the isentropic system some data-dependent closeness to the isothermal
system. Besides, a result of Novotny-Straskraba [5] (2001) on the two or three dimensional
compressible isentropic Navier-Stokes system with a large stationary forcing term shows the
existence of a weak solution approaching certain singular stationary solutions. Even in the
one dimensional case, boundedness of forcing term (except for the trivial case of $\mathcal{G}\equiv 0$ , see
Kanel’ [2]) seems inadequate to ensure the boundedness of solutions to the isentropic system.
Now the problem arises how an unbounded solution, if exists, is derived from the isentropic
system.

In this note, we concentrate ourselves to the isentropic system forced by a non-stationary
self-gravitational field:

$\mathcal{G}=-\frac{4\pi G}{\overline{v}}\frac{\partial}{\partial x}\int_{0}^{L}K_{L}(x, y)(v(t, y)-\overline{v})dy$ (3)

under spatially periodic condition. $K_{L}$ represents Green’s kernel of the minus Laplacian - $\frac{d^{2}}{dx^{2}}$

acting on $L$-periodic functions with average $0$ :

$K_{L}(x, y)= \sum_{n=1}^{\infty}\frac{L}{2\pi^{2}n^{2}}\cos\frac{2\pi n}{L}(x, y)$ ,

or

$K_{L}(x, y)=- \frac{|x-y|}{2}+\frac{(x-y)^{2}}{2L}+\frac{L}{12}, 0\leq x, y\leqL,$

$\overline{v}$ the average of $v$ :

$\overline{v}=\frac{1}{L}\int_{0}^{L}v(t, x)dx,$

and $G>0$ the gravitational constant. The formula (3) is a representation in Lagrangian
material coordinates of Newton’s gravitation corresponding to periodic mass distribution of a
fluid. This field is often adopted in the classical theory of gravitational instability as a model
of gravitation admitting force-free infinite homogeneous states of the fluid. See, for example,
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Weinberg [8], Chapter 15. The field develops along with the variation of $v$ but turns out to
be globally bounded with respect to the time-space variables.

No problem arises about the Cauchy problem for (1) with (3) due to the boundedness
of the self-gravitational term, however, we first establish the global solvability of the system
for the sake of completeness. In what follows, we denote by $H^{s},$ $s=0$ , 1, 2, . . . , the Sobolev
spaces of $L$-periodic real-valued functions on $R$ , and write $L^{2}=H^{0}$ , as usual.

Global existence of solutions For any initial data $v_{0},$
$u_{0}\in H^{1}$ with $v_{0}>0$ , the Cauchy

problem with initial condition

$v(O, x)=v_{0}(x) , u(O, x)=u_{0}$

admits a unique global solution belonging to the class:

$\{\begin{array}{l}v\in C^{1}([0, \infty);L^{2})\cap C^{0}([0, \infty);H^{1}) , v>0,u\in H_{1oc}^{1}(0, \infty;L^{2})\cap L_{1oc}^{2}(0, \infty;H^{2})(\subset C^{0}([0, \infty);H^{1}\end{array}$

We are concerned with the global behavior of smooth solutions from this class. Specif-
ically, we introduce a condition for the initial data that ensures the unboundedness in the
sense that $v$ “grows up”’ in infinite time:

$\sup_{t,x}v(t, x)=\infty.$

2 Main results

In order to describe a situation of unbounded growth of solutions we need to refer to the
structure of the whole stationary solutions of the system. For this purpose let us introduce
a function on the interval $0<\theta<(\gamma-1)^{-1/2}$ as

$I_{\gamma}(\theta)=I_{\gamma,+}(\theta)+I_{\gamma,-}(\theta)$ ,

$I_{\gamma,\pm}( \theta)=\theta\int_{0}^{1}\frac{1}{\sqrt{1-y}}\frac{1}{f_{\pm}(F_{\pm}^{-1}(\theta^{2}y))}dy,$

where $f_{\pm}$ and $F\pm are$ functions given by

$f_{+}(r)=1-(1+r)^{-1/\gamma}, F_{+}(r)= \int_{0}^{r}f_{+}(s)ds, r\geq 0,$

$f_{-}(r)=- \{1-(1-r)^{-1/\gamma}\}, F_{-}(r)=\int_{0}^{r}f_{-}(s)ds, 0\leq r<1.$

We can show that $I_{\gamma}$ is monotone increasing for $1\leq\gamma<2$ , and at either end of the interval,
$I_{\gamma}$ has the limit:

$I_{\gamma}(+0)=(2\gamma)^{1/2}\pi,$ $\{\begin{array}{ll}I_{1}(\infty)=\infty, \gamma=1,I_{\gamma}((\gamma-1)^{-1/2}-0)<\infty, 1<\gamma<2.\end{array}$
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For a proof see [7].

Noting that the average of a solution is a constant of motion, and that $\overline{u}$ may be considered
to vanish by change of unknown functions $(v, u)\mapsto(v,$ $u-u$ for every positive parameter
$V$ we study the structure of the whole stationary solutions lying in the manifold

$M_{V}=\{(v, u)\in H^{1}\cross H^{1};\overline{v}=V, \overline{u}=0, v>0\}.$

Obviously, the trivial solution (V, O) lies in $M_{V}.$

Theorem 1 Assume $1\leq\gamma<2$ . For $V>0$ let $k_{\min}$ and $k_{\max}$ , respectively, be the smallest
and the largest integers $j$ satisfying

$( \frac{a\gamma\pi}{GV^{\gamma}})^{1/2}<\frac{L}{j}<\{\begin{array}{ll}\infty, \gamma=1,\frac{I_{\gamma}((\gamma-1)^{-1/2})}{\sqrt{2\gamma}\pi}(\frac{a\gamma\pi}{GV^{\gamma}})^{1/2} 1<\gamma<2.\end{array}$ (4)

Then, for $j=k_{\min}$ , . . . $k_{\max}$ there exists on $M_{V}$ a stationary solution with least period $L/j.$

The whole stationary solutions lying in $M_{V}$ except for the trivial one are given by

$(\tilde{v}^{(j)}(\cdot-\alpha), 0)$ , $0\leq\alpha<L/j,$ $j=k_{\min}$ , . . . , $k_{\max},$

where $(\tilde{v}^{(j)}, 0)$ is one of the stationary solutions with least period $L/j.$

How can we read this result?

$\bullet$ For $V \leq(\frac{a\gamma\pi}{GL^{2}})^{1/\gamma}$ , no integer satisfies the condition (4) and the stationary problem
admits on $M_{V}$ only the trivial solution.

$\bullet$ In case $\gamma=1$ , the condition (4) is satisfied with $j=1$ for every $V> \frac{a\pi}{GL^{2}}.$

$\bullet$ In case $1<\gamma<2$ , while $j=1$ satisfies (4) for $( \frac{a\gamma\pi}{GL^{2}})^{1/\gamma}<V<(\frac{aI_{\gamma}((\gamma-1)^{-1/2}-0)^{2}}{2\pi GL^{2}})^{1/\gamma}$

solutions with least period $L$ are lost for $V \geq(\frac{aI_{\gamma}((\gamma-1)^{-1/2}-0)^{2}}{2\pi GL^{2}})^{1/\gamma}$

Whether, for every $V>0$ , the stationary problem admits a solution on $M_{V}$ other than the
trivial one depends on the value $\gamma.$

We are now ready to present a condition for initial data leading to unbounded solutions.
For $\gamma>1$ let us introduce a functional, called the energy form:

$\mathcal{E}(v, u)=\int_{0}^{L}\frac{1}{2}u(x)^{2}dx+\mathcal{E}(v)$ ,

$\mathcal{E}(v)=\int_{0}^{L}a(\frac{v(x)-\overline{v}}{\overline{v}^{\gamma}}-\frac{v(x)^{1-\gamma}-\overline{v}^{1-\gamma}}{1-\gamma})dx$

- $\frac{2\pi G}{\overline{v}}\int_{0}^{L}\int_{0}^{L}K_{L}(x, y)(v(x)-\overline{v})(v(y)-\overline{v})dxdy$

Notice that the value of $\mathcal{E}(v)$ is unchanged by the shift of $v$ in view of the $L$-periodicity of $v.$
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Theorem 2 Assume $1<\gamma<2$ . Let $V \geq(\frac{aI_{\gamma}((\gamma-1)^{-1/2}-0)^{2}}{2\pi GL^{2}})^{1/\gamma}$ and $\tilde{v}^{(k_{\min})}$ be as in

Theorem 1.
(i) The subset of $H^{1}\cross H^{1}$ given by

$A_{V}=\{(v, u)\in M_{V}|\mathcal{E}(v,u)<\{_{0}^{\mathcal{E}(\tilde{v}^{(k_{m\ln})})},$ ifintegersotherwise, $j$ with (4) exist,
$\}$

is nonempty.
(ii) Any solution with initial value from $A_{V}$ is unbounded, that is,

$\sup_{t,x}v(t, x)=\infty.$

The assertion of Theorem 2 makes a sharp contrast between the isothermal and the
isentropic systems. Indeed, in the isothermal case, we can derive the global $H^{1}$-bound of
any solution from the boundedness of the gravitational field just in the same manner as in
$Matsumur_{\ulcorner}aN$ishida [$3]$ . In particular, growing-up of solutions as in Theorem 2 never takes
place.

3 Sketch of proofs

We sketch the outline of the proof of Theorem 2. For details, see [6], [7].

We start by considering the large time behavior of a bounded solution. The following
lemma shows that an a priori information on the upper bound of $v$ is enough to derive the
global $H^{1}$ -bound of the solution from the isentropic system with $1<\gamma\leq 2$ . The argument is
somewhat similar to that of Matsumura-Nishida [3], deriving the global $H^{1}$-bound of solutions
from the isothermal system.

Lemma 1 Assume $1<\gamma\leq 2$ . The orbit of a bounded solution, i.e. $\sup_{t,x}v(t, x)<\infty$ is
$H^{1}$ -bounded with positive lower bound $\inf_{t,x}v(t, x)>0.$

This allows us to study the large time behavior of a bounded solution by taking the
$\omega$-limit in $L^{\infty}$ space of the orbit, as shown by (2). Rom the next lemma we see that the
asymptotics of a bounded solution is under the control of the set of stationary solutions on
$M_{V}$ with $V=\overline{v}.$

Lemma 2 Assume $1\leq\gamma\leq 2$ . For a bounded solution the $\omega$-limit set of the orbit is a
subset of stationary solutions with average common with the initial value.

The above lemmas imply that if the orbit of a solution is apart from the set of stationary
solutions it is necessarily unbounded. This fact combined with the decrease of energy form
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along orbits:

$\frac{d}{dt}E(t)=-\nu\int_{0}^{L}\frac{\partial_{x}u(t,x)^{2}}{v(t,x)}dx(\leq 0)$ with $E(t)=\mathcal{E}(v(t, \cdot), u(t, \cdot))$

means that an initial state with value of energy form less than any values of energy form
evaluated at stationary solutions, if exists, leads to a unbounded solution. Thus we come up
with the idea of finding a condition for unbounded solutions as presented in Theorem 2.

Concerning the condition, there are some questions that need to be answered.

1. Which is minimal amongst the values of energy form evaluated at the stationary solu-
tions on $M_{V}$ ?

2. What condition ensures that $A_{V}$ is nonempty?

3.1 Comparison of the values of energy form

In order to compare the values of energy form evaluated at stationary solutions we consider
the value of energy form evaluated at the stationary solution with least period $L$ as a function
of $L$ :

$\epsilon(L)=\mathcal{E}(\tilde{v}^{(1)}) , (\frac{a\gamma\pi}{GV^{\gamma}})^{1/2}<L<\frac{I_{\gamma}((\gamma-1)^{-1/2})}{\sqrt{2\gamma}\pi}(\frac{a\gamma\pi}{GV^{\gamma}})^{1/2}$

and then express the other values of energy form with this function:

$\mathcal{E}(\tilde{v}^{(j)})=j\epsilon(L/j)=L\cross\frac{\epsilon(L/j)}{L/j},$ $j=k_{\min}$ , . . . , $k_{\max}.$

Thanks to this formula the comparison of the values of energy form is reduced to the study
of the behavior of function $\epsilon(l)/l$ . By elementary calculus we can show that

$\frac{d}{dl}(\frac{\epsilon(l)}{l})<0, \epsilon(l)<0, (\frac{a\gamma\pi}{GV^{\gamma}})^{1/2}<l<\frac{I_{\gamma}((\gamma-1)^{-1/2})}{\sqrt{2\gamma}\pi}(\frac{a\gamma\pi}{GV^{\gamma}})^{1/2}$

$Rom$ this we can arrange the values of energy form in order.

Lemma 3 $\mathcal{E}(\tilde{v}^{(k_{\min})})<$ . . . $<\mathcal{E}(\tilde{v}^{(k_{\max})})<\mathcal{E}(V)=$ O. In particular, $\mathcal{E}(\tilde{v}^{(k_{\ovalbox{\tt\small REJECT} n})})$ if it is
meaningful or else $\mathcal{E}(V)=0$ is minimal amongst the values of energy form.

3. $2$ $A_{V}\neq\emptyset$ ?

It remains to show that the initial condition expressed by the energy form makes sense. For
this end take a stationary solution $(\tilde{v}, 0)$ and consider a disturbance $(\phi, \psi)$ from the stationary
solution with average O. We then expand the energy form with respect to the disturbance:

$\mathcal{E}(\tilde{v}+\phi, \psi)=\mathcal{E}(\tilde{v})+\frac{1}{2}\Vert\psi\Vert_{L^{2}}^{2}+\frac{1}{2}Q[\phi]+\mathcal{O}(\Vert\phi\Vert_{L}\infty)\Vert\phi\Vert_{L^{2}}^{2},$
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where $Q$ is a quadratic form on the Hilbert space $\mathcal{H}=\{\varphi\in L^{2};\overline{\varphi}=0\}$ :

$Q[ \varphi]=\int_{0}^{L} a\frac{\gamma\varphi(x)^{2}}{\tilde{v}(x)^{\gamma+1}}dx-\frac{4\pi G}{\tilde{v}}\int_{0}^{L}\int_{0}^{L}K_{L}(x, y)\varphi(x)\varphi(y)dxdy.$

We are interested in a state with value of the energy form less than $\mathcal{E}(\tilde{v})$ . Such a state exists
in a small neighborhood of the stationary solution if the quadratic form admits a negative
value. Notice that corresponds to the quadratic form $Q$ the following self-adjoint operator
on $\mathcal{H}$ :

$T_{\lambda,w^{-}} \varphi=\frac{\gamma\varphi}{(1+\tilde{w})^{\gamma+1}}-\frac{1}{L}\int_{0}^{L}\frac{\gamma\varphi(y)}{(1+\tilde{w}(y))^{\gamma+1}}dy-\lambda\int_{0}^{L}K_{L}(\cdot, y)\varphi(y)dy$

with
$\lambda=\frac{4\pi GV^{\gamma}}{a}, \tilde{w}=\frac{\tilde{v}-V}{V}$

in the sense that
$Q[ \varphi]=\frac{a}{V^{\gamma}}(T_{\lambda,\tilde{w}}\varphi, \varphi)_{L^{2}}.$

Thus, we are naturally forced to study study the lower bound of the operator $T_{\lambda,w^{-}}.$

In studying the spectrum $\sigma(T_{\lambda,w^{-}})$ the following facts are available. The stationary problem
for (1) with (3) has another version of the form

$\Theta(\lambda,\tilde{w})=0$ (5)

with eamap from $R\cross\{w\in C^{0};\overline{w}=0, w>-1\}$ to $\{w\in C^{0};\overline{w}=0\}$ given by

$\Theta(\lambda, w)=-\frac{1}{(1+w)^{\gamma}}+\frac{1}{L}\int_{0}^{L}\frac{dy}{(1+w(y))^{\gamma}}-\lambda\int_{0}^{L}K_{L}(\cdot, y)w(y)dy$ , (6)

where $C^{0}$ is the space of continuous functions on $R$ with period $L$ . The operator $T_{\lambda,w^{-}}$ is the
extension onto $\mathcal{H}$ of the Fr\’echet derivative $\Theta_{w}$ at $(\lambda,\tilde{w})$ . If $\tilde{w}\neq 0$ , by the equivariant structure
of (6) to the translation of functions, $\tilde{w}’$ is an eigenfunction associated with eigenvalue O.
Furthermore:

$\bullet$ We can study the structure of the null space of $T_{\lambda,w^{-}}$ using the well-known structure of
solutions of the second order linear ordinary differential equation:

$\frac{d^{2}}{dx^{2}}\{\frac{\gamma\varphi}{(1+\tilde{w})^{\gamma+1}}\}+\lambda\varphi=0.$

If $\tilde{w}\neq 0$ , the null space turns out to be one dimensional.

$\bullet$ In the equation (5) by taking $\lambda$ as a bifurcation parameter some information on $\sigma(T_{\lambda,w^{-}})$

near the origin is derived from the perturbation of a simple eigenvalue due to Crandall
and Rabinowitz [1].

Combining the above observations with the continuous dependence on $(\lambda,\tilde{w})$ of $\inf\sigma(T_{\lambda,w^{-}})$ ,
we obtain the sign of the lower bound for every stationary solution.
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Lemma 4

$\bullet$ For $\tilde{v}=V$ , i.e. $\tilde{w}=0$ , the lower bound of $T_{\lambda,0}$ is explicitly calculated as

$\inf\sigma(T_{\lambda,0})=\gamma-\frac{GL^{2}V^{\gamma}}{a\pi}.$

$\bullet$ For $\tilde{v}=\tilde{v}^{(1)},$

$- \inf\sigma(T_{\lambda,\overline{w}})$ is a simple eigenvalue $0$ with eigenfunction $\tilde{v}^{(1)\prime}.$

-Except for the eigenvalue $0$ the spectrum of $T_{\lambda,w^{-}}$ lies in a positive region:

$\inf(\sigma(T_{\lambda,w^{-}})\backslash \{0\})=\kappa_{V}>0$

with a constant $\kappa_{V}$ depending only on $V.$

$\bullet$ For $\tilde{v}=\tilde{v}^{(k)},$ $k=2$ , 3, . . . , $\inf\sigma(T_{\lambda,w^{-}})$ is a negative eigenvalue.

We are now in a position to present a condition for $A_{V}$ to be nonempty.

Case $V<( \frac{aI_{\gamma}((\gamma-1)^{-1/2}-0)^{2}}{2\pi GL^{2}})^{1/\gamma}$ :

$\bullet$ When $V \leq(\frac{a\gamma\pi}{GL^{2}})^{1/\gamma}$ , since the stationary problem admits only the trivial solution

(V, O) with $\inf\sigma(T_{\lambda,0})\geq 0,$

and

$\bullet$ when $( \frac{a\gamma\pi}{GL^{2}})^{1/\gamma}<V<(\frac{aI_{\gamma}((\gamma-1)^{-1/2}-0)^{2}}{2\pi GL^{2}})^{1/\gamma}$ , since $k_{\min}=1$ and $\inf\sigma(T_{\lambda,w^{-(1)}})=$

$0$ with $\tilde{w}^{(j)}=\frac{\tilde{v}^{(J)}-V}{V},$ $j=k_{\min}$ , . . . , $k_{\max},$

it is hopeless to find an element of $A_{V}$ in a small neighborhood of the set of stationary
solutions. Search for elements of $A_{V}$ on the whole $M_{V}$ is an open problem.

Case $V \geq(\frac{aI_{\gamma}((\gamma-1)^{-1/2}-0)^{2}}{2\pi GL^{2}})^{1/\gamma}$ : Since $\inf\sigma(T_{\lambda,0})<0$ , and since, if meaningful,

$k_{\min}\geq 2$ and hence $\inf\sigma(T_{\lambda,w^{-(k_{\min})})})<0$ , we can find an element of $A_{V}$ in any small neigh-

borhood of the trivial solution (V, O) or the stationary solution $(\tilde{v}^{(k_{\min})}, 0)$ .

Excluding the first case as unsettled, we now arrive at the statement of Theorem 2.
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