THE ITERATED REMAINDERS OF THE RATIONALS

AKIO KATO

ABSTRACT. Repeat taking remainders of Stone-Čech compactifications of the rationals

\[Q^{(1)} = Q^* = \beta Q \backslash Q, \quad Q^{(2)} = \beta Q^{(1)} \backslash Q^{(1)}, \quad Q^{(3)} = \beta Q^{(2)} \backslash Q^{(2)}, \quad Q^{(4)} \quad \ldots. \]

We point out that they have similar structures, but, are topologically different. In particular we prove here that \(Q^{(1)} \not\approx Q^{(3)} \). This result will be generalized to show that \(Q^{(n)} \not\approx Q^{(n+2)} \) for any \(n \geq 1 \) in the forthcoming paper [4].

1. INTRODUCTION

Consider the space of rationals \(\mathbb{Q} \), and repeat taking its remainders of Stone-Čech compactifications \(\mathbb{Q}^{(n+1)} = (\mathbb{Q}^{(n)})^* = \beta \mathbb{Q}^{(n)} \backslash \mathbb{Q}^{(n)} \) (\(n \geq 0 \)) where \(\mathbb{Q}^{(0)} = \mathbb{Q} \), i.e.,

\[Q^{(1)} = Q^*, \quad Q^{(2)} = Q^{**}, \quad Q^{(3)} = Q^{***}, \ldots. \]

Van Douwen [2] asked whether or not \(Q^{(n)} \approx Q^{(n+2)} \) for \(n \geq 1 \), remarking that \(Q^{(m)} \) for even \(m \) is never homeomorphic to \(Q^{(n)} \) for odd \(n \), because the former is \(\sigma \)-compact but the latter is not.

In this paper we point out that both \(Q^{(n)} \) and \(Q^{(n+2)} \) have a similar structure of “fiber bundle” for every \(n \geq 1 \), but they are topologically different. In particular we here show that \(Q^{(1)} \not\approx Q^{(3)} \), which we can generalize in the forthcoming paper [4] to show that \(Q^{(n)} \not\approx Q^{(n+2)} \) for any \(n \geq 1 \), answering van Douwen’s question.

The precise connections of the remainders can be seen by the following construction. Viewing \(\beta \mathbb{Q} \) as a compactification of \(Q^{(1)} \), let

\[\Phi_0 : \beta Q^{(1)} = Q^{(1)} \cup Q^{(2)} \to Q \cup Q^{(1)} = \beta Q \]

be the Stone extension of the identity map \(id : Q^{(1)} \to Q^{(1)} \). Denote by

\[\phi_0 : Q^{(2)} \to Q^{(0)} \]

the restriction of \(\Phi_0 \). Next let

\[\Phi_1 : \beta Q^{(2)} = Q^{(2)} \cup Q^{(3)} \to Q^{(1)} \cup Q^{(2)} = \beta Q^{(1)} \]

be the Stone extension of the identity map \(id : Q^{(2)} \to Q^{(2)} \), and let

\[\phi_1 : Q^{(3)} \to Q^{(1)} \]

2000 Mathematics Subject Classification. 54C45, 54C10.

Key words and phrases. Stone-Čech compactification, \(C^* \)-embedded.
denote the restriction of Φ_1. In this way, for every $n \geq 0$ we can generally get the Stone extension

$$\Phi_n : \beta \mathbb{Q}^{(n+1)} = \mathbb{Q}^{(n+1)} \cup \mathbb{Q}^{(n+2)} \rightarrow \mathbb{Q}^{(n)} \cup \mathbb{Q}^{(n+1)} = \beta \mathbb{Q}^{(n)}$$

of the identity map $id : \mathbb{Q}^{(n+1)} \rightarrow \mathbb{Q}^{(n+1)}$, and its restriction map

$$\phi_n : \mathbb{Q}^{(n+2)} \rightarrow \mathbb{Q}^{(n)}.$$

Since every $\Phi_n (n \in \omega)$ is perfect, so is every ϕ_n. Hence every $\mathbb{Q}^{(n)} (n \in \omega)$ is Lindelöf since both $\mathbb{Q}^{(0)} = \mathbb{Q}, \mathbb{Q}^{(1)}$ are Lindelöf. We can also see that $\mathbb{Q}^{(n)}$ is σ-compact for even n, but $\mathbb{Q}^{(n)}$ is not for odd n, because $\mathbb{Q}^{(0)}$ is σ-compact but $\mathbb{Q}^{(1)}$ is not since $\mathbb{Q}^{(1)}$ is a perfect pre-image of the irrationals \mathbb{P} as we see below.

$$\begin{align*}
\mathbb{Q}^{(0)} & \rightarrow \Phi_0 \rightarrow \mathbb{Q}^{(1)} & \Phi_1 \rightarrow \mathbb{Q}^{(2)} & \Phi_2 \rightarrow \mathbb{Q}^{(3)} \\
\Phi_0 & \rightarrow \mathbb{Q}^{(0)} & \Phi_1 & \rightarrow \mathbb{Q}^{(1)} & \Phi_2 & \rightarrow \mathbb{Q}^{(2)} & \Phi_3 & \rightarrow \mathbb{Q}^{(3)} \\
\phi_0 & \rightarrow \mathbb{Q}^{(0)} & \phi_1 & \rightarrow \mathbb{Q}^{(1)} & \phi_2 & \rightarrow \mathbb{Q}^{(2)} & \phi_3 & \rightarrow \mathbb{Q}^{(3)}
\end{align*}$$

FIG. 1

A collection B of nonempty open sets of X is called a π-base for X if every nonempty open set in X includes some member of B. The minimal cardinality of such a π-base is called the π-weight of X. Note that any dense subspace of X has the same π-weight as X, and any space of countable π-weight is separable. Consequently, any dense subset of a space of countable π-weight is also of countable π-weight, and hence separable. So, all of $\beta \mathbb{Q}^{(n)}, \mathbb{Q}^{(n)} (n \in \omega)$ are of countable π-weight, and hence separable.

Recall that an onto map $g : X \rightarrow Y$ is called irreducible if every nonempty open subset U of X includes some fiber $g^{-1}(y)$, and it is well known and easy to see that

(1) every extension of a homeomorphism is irreducible, and

(2) the restriction of a closed irreducible map to any dense subset is irreducible.
Therefore we can see that all of the maps Φ_n, ϕ_n ($n \in \omega$) are perfect irreducible. Consider the partition of the closed interval $[0,1] = Q \cup P$ where

$$Q = [0,1] \cap Q \approx Q \text{ and } P = [0,1]\setminus Q \approx P,$$

and let $f : \beta Q \to [0,1]$ be the Stone extension of the homeomorphism $Q \approx Q$. Then the restriction $f_0 = f \upharpoonright Q^{(1)} : Q^{(1)} \to P \approx P$ is perfect irreducible. Thus we get the following sequence of perfect irreducible maps:

$$Q \leftarrow Q^{(2)} \leftarrow Q^{(4)} \leftarrow \cdots ; \quad P \leftarrow Q^{(1)} \leftarrow Q^{(3)} \leftarrow Q^{(5)} \leftarrow \cdots.$$

All spaces are assumed to be completely regular and Hausdorff, and maps are always continuous, unless otherwise stated. "Partition" is synonymous with "disjoint union." For a subset A of some compact space K we use the notation A^* to denote the remainder $c_K A \setminus A$ when K is clear from the context. Our terminologies are based upon [3].

2. Similar Structures

We first show that both $Q^{(n)}$ and $Q^{(n+2)}$ have a similar structure for every $n \geq 1$. In general, for any space Y let us denote by $H(Y)$ the collection of all homeomorphisms $h : Y \approx Y$. Let X be a nowhere compact, dense-in-itself space, where nowhere compact (or nowhere locally compact) means that X contains no compact neighborhood, or equivalently, that X is a dense subset of some/any compact space K such that the remainder $K \setminus X$ is also dense in K. Let cX be some compactification of X and let $\mathcal{H}_* \subseteq H(X)$ denote the collection of all $h \in H(X)$ such that

\[(*) \quad h \text{ is extendable to } c(h) \in H(cX).\]

(Of course, $\mathcal{H}_* = H(cX)$ if $cX = \beta X$.) Let $X^{(1)} = cX \setminus X$ be the remainder, and for every $h \in \mathcal{H}_*$ define $h^{(1)} \in H(X^{(1)})$ to be the restriction of $c(h)$ to $X^{(1)}$. Next consider the Stone-Čech compactification $\beta X^{(1)}$ of $X^{(1)}$ and the Stone extension $\beta h^{(1)} \in H(\beta X^{(1)})$ of $h^{(1)}$. Let $X^{(2)} = \beta X^{(1)} \setminus X^{(1)}$ be the remainder, and define $h^{(2)} \in H(X^{(2)})$ to be the restriction of $\beta h^{(1)}$ to the remainder $X^{(2)}$; hence

$$h : X \approx X, \quad h^{(1)} : X^{(1)} \approx X^{(1)}, \quad h^{(2)} : X^{(2)} \approx X^{(2)}.$$

Note that $X^{(1)}$ is dense in βX, and $X^{(2)}$ is dense in $\beta X^{(1)}$, since we assume that X is nowhere compact. Viewing that βX is a compactification of $X^{(1)}$, we can consider the Stone extension $\Phi : \beta X^{(1)} \to \beta X$ of the identity map $id_{X^{(1)}} : X^{(1)} = X^{(1)}$. Let $\phi : X^{(2)} \to X$ be the restriction of Φ. Then both Φ and ϕ are perfect irreducible maps. We can show that the correspondence $H(X) \supseteq \mathcal{H}_* \ni h \mapsto h^{(2)} \in H(X^{(2)})$ is compatible with the perfect irreducible map ϕ, i.e.,

Lemma 2.1. $h \circ \phi = \phi \circ h^{(2)} : X^{(2)} \to X$.

Proof. To show this equality, it suffices to prove the equality
\[c(h) \circ \Phi = \Phi \circ \beta h^{(1)} : \beta X^{(1)} \to cX, \]
which follows from the obvious equality
\[h^{(1)} \circ id_{X^{(1)}} = id_{X^{(1)}} \circ h^{(1)} : X^{(1)} \to X^{(1)} \]
on the dense subset $X^{(1)}$ of $\beta X^{(1)}$. \qed

Corollary 2.2. If $h(x) = y$ for $x, y \in X$, then $h^{(2)}(\phi^{-1}(x)) = \phi^{-1}(y)$.

Proof. The inclusion $h^{(2)}(\phi^{-1}(x)) \subseteq \phi^{-1}(y)$ follows from 2.1. Since h is a homeomorphism, we can replace h by h^{-1} to get the reverse inclusion. \qed

Taking $X = \mathbb{Q}$, $cX = \beta \mathbb{Q}$, $\mathcal{H}_\star = H(\mathbb{Q})$, we can deduce from 2.1 that
\begin{equation}
(2-1) \quad h \circ \phi_0 = \phi_0 \circ h^{(2)} : \mathbb{Q}^{(2)} \to \mathbb{Q} \quad \text{for every } h \in H(\mathbb{Q}).
\end{equation}
Let $[0, 1] = Q \cup P$, $Q \approx \mathbb{Q}$, $P \approx \mathbb{P}$ be as at the end of §1, and take $X = P$, $cX = [0, 1]$; then $X^{(1)} = Q$, $X^{(2)} = Q^{(1)}$, and the corresponding map ϕ in Fig. 2 is identical to the map $f_0 : Q^{(1)} \to P$ at the end of §1. Note that $\mathcal{H}_\star \subseteq H(P)$ is the collection of all homeomorphisms of P extendable to homeomorphisms of $[0, 1]$. Then we can deduce from 2.1 that
\begin{equation}
(2-2) \quad h \circ f_0 = f_0 \circ h^{(2)} : Q^{(1)} \to P \quad \text{for every } h \in \mathcal{H}_\star.
\end{equation}
Note that for every pair of irrationals $p_1 < p_2$ in $P = [0, 1] \setminus \mathbb{Q}$ we can find an $h \in \mathcal{H}_\star$ such that $h(p_1) = p_2$; for example, we can take as $c(h)$ in (⋆) a strictly increasing function $c(h) : [0, 1] \to [0, 1]$ such that $c(h)(Q) = Q$, $c(h)(0) = 0$, $c(h)(p_1) = p_2$, $c(h)(1) = 1$. For $m \geq 1$ define g_{2m} and f_{2m-1} by
\[g_{2m} = \phi_0 \circ \phi_2 \circ \cdots \circ \phi_{2m-2} : \mathbb{Q}^{(2m)} \to \mathbb{Q}, \]
\[f_{2m-1} = f_0 \circ \phi_1 \circ \phi_3 \circ \cdots \circ \phi_{2m-3} : \mathbb{Q}^{(2m-1)} \to P. \]
Then, using 2.1 we can extend the above (2-1), (2-2) to the followings, respectively, for \(m \geq 1 \).

\[
(2-3) \quad h \circ g_{2m} = g_{2m} \circ h^{(2m)} : \mathbb{Q}^{(2m)} \to \mathbb{Q} \quad \text{for every } h \in H(\mathbb{Q}),
\]

\[
(2-4) \quad h \circ f_{2m-1} = f_{2m-1} \circ h^{(2m-1)} : \mathbb{Q}^{(2m-1)} \to P \quad \text{for every } h \in H_{*},
\]

where \(h^{(n)} \in H(\mathbb{Q}(n)) \). Combining these results with 2.2 we can summarize that

Theorem 2.3. Let \(m \geq 1 \). Then every \(\mathbb{Q}^{(2m)} \) admits a perfect irreducible projection \(g_{2m} \) onto \(\mathbb{Q} \), and every \(\mathbb{Q}^{(2m-1)} \) admits a perfect irreducible projection \(f_{2m-1} \) onto \(P \approx \mathbb{P} \), with the additional property that they are "fiberwise" homogeneous in the following sense:

1. For any \(q_{1} < q_{2} \in \mathbb{Q} \) there exists a homeomorphism of \(\mathbb{Q}^{(2m)} \), induced by a homeomorphism of \(\mathbb{Q} \), carrying the fiber \(g_{2m}^{-1}(q_{1}) \) to \(g_{2m}^{-1}(q_{2}) \).
2. For any \(p_{1} < p_{2} \in P \) there exists a homeomorphism of \(\mathbb{Q}^{(2m-1)} \), induced by a homeomorphism of \(P \), carrying the fiber \(f_{2m-1}^{-1}(p_{1}) \) to \(f_{2m-1}^{-1}(p_{2}) \).

Moreover, under CH (=the Continuum Hypothesis) every fiber \(g_{2m}^{-1}(q) \) of \(q \in \mathbb{Q} \) as well as every fiber \(f_{2m-1}^{-1}(p) \) of \(p \in P \) is homeomorphic to \(\omega^{*} = \beta \omega \backslash \omega \).

This last assertion follows from the well-known

Fact 2.4. (see 1.2.6 in [8] or 3.37 in [9]) (CH) Let \(Y \) be a 0-dimensional, locally compact, \(\sigma \)-compact, non-compact space of weight at most \(c \). Then \(Y^{*} = \beta Y \backslash Y \) and \(\omega^{*} \) are homeomorphic.

Indeed, put \(Z = g_{2m}^{-1}(q) \) and \(Y = \beta \mathbb{Q}^{(2m-1)} \backslash Z \). Then \(Z \) is a zero-set of the 0-dimensional \(\beta \mathbb{Q}^{(2m-1)} \) included in the remainder \(\mathbb{Q}^{(2m)} = \beta \mathbb{Q}^{(2m-1)} \backslash \mathbb{Q}^{(2m-1)} \), so that \(Y^{*} = \beta Y \backslash Y = Z \). Since \(Y \) is a cozero-set and separable, \(Y \) satisfies the condition in 2.4. Hence \(Z \approx \omega^{*} \). Similarly we can prove that \(f_{2m-1}^{-1}(p) \approx \omega^{*} \).

3. Remote Points and Extremally Disconnected Points

To analyze further the structure of \(\mathbb{Q}^{(n)}'s \), we need the notion of remote points and extremally disconnected points. A point \(p \in \beta X \backslash X \) is called a remote point of \(X \) if \(p \notin \text{cl}_{\beta X} F \) for every nowhere dense closed subset \(F \) of \(X \). Van Douwen [2], Chae, Smith [1], showed

Fact 3.1. Every non-pseudocompact space of countable \(\pi \)-weight has \(2^{c} \) many remote points.

An easy consequence of this fact is

Fact 3.2. Let \(X \) be a non-compact, Lindelöf space of countable \(\pi \)-weight. Then remote points of \(X \) form a \(G_{\delta} \)-dense subset of \(X^{*} = \beta X \backslash X \).
Proof. Choose any point \(p \in X^* \) and a zero-set \(Z \) of \(\beta X \) containing \(p \). Since \(X \) is Lindelöf, we can suppose that \(Z \) misses \(X \). Put \(Y = \beta X \setminus Z \); then \(\beta Y = \beta X \), and \(Y \) is of countable \(\pi \)-weight since \(X \) is. Hence 3.1 implies that \(Y^* = Z \) contains remote points of \(Y \), which are also remote points of \(X \). \(\square \)

A space \(T \) is said to be \textit{extremally disconnected at a point} \(p \in T \) (see [2]) if \(p \notin cl_T U_1 \cap cl_T U_2 \) for every pair of disjoint open sets \(U_1, U_2 \) in \(T \). Let us call such a point \(p \) as an \textit{extremally disconnected point} of \(T \), or simply, an \(e.d. \) point of \(T \), and denote the set of all such \(e.d. \) points by \(Ed(T) \). A space \(T \) is \textit{extremally disconnected} if every point of \(T \) is an \(e.d. \) point, i.e., \(Ed(T) = T \). If \(S \) is dense in \(T \), we always have \(cl_T U = cl_T (U \cap S) \) for every open set \(U \) of \(T \); hence a point \(p \in S \) is an \(e.d. \) point of \(S \) if and only if it is an \(e.d. \) point of \(T \), i.e., \(Ed(S) = S \cap Ed(T) \).

Fact 3.3. ([2])

1. Any remote point of \(X \) is an \(e.d. \) point of \(\beta X \).
2. Suppose \(X \) is first countable and hereditarily separable, and \(p \in \beta X \setminus X \). Then \(p \) is a remote point of \(X \) if and only if \(p \) is an \(e.d. \) point of \(\beta X \).

Let us call a point \(p \in T \) a \textit{common boundary} point of \(T \) if \(p \) is not an \(e.d. \) point of \(T \), i.e., if \(p \in cl_T U_1 \cap cl_T U_2 \) for some pair of disjoint open sets \(U_1, U_2 \) in \(T \). Similarly, we call a subset \(A \subseteq T \) a \textit{common boundary} set in \(T \) if \(A \subseteq cl_T U_1 \cap cl_T U_2 \) for some pair of disjoint open sets \(U_1, U_2 \) in \(T \). We abbreviate “common boundary” to “co-boundary.” (Such \(p, A \) are called “2-point,” “2-set,” respectively, in [2].) Note that any co-boundary set in \(T \) is nowhere dense in \(T \), but the converse need not be true. Let \(Cob(T) = T \setminus Ed(T) \) denote the set of all co-boundary points of \(T \). Note also that if \(A \) is a co-boundary set, then every point of \(A \) is obviously a co-boundary point, but the converse need not be true except the case \(A \) is a countable discrete subset:

Lemma 3.4. Suppose \(A \) is a countable discrete subset consisting of co-boundary points of \(T \). Then \(A \), and hence also \(cl_T A \), is a co-boundary set in \(T \). Therefore, if \(T \) is compact, \(Cob(T) \) is always countably compact in the strong sense that every countable discrete subset has compact closure in \(Cob(T) \).

Proof. Let \(A = \{ a_n \}_{n \in \omega} \subseteq Cob(T) \) be discrete in \(T \), and choose disjoint open sets \(\{ W_n \}_{n \in \omega} \) in \(T \) such that \(a_n \in W_n \). In each \(W_n \), choose disjoint open sets \(U_n, V_n \) with \(a_n \in cl_T U_n \cap cl_T V_n \). Put \(U = \bigcup_{n \in \omega} U_n \) and \(V = \bigcup_{n \in \omega} V_n \). Then these disjoint open sets \(U, V \) satisfy \(A \subseteq cl_T U \cap cl_T V \), and hence \(cl_T A \subseteq cl_T U \cap cl_T V \). \(\square \)

For an open set \(U \subseteq X \) its maximal open extension \(Ex(U) \subseteq \beta X \) is defined by

\[
Ex(U) = \beta X \setminus cl_{\beta X} (X \setminus U).
\]

Suppose \(W \) is an open set in \(\beta X \); then

\[
cl_{\beta X} W = cl_{\beta X} (W \cap X) = cl_{\beta X} Ex(W \cap X).
\]
Therefore we see

Fact 3.5. Suppose \(p \in \beta X \setminus X \). Then \(p \) is a co-boundary point of \(\beta X \) if and only if \(p \in \text{cl}_{\beta X} \text{Ex}(U) \cap \text{cl}_{\beta X} \text{Ex}(V) \) for some disjoint open sets \(U, V \) in \(X \).

We denote the boundary of a subset \(W \) in \(Y \) by \(\text{Bd}_Y W \) so that \(\text{Bd}_Y W = \text{cl}_Y W \setminus W \) if \(W \) is open in \(Y \). Van Douwen [2] proved the equality

\[
(\ast) \quad \text{Bd}_{\beta X} \text{Ex}(U) = \text{cl}_{\beta X} \text{Bd}_X(U)
\]

for every open set \(U \) of \(X \). (Note that 3.3 (1) follows from this equality since \(\text{Bd}_X(U) \) is a nowhere dense subset of \(X \).) Using this (\(\ast \)) and 3.5 we get an "inner" characterization of co-boundary points, hence of e.d. points also, of \(\beta X \) for a normal space \(X \):

Lemma 3.6. Assume \(X \) is normal, and \(p \in \beta X \setminus X \). Then \(p \) is a co-boundary point of \(\beta X \) if and only if \(p \in \text{cl}_{\beta X} F \) for some co-boundary set \(F \) in \(X \). In other words, \(p \) is an e.d. point of \(\beta X \) if and only if

\[
p \notin \text{cl}_{\beta X} F \text{ for every co-boundary set } F \text{ in } X.
\]

Proof. By 3.5 it suffices to show the equality

\[
\text{cl}_{\beta X} \text{Ex}(U) \cap \text{cl}_{\beta X} \text{Ex}(V) = \text{cl}_{\beta X} (\text{cl}_X U \cap \text{cl}_X V)
\]

for disjoint open sets \(U, V \) in \(X \), since \(\text{cl}_X U \cap \text{cl}_X V \) is a co-boundary set in \(X \). Using (\(\ast \)) we get

\[
\text{cl}_{\beta X} \text{Ex}(U) \cap \text{cl}_{\beta X} \text{Ex}(V) = \text{Bd}_{\beta X} \text{Ex}(U) \cap \text{Bd}_{\beta X} \text{Ex}(V) = (\text{cl}_{\beta X} \text{Bd}_X U) \cap (\text{cl}_{\beta X} \text{Bd}_X V).
\]

Since \(X \) is normal, this set is equal to \(\text{cl}_{\beta X} (\text{Bd}_X U \cap \text{Bd}_X V) \), where \(\text{Bd}_X U \cap \text{Bd}_X V = \text{cl}_X U \cap \text{cl}_X V \).

Lemma 3.7. Suppose \(A \) is a closed subset of a normal space \(X \). Then \(A \subseteq \text{Ed}(X) \) implies \(\text{cl}_{\beta X} A \subseteq \text{Ed}(\beta X) \).

Proof. Let \(A \) be a closed subset of a normal space \(X \), and that \(A \subseteq \text{Ed}(X) \). Let \(F \) be any co-boundary closed set in \(X \). By 3.6 it suffices to show that \(\text{cl}_{\beta X} F \cap \text{cl}_{\beta X} A = \emptyset \). Since \(F \subseteq \text{Cob}(X) \) and \(A \subseteq \text{Ed}(X) \), we know that \(F, A \) are disjoint closed subsets of \(X \). Hence the normality of \(X \) implies that \(\text{cl}_{\beta X} F \cap \text{cl}_{\beta X} A = \emptyset \).

The next lemma shows how co-boundary points or e.d. points behave w.r.t. closed irreducible maps. Let \(g \) be a map from \(X \) onto \(Y \). For a subset \(U \subseteq X \) define \(g^o(U) \subseteq Y \), a small image of \(U \), by

\[
y \in g^o(U) \quad \text{if and only if } \quad g^{-1}(y) \subseteq U,
\]

i.e., \(g^o(U) = Y \setminus g(X \setminus U) \subseteq g(U) \); so, \(g \) is irreducible if \(g^o(U) \neq \emptyset \) for every non-empty open set \(U \). Note an obvious useful formula

\[
g^o(U \cap V) = g^o(U) \cap g^o(V)
\]
for any sets \(U, V \subseteq X \), which especially implies that \(g^o(U) \cap g^o(V) = \emptyset \) whenever \(U \cap V = \emptyset \). Suppose \(g \) is closed irreducible. Then it is well known that \(g^o(U) \) is non-empty and open whenever \(U \) is, and
\[
\text{cl}_Y g^o(U) = \text{cl}_Y g(U) = g(\text{cl}_X U)
\]
for every open subset \(U \subseteq X \).

Lemma 3.8. Let \(g : X \to Y \) be any closed irreducible map. Then \(g \) maps co-boundary points to co-boundary points, i.e., \(g(\text{Cob}(X)) \subseteq \text{Cob}(Y) \). Furthermore, for every \(x \in X \)
\[
g(x) \in \text{Cob}(Y) \text{ if and only if } x \in \text{Cob}(X) \text{ or } |g^{-1}(g(x))| > 1, \text{ i.e.,}
\]
g(x) \in \text{Ed}(Y) \text{ if and only if } x \in \text{Ed}(X) \text{ and } g^{-1}(g(x)) = \{x\}.

Consequently, \(g^{-1}(\text{Ed}(Y)) \subseteq \text{Ed}(X) \), and the restriction of \(g \) to
\[
g^{-1}(\text{Ed}(Y)) \to \text{Ed}(Y)
\]
is a homeomorphism.

Proof. Let \(U_1, U_2 \) be any disjoint open sets in \(X \). Then
\[
g(\text{cl}_X U_1 \cap \text{cl}_X U_2) \subseteq g(\text{cl}_X U_1) \cap g(\text{cl}_X U_2) = \text{cl}_Y g^o(U_1) \cap \text{cl}_Y g^o(U_2),
\]
and \(g^o(U_1) \), \(g^o(U_2) \) are disjoint open. Hence \(g \) maps co-boundary points to co-boundary points. Similarly, we can show that
\[
|g^{-1}(g(x))| > 1 \text{ implies } g(x) \in \text{Cob}(Y).
\]
Indeed, if we take two points \(x_1 \neq x_2 \) in \(g^{-1}(g(x)) \), we can choose disjoint open sets \(U_1, U_2 \) in \(X \) such that \(x_1 \in U_1 \) and \(x_2 \in U_2 \) (using the Hausdorff-ness of \(X \)), getting \(g(x) \in g(\text{cl}_X U_1) \cap g(\text{cl}_X U_2) = \text{cl}_Y g^o(U_1) \cap \text{cl}_Y g^o(U_2) \).

So, to complete our proof, assume \(g(x) \in \text{Cob}(Y) \) and \(|g^{-1}(g(x))| = 1 \); then we need to show \(x \in \text{Cob}(X) \). The condition \(g(x) \in \text{Cob}(Y) \) implies that
\[
g(x) \in \text{cl}_Y V_1 \cap \text{cl}_Y V_2 \text{ for some disjoint open sets } V_1, V_2 \text{ in } Y.
\]
Since \(g \) is a closed map, \(g(x) \in \text{cl}_Y V_i \text{ implies } g^{-1}(g(x)) \cap \text{cl}_X g^{-1}(V_i) \neq \emptyset \text{ for } i = 1, 2 \). Hence the condition \(g^{-1}(g(x)) = \{x\} \) implies \(x \in \text{cl}_X g^{-1}(V_1) \cap \text{cl}_X g^{-1}(V_2) \), showing \(x \in \text{Cob}(X) \). \(\square \)

4. Topological Difference of \(Q^{(1)} \) and \(Q^{(3)} \)

Now let us apply the general theory in §3 to our spaces
\[
\beta Q^{(n)} = Q^{(n)} \cup Q^{(n+1)} \quad (n \geq 0).
\]
Recall that every \(Q^{(n)} \) is of countable \(\pi \)-weight and Lindelöf, hence normal. Put \(C_n = \text{Cob}(Q^{(n)}) \) and \(E_n = \text{Ed}(Q^{(n)}) \); then this gives a partition of \(Q^{(n)} \)
\[
Q^{(n)} = C_n \cup E_n.
\]
It is obvious that \(E_0 = \emptyset \), i.e., \(Q^{(0)} = C_0 \). Lemma 3.4 implies that each \(C_n \) \((n \geq 1) \) is dense in \(Q^{(n)} \), and Fact 3.2 with 3.3 (1) implies that each
E_n ($n \geq 1$) is dense in $\mathbb{Q}^{(n)}$. Note in particular that E_1 coincides with the set of all remote points of \mathbb{Q}, by 3.3 (2).

Property 4.1. Let A be any countable discrete subset of E_2 which is closed in $\mathbb{Q}^{(2)}$. Then

1. $\text{cl} \ A \subseteq E_2 \cup C_1$ in $\beta \mathbb{Q}^{(1)}$, while
2. $\text{cl} \ A \subseteq E_2 \cup E_3$ in $\beta \mathbb{Q}^{(2)}$.

Proof. (2) follows from 3.7. To prove (1), let A be as above. Then, since $\phi_0 : \mathbb{Q}^{(2)} \rightarrow \mathbb{Q}^{(0)}$ is perfect, $\phi_0(A)$ is also a countable discrete closed subset of $\mathbb{Q}^{(0)} = C_0$. Since $C_0 \cup C_1 = \text{Cob}(\beta \mathbb{Q}^{(0)})$ is countably compact in the strong sense as stated in 3.4, we have $\text{cl} \ \phi_0(A) \subseteq C_0 \cup C_1$ in $\beta \mathbb{Q}^{(0)}$. Pulling back by the map Φ_0, we get $\text{cl} \ A \subseteq E_2 \cup C_1$ in $\beta \mathbb{Q}^{(1)}$. This is the same as the assertion (1) since $A \subseteq E_2$. \hfill \square

Now we can prove the following strong assertion which in particular implies that $\mathbb{Q}^{(1)} \not\simeq \mathbb{Q}^{(3)}$.

Theorem 4.2. $\mathbb{Q}^{(1)}$ admits no perfect irreducible map onto $\mathbb{Q}^{(3)}$.

Proof. Suppose there existed a perfect irreducible map $\psi : \mathbb{Q}^{(1)} \rightarrow \mathbb{Q}^{(3)}$. Then, since $\beta \mathbb{Q}^{(2)}$ can be seen as a compactification of $\mathbb{Q}^{(3)}$, ψ extends to a perfect irreducible map

$$\Psi : \beta \mathbb{Q}^{(1)} = \mathbb{Q}^{(1)} \cup \mathbb{Q}^{(2)} \rightarrow \beta \mathbb{Q}^{(2)} = \mathbb{Q}^{(3)} \cup \mathbb{Q}^{(2)}.$$

Lemma 3.8 implies then that

$$E_2 \cup E_1 \supseteq \Psi^{-1}(E_2 \cup E_3) \approx E_2 \cup E_3.$$

Choose any countable discrete subset $B \subseteq E_2 \subseteq \mathbb{Q}^{(2)} \subseteq \beta \mathbb{Q}^{(2)}$ which is closed in $\mathbb{Q}^{(2)}$. (We can do this because E_2 is dense in $\mathbb{Q}^{(2)}$, and $\mathbb{Q}^{(2)}$ is
Lindelöf.) Put $A = \Psi^{-1}(B)$, then this A is also a countable discrete subset of E_2 which is closed in $\mathbb{Q}^{(2)}$. Property 4.1 (2) shows $\text{cl } B \subseteq E_2 \cup E_3$ in $\beta \mathbb{Q}^{(2)}$, and so, pulling back by Ψ, we get

$$\text{cl } A \subseteq \Psi^{-1}(E_2 \cup E_3) \subseteq E_2 \cup E_1$$

in $\beta \mathbb{Q}^{(1)}$. But this contradicts 4.1 (1). \hfill \Box

We will be able to show in [4] that for any $n \geq 1$, $\mathbb{Q}^{(n)}$ admits no perfect irreducible map onto $\mathbb{Q}^{(n+2)}$ by analyzing further the behavior of limit points of countable discrete subsets in $\mathbb{Q}^{(m)}$. Some of the basic techniques in this paper can be found also in [5, 6, 7].

REFERENCES

HIEKAWA 1521-461, IZUSHI, SHIZUOKA PREF., JAPAN (ZIP CODE: 410-2507)
E-mail address: akiokato@icloud.com