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1 Introduction

This is ajoint work with U. Darji. We use recent developments in local entropy theory

to prove that positive topological entropy implies the existence of chaos in dynamical

systems and complicated structures in the underlying spaces. In 1994, Barge and Diamond

proved that if $G$ is a finite graph and $f$ : $Garrow G$ is any map with positive topological

entropy, then the inverse limit space $k^{m}(X, f)$ contains an indecomposable continuum. In

2011, Mouron proved that if $X$ is a chainable continuum which admits a homeomorphism

$f$ with positive topological entropy, then $X$ contains an indecomposable subcontinuum.

In this article, we generalize the results of Barge, Diamond and Mouron. We show

that if $X$ is a $G$-like continuum for some finite graph $G$ and $f$ : $Xarrow X$ is a any

homeomorphism with positive topological entropy, then $X$ contains an indecomposable

continuum. Moreover we obtain that if $X$ is a $G$-like continuum for some finite tree
$G$ and $f$ : $Xarrow X$ is a any monotone map with positive topological entropy, then $X$

contains an indecomposable continuum. This answers some questions raised by Mouron

and generalizes the theorem of Barge and Diamond.
Also, Barge and Diamond in 1994 showed that for piecewise monotone surjections of

graphs, the conditions of having positive entropy, containing a horse shoe and the inverse

limit space containing an indecomposable subcontinuum are all equivalent. However,

one cannot hope to generalize their result to arbitrary maps. A classical example of

Henderson shows that there is a map of the interval with no chaotic behavior, in particular

with topological entropy zero, whose inverse limit space is the pseudo-arc ($=$ chainable
hereditarily indecomposable continuum). Hence the best one can hope for is to obtain

results where positive entropy implies indecomposability in the corresponding inverse limit

space. On the other hand, it is known that there is a homeomorphism $f$ of the Cantor
fan (which is hereditarily decomposable) such that the homeomorphism $f$ has positive

topological entropy.

2 Main Theorems

We have the following main theorems.

Theorem 2.1. Let $G$ be a finite $graph_{f}X$ be a $G$-like continuum and $h:Xarrow X$ a
homeomorp hism with positive entropy. Then $X$ contains an indecomposable continuum.

Corollary 2.2. Let $G$ be a finite graph, $X$ be a $G$-like continuum and $f$ : $Xarrow X$ any

map with positive entropy. Then $\frac{bn}{\backslash }(X, f)$ contains an indecomposable continuum.
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Moreover, we obtain

Corollary 2.3. Let $G$ be a finite tree, $X$ be a $G$-like continuum and $f$ : $Xarrow X$ a
monotone map with positive entropy. Then $X$ contains an indecomposable continuum.

For the case of uniform positive entropy, we have the following.

Theorem 2.4. Let $G$ be a finite graph, $X$ be a $Garrow like$ continuum and $f$ : $Xarrow X$ a
homeomorphism with uniform positive entropy. Then $X$ is itself indecomposable.

3 Definitions and notations

A continuum is a compacted connected metric space. We say that a continuum is
nondegenerate if it has more than one point. A continuum is indecomposable if it has
more than one point and is not the union of two proper subcontinua. Let $G$ be a compact
metric space. A continuous mapping $g$ from $X$ onto $G$ is an $\epsilon$-mapping if for every $x\in X,$

the diameter of $g^{-1}(x)$ is. less than $\epsilon$ . A continuum $X$ is $G$-like if for every $\epsilon>0$ there is
an $\epsilon$-mapping from $X$ onto $G$ . Our focus in this article is on $G$-like continua where $G$ is
a finite graph.

If $f$ : $Xarrow X$ is a map, then we use $L^{m}(X, f)$ to denote the inverse limit of $X$ with $f$

as the bonding maps, i.e.,

$\Phi^{(X,f)=}:\cdot$

Define the shift map $\tilde{f}:ae(X, f)arrow:k^{m}(X, f)$ by

$\tilde{f}(x_{1}, x_{2}, x_{3}, =(f(x_{1}), f(x_{2}), f(x_{3}) , =(f(x_{1}), x_{1}, x_{2}, ,$

Let $X$ be a compact metric space and $\mathcal{U},$
$\mathcal{V}$ be two covers of $X$ . Then,

$\mathcal{U}\vee \mathcal{V}=\{U\cap V:U\in \mathcal{U}, V\in\nu\}.$

The quantity $N(\mathcal{U})$ denote minimal cardinality of subcover of $\mathcal{U}$ . Let $f$ : $Xarrow X$ be
continuous and $\mathcal{U}$ be an open cover of $X$ . Then,

$h_{op}(u, f)= \lim_{narrow\infty}\frac{\ln[N(\mathcal{U}\vee f^{-1}(\mathcal{U})\vee\ldots\vee f^{-n+1}(\mathcal{U}))]}{n}.$

The topological entropy of $f$ , denoted by $h_{Iop}(f)$ , is simply the supremum of $h_{t\sigma p}(f,\mathcal{U})$

over all open covers $\mathcal{U}$ of $X.$

Let $X$ be a compact metric space and $f$ : $Xarrow X$ be a map. Let $\mathcal{A}$ be a collection of
subsets of $X$ . We say that $A$ has an independence set with positive density (for brevity,
$A$ has i.s.p. $d.$) if there exists a set $I\subset N$ with positive density such that for all finite set
$J\subseteq I$ , we have that

$\bigcap_{j\epsilon J}f^{-j}(Y_{j})\neq\emptyset$

for all $Y_{j}\in \mathcal{A}.$
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We recall that set $I$ $\underline{C}N$ has positive density if

$\lim_{narrow\infty}\frac{|I\cap[1,n]|}{n}>0.$

We now recall the definition of IE-tuple. Let $(x_{1}, \ldots, x_{n})$ be a sequence of points in $X.$

We say that $(x_{1}, \ldots, x_{n})$ is a $IE$-tuple if whenever $A_{1}$ , .. . , $A_{n}$ are open sets containing

$x_{1}$ , .. . , $x_{n}$ , respectively, the collection $A=\{A_{1}, \cdots 7A_{n}\}$ has an independence set with

positive density. In case that $n=2$ , we use the term IE-pair. We use $IE_{k}$ to denote

the set of all IE-tuples of length $k$ . We will use the following facts from the local entropy

theory.

Theorem 3.1 (D. Kerr and H. Li). Let $X$ be a compact metric space and $f$ : $Xarrow X$ be

a map.

1. Let $(A_{1}, \ldots, A_{k})$ be a tuple of closed subsets of $X$ which has an independent set of
positive density. Then, there is and $IE$-tuple $\langle x_{1}$ , . . . , $x_{k}$ ) with $x_{i}\in A$. for $1\leq i\leq k.$

2. $h_{top}(f)>0$ Of and only if there is an $IE$-pair $(x_{1}, x_{2})$ with $x_{1}\neq x_{2}.$

3. $IE_{k}$ is closed and $f\cross\ldots\cross f$ invariant subset of $X^{k}.$

4. If $(A_{1}, \ldots, A_{k})$ has i.s.p. $d$. and, for $1\leq i\leq k,$ $\mathcal{A}_{\eta}$. \’is a finite collection of sets such

lhat $A_{i}=\cup \mathcal{A}_{\eta}\cdot$ , then there is $A_{i}’\in\lambda$ such that $(A_{1}^{t}, \ldots,A_{k}’)$ has i.s.p. $d.$

Blanchard introduced the notion of uniform positive entropy $(u.p.e)$ . A map $h:Xarrow$

$X$ has u.p.$e$ . if and only if every tuple of $X^{2}$ is an IE-tuple for $f.$

Let $X$ be a continuum which is $G$-like for some graph $G,$ $f$ : $Xarrow X,$ $U,$ $V$ two subsets

of $X$ and $\mathcal{G}aI\lambda$ open cover of $X$ . Let $l>1$ be odd. We say that a chain $\{C_{1}, \cdots, C_{n}\}\underline{\subseteq}\mathcal{G}$

is $a$ 1-zigzag from $U$ to $V$ if there exists $1=k_{1}<k_{2}<\ldots k_{l+1}=n$ such that

$\bullet$ for $aMi$ odd, $C_{h}\cap U\neq\emptyset,$

$\bullet$ for all $i$ even, $C_{k_{i}}\cap V\neq\emptyset$ , and

$\bullet$ $\{C_{k_{i}}\cap U:1\leq i\leq l+1,$ $i$ odd$\}$ $t$) $\{C_{h}\cap V:1\leq i\leq l+1,$ $i$ even$\}$ }}$as$ an i.s. $p.d.$

A pair $(x,y)$ is a $Z$-pair for $f$ if for every open sets $U,$ $V$ , contains $x_{\rangle}y$ and for every
$>0$ and for all odd $l\in N$ , we have that there is an -cover $\mathcal{G}$ of $X$ whose nerve is $G$ and

a free chain $\{C_{1}, \cdots, C_{n}\}\underline{\subseteq}\mathcal{G}$ , with $x\in C_{1},$ $y\in C_{n}$ , which is a $l$-zigzag from $U$ to $V.$

(We drop the phrase “for $f$ and say simply $Z\mapsto$-pair when the mapping is clear from the

context.) We use $Z(X)$ to denote the set of $Z$-pairs subset of $X.$

4 Lemmas and Propositions

To prove the main results, we need the following results:

Proposition 4.1. Let $I\subseteq N$ be a set with positive density and $n\in N$ . Then, there is a

finite $\mathcal{S}etF\subseteq I$ with $|F|=n$ and a positive density set $B$ such that $F+B\underline{\subseteq}I,$

27



Proposition 4.2. $LetX$ be a compact metric space and $f:Xarrow X$ . Let $\mathcal{A}$ be a collection
which has an i.s.p. $d$. and $n\in N$ . Then, there is a finite set $F$ with $|F|=n$ such that

$A_{F}= \{\bigcap_{i\in F}f^{-1}(Y_{1}):Y_{i}\in \mathcal{A}\}$

has an $i.s.p.d.$

In the following proposition, if a $\in\{0, 1\}^{n}$ , we write $\sigma=(\sigma(1), \sigma(2), \ldots\sigma(n))$ , where
$\sigma(i)\in\{0$ , 1 $\}.$

Proposition 4.3. Let $l,$ $n\geq.1$ , and $\sigma_{1}$ , . . . , $\sigma_{(n+2)(n+1)^{i-1}}$ be distinct elements of $\{0, 1\}^{n}.$

Then, there are $i,$ $1\leq k_{1}<k_{2}<k_{3}<\ldots<k_{2^{l}}\leq(n+2)(n+1)^{l-1}$ such that $\sigma_{k_{j}}(i)=0$

for $j$ odd and $\sigma_{k_{j}}(i)=1$ forj even.

Lemma 4.4. Let $X$ be a continuum, $f$ : $Xarrow X$ be a homeomorphism, $\mathcal{A}=\{A_{0}, A_{1}\}$

be subsets of $X,$ $F\subseteq N$ with $|F|=n$ . Furthermore, assume that $C$ is a chain consisting
of open subsets of $X$ such that each element of $C$ intersects at most one element of $\mathcal{A}_{F}$

and that there is a subcollection $C’$ of $C$ of cardinality at least $(n+2)(n+1)^{l-1}$ such that
$\{L\cap(\cup \mathcal{A}_{F}):L\in C’\}$ has an i.s.p. $d$. Then, there is a subchain $\mathcal{D}$ of $C$ and an $i\in F$ such
that $f^{\mathfrak{i}}(\mathcal{D})$ is $a(2^{l}-1)$ -zigzag chain from $A_{0}$ to $A_{1}.$

Lemma 4.5. Let $X$ be a continuum which is $G$-like for some graph $G,$ $f$ : $Xarrow X$ a
homeomorphism, $\epsilon>0$ and $l>1$ odd. If $(A_{0}, A_{1})$ is a disjoint pair of closed sets which
has an i.s.p. $d.$ , then there is a $\epsilon$-cover $\mathcal{H}$ of $X$ whose nerwe is $G$ and a free chain $\mathcal{E}\subseteq \mathcal{H}$

such that $\mathcal{E}$ is an $l$ -zigzag from $A_{0}$ to $A_{1}.$

Lemma 4.6. Let $X$ be a continuum which is $G$ -like for some graph $G,$ $f$ : $Xarrow X$ a
homeomorphism, and $(A_{\theta}, A_{1})$ a disjoint pair of closed sets which has an i.s.p. $d$. Then,
there is $x\in A_{0}$ and $y\in A_{1}$ such that $(x, y)$ is a $Z$-pair.

Corollary 4.7. Let $X$ be a continuum which is $G$-like for some graph $G$ and $f:Xarrow X$ a
homeomorphism, with positive entropy. Then, arbitrarily close to every $(x,y)\in IE_{2}(X)-$

$\Delta_{2}(X)$ , there is a $Z$-pair.

Theorem 4.8. Let $X$ be a $G$-like continuum for a tree $G$, and $f$ : $Xarrow X$ a home-
omomphism with a $Z$-pair $(a,b)$ . Then, every irreducible continuum between $a$ and $b$ is
indecomposable. In particular, $X$ contains an indecomposable continuum containing a
and $b.$

Corollary 4.9. Let $G$ be a tree and $X$ a $G$-like continuum. If $f$ : $Xarrow X$ is a monotone
map of $X$ with positive entropy, then $X$ contains an indecomposable continuum.

Let $\mathcal{G}$ and $\mathcal{H}$ be collections of subsets of $X$ . By $\mathcal{G}[\mathcal{H}]$ we mean the collection $\{g\in \mathcal{G}$ :
$\exists h\in \mathcal{H}$ with $\overline{h}\subseteq g$ }. Let $X$ be a continuum and $\{\mathcal{G}_{n}\}$ be a sequence of covers of $X$ . We
say that $\{\mathcal{G}_{n}\}$ is a defining sequence of $X$ provided that the following conditions hold:

$\bullet$ $\mathcal{G}_{n+1}$ is a refinement of $\mathcal{G}_{n}$ , i.e., for each $g\in \mathcal{G}_{n+1}$ , there is $g’\in \mathcal{G}_{n}$ such that $\overline{g}\subseteq g’,$

and

$\bullet$ $\lim_{narrow}mesh(\mathcal{G}_{n})=0.$
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Lemma4.10. Let $X$ be a continuum and $\{\mathcal{G}_{n}\}$ be a defining sequence $ofX.$ Fbrthermore,

assume that for each $n$ , there exists a free chain $C_{n}\subseteq \mathcal{G}_{n}$ and disjoint subchains of $\mathcal{D}_{n/}$

and $\mathcal{E}_{n}$ and such that $C_{n}[\mathcal{D}_{n+1}]=C_{n}[\mathcal{E}_{n+1}]=C_{n}$ . Then $X$ contains an indecomposable

continuum.

We consider the following condition $(^{*}$): Let $G$ be a finite graph, $X$ be $G$-like, $h$ :

$Xarrow X$ be a homeomorphism and $U,$ $V$ two disjoint nonempty opens subsets of $X.$

Furthermore, assume that $\mathcal{G}$ is an open cover of $X,$ $\mathcal{G}’=\{g_{\lambda},g_{2}, \cdots, g_{n}\}$ a free chain of $\mathcal{G}$

and $1<a_{1}<b_{1}<a_{2}<b_{2}\ldots<a_{6}<b_{6}<n$ are such that

$\bullet$ $\overline{g}_{a_{l}}\subseteq U$ for all $1\leq i\leq 6,$

$\bullet$ $\overline{g}_{b_{:}}CV$ for all $1\leq 6$ , and

$\bullet$ $\{g_{a}., g_{b_{i}} : 1\leq i\leq 6\}$ has an independent set of positive density.

Lemma 4.11. If the above condition $(^{*}$) is satisfied, then there exits an open cover $\mathcal{H}$

which \’is a refinement of $\mathcal{G}$ , a free chain $\mathcal{H}’=\{h_{1}, h_{2}, \cdots, h_{m}\}$ of $\mathcal{H}$ and $l<c_{1}<d_{1}<$

$c_{2}<d_{2}\ldots<c_{6}<d_{6}<$ such that

1, $\overline{h}_{c_{\backslash }}\subset U$ for all $\lambda\leq i\leq 6,$

2. $\overline{h}_{d_{i}}CV$ for all $1\leq 6,$

3, $\{h_{c_{i}}, h_{d_{\mathfrak{i}}} : 1\leq i\leq 6\}$ has an independent set of positive density, and

4. for one of $C=\{g_{a_{2}}, \cdots , g_{b_{3}}\}$ or $C=\{g_{a}4, \cdots, g_{k}\}$ the following hotds.

$C[\mathcal{A}_{i}]=\mathcal{C}_{{\}},$

for all $1\leq i\leq 6$ , where $\mathcal{A}_{i}bs$ the subchain $\{h_{c_{i}}, \cdots, h_{d_{i}}\}$ of $\mathcal{H}’.$

Lemma 4.12. Let $G$ be a finite graph, $X$ be $G$-like and $h:Xarrow X$ be a homeomorphism.

Suppose that $(x,y)$ is an $IE$-pair of distinct points and $U,$ $V$ are open sets containing $x,y,$

respectively. Then, $X$ contains an indecomposable continuum which intersects $U$ and $V.$

By use of the above results, we can prove the main results.
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