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1 Introduction

In this article, we discuss the topological structures of hyperspaces of compact or finite sets in

metrizable spaces. In infinite-dimensional topology, it is one of the most important problems

to determine the homeomorphism types of hyperspaces. The main purpose of this article

is to provide necessary and sufficient conditions on spaces whose hyperspaces of compact or
finite sets are homeomorphic to pre-Hilbert spaces. This article is a r\’esum\’e of the papers
[7, 8].

Throughout this article, any space is assumed metrizable and any map is assumed con-

tinuous. We let $\kappa$ denote an infinite cardinal and often consider it as a space endowed with

the discrete topology. Let Comp(X) be the hyperspace of non-empty compact sets in a space
$X$ with the Vietoris topology, and let $Fin\langle X$) $\subseteq Comp(X)$ be the hyperspace of non-empty

finite sets in $X$ with the relative topology. By $\ell_{2}(\kappa)$ we denote the Hilbert space of density
$\kappa$ , and by $l_{2}^{f}(\kappa)$ we denote the linear subspace spanned by the canonical orthonormal basis

of $l_{2}(\kappa)$ . The hyperspace Comp(X) is a classical object in infinite-dimensional topology and

has been studied by many mathematicians. By the efforts of D.W. Curtis, R.M. Schori and

J.E. West, the following celebrated theorem was established:

Theorem 1.1. For a space $X$ , the hyperspace Comp(X) is homeomorphic to the Hilbert cube

if and only if $X$ is non-degenerate, connected, locally connected and compact.

D.W, Curtis [2, 3] obtained some characterizations of the hyperspace Comp(X) for a

non-compact space $X$ . Especially, he characterized a space $X$ whose hyperspace Comp(X)

is homeomorphic to the separable Hilbert space as follows:

Theorem 1.2. Let $X$ be a space. The hyperspace Comp(X) is homeomorphic to $l_{2}(\omega)$ if
and only if $X$ is separable, connected, locally connected, topologically complete and nowhere
locally compact.

$*$This work was supported by JSPS KAKENHI Grant Number $15K17530.$

数理解析研究所講究録

第 1987巻 2016年 55-66 55



Concerning the hyperspace Fin(X), D.W. Curtis and N.T. Nhu [5] gave a necessary and
sufficient condition on $X$ for Fin(X) to be homeomorphic to $\ell_{2}^{f}(\omega)$ as follows:

Theorem 1.3. For a space $X$ , the hyperspace Fin(X) is homeomorphic to $\ell_{2}^{f}(w)$ if and only
$ifX$ is non-degenerate, connected, locally path-connected, strongly countable-dimensional and

$\sigma$-compact.

Recall that a space $X$ is strongly countable-dimensional if it is a countable union of finite
dimensional closed subsets. We say that a space $X$ is $\sigma-($locally)compact if it is written as
a countable union of (locally )compact subsets. By an $X$ -manifold we understand a space
in which each point has a neighborhood homeomorphic to an open subset of a space $X.$

Recently, K. Mine, K. Sakai and M. Yaguchi [18, 9] proved the following:

Theorem 1.4. For a connected $\ell_{2}(\kappa)$ -manifold $X$ , the hyperspace Comp(X) is homeomorphic
to $\ell_{2}(\kappa)$ .

Theorem 1.5. If a space $X$ is a connected $\ell_{2}^{f}(\kappa)$ -manifold, then the hyperspace Fin(X) is
homeomorphic to $\ell_{2}^{f}(\kappa)$ .

In this article, we generalize their results as follows:

Theorem A. Let $X$ be a space. The hyperspace Comp(X) is homeomorphic to $P_{2}(\kappa)$ if and
only if $X\dot{u}$ connected, locally connected, topologically complete, nowhere locally compact, and
every non-empty open subset of $X$ is of density $\kappa.$

Theorem B. For a space $X$ , the hyperspace Fin(X) is homeomorphic to $P_{2}^{f}(\kappa)$ if and only
if $X$ is connected, locally path-connected, strongly countable-dimensional $\sigma$-locally compact
and each non-empty open set in $X$ is of density $\kappa.$

In the last section, we will deal with the topological type of pair of hyperspaces. Given
spaces $X$ and $Y$ , by $(X, Y)$ we understand $Y$ is a subspace of $X$ . A pair $(X, Y)$ of spaces is
homeomorphic to $(X\prime, Y’)$ if there is a homeomorphism $f$ : $Xarrow X’$ such that $f(Y)=Y’.$ $A$

subset $A$ of a space $X$ is called locally non-separating in $X$ if for any non-empty connected
open set $U$ in $X,$ $U\backslash A$ is non-empty and connected. As a corollary of Theorems A and $B,$

the following can be established:

Corollary. Let $X$ be a connected, locally path-connected, strongly countable-dimensional
and $\sigma$ -locally compact space whose any non-empty open subset is of density $\kappa$ . Suppose
that $X$ admits a locally connected and nowhere locally compact completion X. Then the
pair (Comp(X), Fin(X)) of hyperspaces $\dot{u}$ homeomorphic to $(P_{2}(\kappa),P_{2}^{f}(\kappa))$ if and only if the
remainder $X\backslash X$ is locally non-separating in X.

2 Characterizations of $\ell_{2}(\kappa)$ and $\ell_{2}^{f}(\kappa)$

In this section, we shall introduce characterizations of pre-Hilbert spaces $\ell_{2}(\kappa)$ and $\ell_{2}^{f}(\kappa)$ used
in the proofs of Theorems A and B. For maps $f$ : $Xarrow Y$ and $g$ : $Xarrow Y$ , and for an open
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cover $\mathcal{U}$ of $Y,$ $f$ is $\mathcal{U}$ -close to $g$ if for each point $x\in X$ , there exists $U\in \mathcal{U}$ containing $f(x)$

and $g(x)$ . A space $X$ has the countable locally finite approximation property if the following

condition holds:

$\bullet$ For each open cover $\mathcal{U}otX$ , there is a sequence $\{f_{n} : Xarrow X\}_{n<\omega}$ of maps such that

every $f_{n}$ is $\mathcal{U}$-close to the identity map on $X$ and the collection $\{f_{n}(X)\}_{n<\omega}$ is locally

finite in $X.$

It is sa\‘id that a space $X$ has the $l\sigma$ -discrete $n$ -cells property, where $n$ is a non-negative integer,

provided that the following condition is satisfied:

$\bullet$ For every open cover $\mathcal{U}$ of $X$ and every rrxap $f$ : $[O, 1]^{n}\cross\kappaarrow X$ , there exists a map

$g$
’ $1]^{n}\cross\kappaarrow X$ such that $g$ is $\mathcal{U}$-close to $f$ and the family $\{g([O, 1]^{n}\cross\{\gamma\})\}_{\gamma<\kappa}$ is

discrete in $X.$

This property plays an important role in characterizing non-separable $l_{2}(\kappa)$ and $P_{2}^{f}(\kappa)$ .

H. Toru\’{n}czyk [14, 15] gave the following elegant characterization to Hilbert spaces (cf. [1,

Theorem 3.1]):

Theorem 2.1. A space $X$ is homeomorphic to $\ell_{2}(\kappa)$ if and only if the following conditions

are satisfied:

$(1\rangle X$ is a topologically complete $AR$ of density $\kappa$ ;

(2) $X$ has the countable locally finite approximation property;

(3) $X$ has the $\kappa$ -discrele $n$-cells property for every $n<\omega.$

A closed subset $A$ of a space $X$ is said to be $a$ (strong) $Z$ -set in $X$ if the following condition

is satisfied:

$0$ For each open cover $\mathcal{U}$ of $X$ , there is a map $f$ : $Xarrow X$ such that $f$ exists $\mathcal{U}$-close to

the identity map on $X$ and the (closure of)image $f\langle X$ ) misses $A.$

We define a space $X$ to be strongly universal for a class $C$ if the following condition holds:

$\bullet$ Let $A\in C,$ $B$ be a closed subset of $A$ , and $f$ : $Aarrow X$ be a map such that the restriction
$f|_{B}$ is an embedding and $f(B)$ is a $Z$-set in $X$ . For any open cover $\mathcal{U}$ of $X$ , there is an
embedding $g$ : $Aarrow X$ such that $g$ is $\mathcal{U}$-close to $f,$ $g(A)$ is a $Z$-set in $X$ , and $g|_{B}=f|_{B}.$

3. Mogilski [10] characterized the separable pre-Hilbert space $\ell_{2}^{f}(\omega)$ as follows:

Theorem 2.2. $\mathcal{A}$ space $X$ is homeomorphic to $\ell_{2}^{f}(\omega)$ if and only if the following conditions

hold:

(1) $X$ is a strongly countable-dimensional $\sigmaarrow$compact A $R$;

(2) $X$ is strongly universal for the class of $finitearrow$dimensional compact metrizable spacess
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(3) every finite-dimensional compact subset of $X$ is a strong $Z$ -set in $X.$

The above theorem was generalized by K. Sakai and M. Yaguchi [12]:

Theorem 2.3. A space $X$ is homeomorphic to $\ell_{2}^{f}(\kappa)$ if and only if the following conditions
are satisfied

(1) $X$ is a strongly countable-dimensional, $\sigma$-locally compact $AR$ of density $\kappa$ , and is written
as a countable union of strong $Z$ -sets,

(2) $X$ is strongly universal for the dass of strongly countable-dimensional locally compact
spaces of density $\leq\kappa.$

Using the -discrete $n$-celk property, the author [6] modified their result as follows:

Theorem 2.4. A space $X$ is homeomorphic to $\ell_{2}^{f}(\kappa)$ if and only if the following conditions
hold:

(1) $X$ is a strongly countable-dimensional $\sigma$-locally compact $AR$ of density $\kappa_{f}.$

(2) $X\dot{u}$ strongly universal for the class of finite-dimensional compact metrizable spaces,

(3) every finite-dimensional compact subset of $X$ is a strong $Z$ -set in $X$

(4) $X$ has the $\kappa$ -discrete $n$ -cells property for every $n<\omega.$

3 Basic facts on Comp(X) and Fin(X)

In this section, we shall list some basic properties of the hyperspaces Comp(X) and Fin(X).
The following propositions are well-known, refer to [11, Theorem 5.12.5 (2)] and [9, Propo-
sition 5.3]:

Proposition 3.1. A space $X$ is topologically complete if and only if so is the hyperspace
Comp(X).

Proposition 3.2. For any space $X,$ $X$ is strongly countable-dimensional and $\sigma$-locally com-
pact if and only if so is Fin(X) .

For the sake of convenience, by Hyp(X) we mean the hyperspace Comp(X) or Fin(X).
Concerning the density of Hyp(X), the following holds, see [18, Corollary 4.2] and [9, Propo-
sition 5.3]:

Proposition 3.3. The hyperspace Hyp(X) has the same density as a space $X.$

We can easily observe the following proposition:

Proposition 3.4. For a space $X$ , if all non-empty open sets in Hyp(X) are of density $\geq\kappa,$

then so are all non-empty open subsets of $X.$
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On the ANR-property of Comp(X), the following holds [17, 13] (cf. [3, Theorem 1.6]):

Proposition 3.5. Let $X$ be topologically complete. Then $X\dot{u}$ locally connected (connected

and locally connected) if and only $\grave{\iota}fComp(X)$ is an $ANR(AR)$.

Combining Lemmas 2.3 and 3.6 of [5] with the proof of Theorem 2.4 in [5] (cf. [18,

Proposition 3.1]), the following can be proven:

Proposition 3.6. A space $X$ is locally path-connected (connected and locally path-connected)

if and only if Fin(X) is an $ANR(AR)$.

4 The countable locally finite approximation property

and the $\kappa$-discrete $n$-cells property in Comp(X) and

Fin(X)

This section is devoted to detecting the countable locally finite approximation property and

the $\kappa$-discrete $n$-cells property in the hyperspaces Comp(X) and Fin(X). For a non-negative

irzteger $n$ , let $S^{n}$ be the $n$-dimensional unit sphere and let $B^{n}$ be the $n$-dimensional unit ball.
The following lemma established in [5, Lemma 3.3] is very useful for constructing maps from

polyhedra1 to hyperspaces.

Lemma 4.1. For each $n\geq 1$ , there is a “retraction $r:B^{n+1}arrow Fin(S^{n})$ such that $r(x)=$

$\{x\}$ for all $x\in S^{n},$

Given a simplicial complex $K$ , we denote the polyhedron of $K$ by $|K|$ and the $n-$-skeleton

of $K$ by $K^{(n)}$ for each $n<\omega$ . We often regard $\sigma\in K$ as a simplicial complex consisting of

its faces. Now we prove the following lemma, that is a generalization of the technique used

in the proof of [2, Theorem $E$].

Lemma 4.2. Let $X$ be a locally path-connected space. Suppose that every non-empty open

set in $X$ contains a discrete subset of cardinality $\geq\kappa$ . Then the hyperspace Hyp(X) satisfies
the following.$\cdot$

$\bullet$ Let $K_{\gamma}$ be a simplicial complex, $\gamma<\kappa$ , and $K$ be a discrete union of $K_{\gamma}s$ . For each

open cover $\mathcal{V}$ of Hyp(X) and each map $g$ : $|K|=\oplus_{\gamma<\kappa}|K_{\gamma}|arrow Hyp(X)$ , there is a
$\mathcal{V}$-close map $h:|K|arrow Hyp(X)$ to $g$ such that the family $\{h(|K_{\gamma}|)\}_{\gamma<\kappa}$ is locally finite
in $Hyp(X)$ .

Sketch of proof.

$\bullet$ Replace $K$ with a suffciently small subdivision.

$\bullet$ For each $n<\omega$ , choose a locally finite open cover $\mathcal{V}_{n}$ of $X$ of mesh $<1/n.$

1Polyhedra are not needed to be metrizable.
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$\bullet$ Each non-empty $V\in\nu_{n}$ contains a discrete subset $Z(V)=\{z_{V}^{\gamma}\}_{\gamma<\kappa}$ of cardinality $\kappa$

such that $Z^{\gamma}(n)\cap Z^{\tau}(n)=\emptyset$ if $\gamma\neq\tau$ , where $Z^{\gamma}(n)=\{z_{V}^{\gamma}|\emptyset\neq V\in \mathcal{V}_{n}\},$ $\gamma<\kappa.$

(1) Construction of $h|_{K^{(0)}}$

$\bullet$ For every $v\in K_{\gamma}^{(0)}$ , there are $n_{w}\geq 2$ and $z^{\gamma}(v)\in Z^{\gamma}(n_{v})$ such that

$-z^{\gamma}(v)$ is sufficiently close to $g(v)$ ;

-for any $u,$ $u’\in K^{(0)},$ $n_{u}=n_{u’}$ if $g(u)$ is sufficiently close to $g(u’)$ .
$\bullet$ Let $h(v)=g(v)\cup\{z^{\gamma}(v)\}.$

(2) Construction of $h|_{|K(1)}|$

$\bullet$ For each $\sigma\in K_{\gamma}^{(1)}\backslash K_{\gamma}^{(0)}$ and $\sigma^{(0)}=\{v_{1},v_{2}\}$ , define $h(\hat{\sigma})=g(\hat{\sigma})\cup\{z^{\gamma}(v_{m})|1\leq$

$m\leq 2\}$ , where $\hat{\sigma}$ is the barycenter of $\sigma.$

$\bullet$ Taking an arc $\alpha_{m}$ : $[0, 1]arrow X$ from some point of $g(\hat{\sigma})$ to $z^{\gamma}(v_{m})$ of sufficiently
small diameter, we define a path $\phi$ : $[0, 1]arrow Hyp(X)$ from $g(\hat{\sigma})$ to $h(\hat{\sigma})$ by
$\phi(t)=g(\hat{\sigma})\cup\{\alpha_{m}(t)|1\leq m\leq 2\}.$

$\bullet$ For each $m\in\{1$ , 2 $\}$ , definc $h:\langle v_{m},$ $\hat{\sigma}\ranglearrow Hyp(X)$ , where $\langle v_{m},$ $\hat{\sigma}\rangle$ is the segment
between $v_{m}$ and $\hat{\sigma}$ , as follows:

$h((1-t)v_{m}+t\hat{\sigma})=\{\begin{array}{ll}g((1-2t)v_{m}+2t\hat{\sigma})\cup\{z^{\gamma}(v_{m})\} if 0\leq t\leq 1/2,\phi(2t-1)\cup\{z^{\gamma}(v_{m})\} if 1/2\leq t\leq 1.\end{array}$

(3) Construction of $h$

$\bullet$ Assume that $h$ extends over $|K^{(n)}|$ for some $n<\omega$ such that for every $y\in\sigma\in$

$K^{(n)}\backslash K^{(0)},$ $h(y)= \bigcup_{a\in A}h(a)$ for some $A\in Fin(|\sigma^{(1)}|)$ .
$\bullet$ For each $\sigma\in K^{(n+1\rangle}\backslash K^{(n)}$ , there exists a map $r:\sigmaarrow Fin(\partial\sigma)$ , where $\partial\sigma$ is the
boundary of $\sigma$ , such that $r(y)=\{y\}$ for all $y\in\partial\sigma$ by Lemma 4.1.

$\bullet$ For each $y\in\sigma$ , let $h(y)= \bigcup_{y\in r(y)}h(y’)$ .
$\bullet$ Replace $h(y)$ with $g(y)\cup h(y)$ , that is the desired map.

$\square$

We will verify the countable locally finite approximation property:

Proposition 4.3. Let $X$ be a locally path-connected and nowhere locally compact space. Then
Hyp(X) has the countable locally finite approximation property.

Sketch of proof.

$\bullet$ Approximate Hyp(X) $\cross\omega$ by a polyhedron $|K|=\oplus_{n<\omega}|K_{n}|$ , and apply Lemma 4.2.

$\square$
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We shall introduce useful lemmas for recognizing the $\kappa$-discrete $n$-celIs property in spaces.

Lemma 4.4 (Lemma 3.1 of [1]). Let $n<\omega.$ A space $X$ has the $\kappa$-discrete $n$ -cells property

if and only if the foltowing condition holds:

$\bullet$ For each open cover $\mathcal{U}$ of $X$ and each map $f$ : $[0, 1]^{n}x\kappaarrow X$ , there is a $\mathcal{U}$ -close map
$g:[0, 1]^{n}\cross\kappaarrow X$ to $f$ such that $\{g([O, 1]^{n}\cross\{\gamma\})\}_{\gamma<\kappa}$ is locally finite in $X.$

Lemma 4.5 (Lemma 3.2 of [1]). For $n<\omega$ , a space $X$ with the countable locally finite
approximation property has the $\kappa$-discrete $n$ -cells property if and only if $X$ has the $\lambda$ -discrete
$n$-cells property for any $\lambda\leq\kappa$ of uncountable cofinality.

The next lemma follows from the proof of [1, Lemma 6.2]:

Lemma4.6. Suppose that $\kappa$ has uncountable cofinality. Any space $X$ of density $\geq\kappa$ contains

a closed discrete subset of cardinality $\geq\kappa.$

Now we prove the following:

Proposition 4.7. Let $X$ be a locally path-connected and nowhere locally compact space. If
any non-empty open subset of $X$ is of density $\geq\kappa$ , then the hyperspace Hyp(X) has the
$\kappa$-discrete $n$-cells property for every $n<a/.$

Sketch of proof.

$\bullet$ The hyperspace Hyp(X) has the countable locally finite approximation property by

Proposition 4.3.

$\bullet$ We may assume that $\kappa$ is of uncountable cofinality due to Lemma 4.5, and hence any

non-empty open set in $X$ contains a discrete subset of cardinality $\geq\kappa$ by Lemma 4.6.

$\bullet$ According to Lemma 4.4, it suffices to prove that any map $g:[0, 1]^{n}\cross\kappaarrow Hyp(X)$ can
be ppproximated by a map $h,$ $[0, 1]^{n}\cross\kappa\prec Hyp(X)$ such that $\{h([O, 1]^{n}\cross\{\gamma\})\}_{\gamma<\kappa}$ is

locally finite in Hyp(X).

$\bullet$ niangulate $[O, 1]^{n}\cross\kappa$ into a polyhedron $|K|=\oplus_{\gamma<\kappa}|K_{\gamma}|$ , and use Lemma 4.2.

$\square$

5 The strong universality and the compact-strong $Z-$

set property of Fin(X)

This section is devoted to verifying the strong universality of Fin(X) for the class of finite-

dimensional compact metrizable spaces and the strong $Z$-set property of compact sets in

Fin(X). D.W. Curtis and N.T. Nhu showed the following:
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Lemma 5.1 (Lemma 4.2 of [5]). Let $X$ be a locally path-connected space with finitely many
components, at least one of which is non-degenerate, and let $A\subseteq Fin(X)$ be separable.
Suppose that each member of $\mathcal{A}$ intersects all components of $X$ and $\mathcal{A}$ has the following
expansion property:

$\bullet$ For each $F\in Fin(X)$ , if $F$ contains some element of $\mathcal{A}$, then $F\in \mathcal{A}.$

Then $\mathcal{A}$ is strongly universal for the class of finite-dimensional compact metrizable spaces.

Using this lemma, we show the strong universality of a non-separable hyperspace Fin(X).

Proposition 5.2. $IfX$ is a non-degenerate, connected, locally path-connected space, then the
hyperspace Fin(X) is strongly universal for the class offinite-dimensional compact metrizable
spaces.

Sketch of proof.

$\bullet$ For any finite-dimensional compact metrizable space $A$ and any map $f$ : $Aarrow Fin(X)$ ,
regard $A$ as a closed subset of $[0, 1]^{n}$ for some $n<\omega$ , and extend $f$ to a map $\tilde{f}$ :
$[0, 1]^{n}arrow Fin(X)$ .

$\bullet$ The set $A=$ { $F\in Fin(\cup\tilde{f}([0,1]^{n}))|F$ contains some element of $\tilde{f}([0,1]^{n})$ } is strongly
universal for the class of finite-dimensional compact metrizable spaces by Lemma 5.1.

$\square$

The following lemma is useful for detecting strong $Z$-sets in ANRs.

Lemma 5.3 (Lemma 7.2 of [4]). Suppose that $\mathcal{A}$ is a topologically complete and closed subset
of an $ANR$ X. If $A$ is written as a countable union of strong $Z$ -sets in $X$ , then it is a strong
$Z$-set.

For each $k<\omega$ , the set Fi$n^{}$ $(X)=$ {$A\in Fin(X)|$ $A$ is of cardinality $\leq k$} is closed in
Fin(X).

Proposition 5.4. Let $X$ be a non-degenerate, connected and locally path-connected space.
Then for every $k<\omega$ , Fi$n^{}$ (X) is a strong $Z$ -set in Fin(X).

Sketch of proof.

$\bullet$ Approximate Fin(X) by a polyhedron $|K|$ whose simplexes are sufficiently small.

$\bullet$ It remains to show that for each map $g$ : $|K|arrow Fin(X\rangle$ , there exists a map $h$ : $|K|arrow$

Fin(X) sufficiently close to $g$ such that the closure of $h(|K|)$ dose not meet Fi$n^{}$ (X) .

(1) Construction of $h|_{K(0)}$

$\bullet$ Find $k+1$ points $z(v, 0)$ , $\cdots,$ $z(v, k)\in X$ for each $v\in K^{(0\rangle}$ so that
- each $z(v,j)$ ) is sufficiently close to $g(v)$ ;
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$-z(v,j)s$ keep a sufficient distance from each other.

$\bullet$ Let $h(v)=g(v)\cup\{z(v,j)|0\leq j\leq k\}.$

(2) Construction of $h$

$\bullet$ Follow the same argument as in Lemma 4.2.

$\square$

Combining Lemma 5.3 with Proposition 5.4, we can obtain the following proposition:

Proposition 5.5. If $X$ is non-degenerate, connected and locally path-connected space, then

every compact set in Fin(X) is a strong $Z$ -set.

6 Proofs of Theorems A and $B$

In this section, applying the Characterizing Theorems 2.1 and 2.4, we proves Theorems $A$

and B.

Proof of Theorem $A.$

$\bullet$ The case that $X$ is separable follows from Theorem 1.2, so we may only consider rc
uncountable.

(1) The く ‘only if” part

$\bullet$ According to $P_{1}\cdot$opositions 3 $.1$ , 3.3 and 3.5, Comp(X) is a topologically complete

AR of density $\kappa.$

$\bullet$ The countable locally finite approximation property of Comp(X) follows from

Proposition 4.3.
$\bullet$ By Proposition $4.7_{\}}Comp(X)$ has the $\kappa$-discrete $n$-cells property for every $n<\omega.$

$\bullet$ Use the Toru\’{n}czyk Characterization Theorem 2.1.

(2) The “if” part

$0$ Due to Propositions 3.1 and 3.5, $X$ is connected, locally co1mected and topologi-

cally complete.

$\bullet$ It follows from Proposition 3,4 that all non-empty open subsets of $X$ are of density
$\kappa$ , and hence $X$ is nowhere locally compact.

$\square$

Proof of Theorem $B.$

$\bullet$ The separable case follows from Theorem 1.3, so we can assume $\kappa$ to be uncountable.
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(1) The “only if”’ part

$\bullet$ By virtue of Propositions 3.2 and 3.6, Fin(X) is a strongly countable-dimensional
and $\sigma$-locally compact AR of density $\kappa.$

$\bullet$ Due to Proposition 5.2, Fin(X) is strongly universal for the class of finite-dimensional
compact metrizable spaces.

$\bullet$ According to Proposition 5.5, any finite-dimensional compact subset of Fin(X) is
a strong $Z$-set in Fin(X).

$\bullet$ It follows from Proposition 4.7 that Fin(X) has the $\kappa$-discrete $n$-cells property of
Fin(X) for each $n<\omega.$

$\bullet$ Use Theorem 2.4.

(2) The (if” part

$\bullet$ By Propositions 3.2 and 3.6, $X$ is connected, locally path-connected, strongly
countable-dimensional and a-locally compact.

$\bullet$ Any non-empty open set in $X$ is of density $\kappa$ by Proposition 3.4.

$\square$

7 Pair of hyperspaces

In this final section, we will discuss the topological structure of pair of hyperspaces. To show
Corollary, we will use the following $characterizatio\iota 1$ of the pair $(P_{2}(\kappa),\ell_{2}^{f}(\kappa))[16, 6]$ :

Theorem 7.1. A pair $(X, Y)$ of spaces is homeomorphic to $(\ell_{2}(\kappa),l_{2}^{f}(\kappa))$ if and only if $X$ is
homeomorphic to $l_{2}(\kappa)$ , $Y$ is homeomorphic to $\ell_{2}^{f}(\kappa)$ and $Y$ is homotopy dense in $X.$

A subset $A$ of a space $X$ is defined to be homotopy dense in $X$ if there is a homotopy
$h:X\cross[O, 1]arrow X$ such that $h(x, 0)=x$ for all $x\in X$ and $h(X\cross(O, 1])$ $\subseteq A$ . The homotopy
density between ANRs is characterized as follows [11, Corollary 7.4.6]:

Lemma 7.2. Suppose that $X$ and $Y$ are ANRs and $Y\dot{u}$ dense in X. Then $Y$ is homotopy
dense in $X$ if and only if the following condition is satisfied:

$\bullet$ For each point $x\in X$ and each neighborhood $U$ of $x$ in $X$ , there exists a neighborhood
$V\subset U$ of $x$ such that any map $f$ : $S^{n}arrow V\cap Y$ can be extended to a map $\tilde{f}:B^{n+1}arrow$

$U\cap Y$ for all $n<\omega.$

Using this lemma, we shall prove the following proposition:

Proposition 7.3. Let $X$ be a locally path-connected space that admits a locally connected
completion X. Then Fin(X) is homotopy dense in Comp$(\overline{X})$ if and only if $\overline{X}\backslash X\dot{u}$ locally
non-separating in X.
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Sketch of proof.

(1) The (only if”’ part

$\bullet$ Follow the same argument as the proof of implication $(ii)\Rightarrow(\ddot{u}i)$ in [4, Theo-
rem 3.2].

(2) The (if part

$\bullet$ The hyperspaces Comp$(\overline{X})$ and Fin(X) are ANRs by Propositions 3.5 and 3.6.
$\bullet$ For each point $A\in Comp(\overline{X})$ and each neighborhood $u$ of $A$ in $Co\alpha tp(\overline{X})$

) take
a finite number of points $a_{1},$ $\cdots,$

$a_{m}\in A$ and connected open neighborhoods $U_{i}$ of
$a_{i},$ $1\leq i\leq n$ , so that

$-A \subset\bigcup_{i=1}^{n}U_{i}$ ;

-for any $B\in Comp(\overline{X})$ , $B\in \mathcal{U}$ if $B c\bigcup_{i=1}^{n}U_{i}$ and $B\cap U_{1}\prime\neq\emptyset$ for all
$i\in\{1, \cdots , n\}.$

$\bullet$ The set $\mathcal{V}=$ { $\mathcal{B}\in Comp(\overline{X})|B\subset$ Uk $U_{i}$ and $B\cap U_{i}\neq\emptyset$ for every $1\leq i\leq n$}
is a neighborhood of $\mathcal{A}$ as in Lemma 7.2.

[3

Combining the above proposition with Theorems $A,$ $B$ and 7.1, we can prove Corollary.
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