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1 Introduction

In [4], we introduced the notion of o-shortness for Booolean algebras and partially
ordered sets. We say that a subset D of a Boolean algebra B is o-short if every strictly
descending sequence {b,} has no positive lower bound in B. A Boolean algebra B is
o-short if it has a o-short dense subset. Cohen algebras and measure algebras are typical
examples of o-short Boolean algebras. Cohen algebras satisfy more strong property. That
is, those are strongly o-short. We say that B is strongly o-short if it has a A-closed o-short
dense subset. o-short posets and strongly o-short posets are similarly defined as Boolean
algebras(see [4]). Strongly o-short posets have a good characterization as follows.

Theorem(2]. A poset P = (P, <) is strongly o-short if and only if there exists a sequence
{Xn}new of subsets of P which satisfies the following conditions:

(1) X, is a pairwise incomparable subset of P.
(2) Ifz € X5,y € X, and n < m, then y ¥ .
(3) {y € X,»|y > z} is finite for every m < n and z € X,,.

(4) U Xy, is a dense subset of P.

new
In (2], we left the characterization problem open for o-short posets, that is, for every
o-short poset P = (P, <) , does there exist a sequence {X,}ne, of subsets of P which
satisfies the following conditions:

(1) X, is a pairwise incomparable subset of P.
(2) fz € Xp,y € Xp, and n < m, then y ¥ z.
(3) U X, is a dense subset of P
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Though this problem is still open, we gave a sufficient condition in (3] that above
conditions are satisfied. And using this sufficient condition , we reported that some Axiom
A posets ,e.g., Sacks forcing , Mathias forcing are not o-short. We also conjectured that
non-ccc Axiom A posets are not o-short. To concern this problem , in this paper we
shall show that Axiom A posets with frame systems are not o-short. Moreover, we shall
show that Axiom A posets which satisfy Mildenberger’s finiteness property with some
additional conditions and Hechler forcing which adds a strictly increasing function from

w to w are not o-short.

2 Preliminaries

Let P = (P, <) be a partially ordered set (poset). We say that p,q € P are compatible
(p T q) if there exists an r such that r < p and r < ¢. If p and g are not compatible,
then we say that they are incompatible (p L ¢). A poset (P, <) is separative if for every
p,q € P, p £ g implies that there exists an r such that r <p and r L ¢g. For a set X, we
denote by | X| the cardinality of X. Let ~ be an equivalence relation on a set X. Then
we denote the quotient of X by the equivalence relation ~ by X/ ~. In this paper, we
assume that posets are non-atomic and separative.

A poset (P, <) satisfies Axiom A if there are partial orderings {<,}ne. such that

(Al): If p <q g then p < g;
(A2): If p <,41 ¢, then p <, g;

(A3): If {pn}new is a fusion sequence; i.e., if p,i1 <, pn for every n € w, then there is g
such that q <,, p, for all n € w;

(A4): If p € P and W is a partition of p, then for every n there is ¢ <, p such that ¢ is
compatible with at most countably many z € W.

We say that a poset (P, <) with partial orderings {<,}ne. is a fusion poset if it satisfies
(A1),(A2),(A3). First of all, we consider the following condition (C1) for fusion posets.

(C1):  Vn € wVp € P3p* >, pVp' >, plp* >, p']

For n € w and p € P, we denote p* in (C1) by stem,(p). If a fusion poset P satisfies
(C1), then the relation ~, on P defined by p ~, ¢ <= stemy,(p) = stemq(q) is an
equivalence relation on P. Using this equivalence relation, we consider conditions (C2)
and (C3) as follows.



(C2): VYnew[|P/~y| <]

(C3): Vne€wvp,g€Plp~nqg A p>q=p>,q

Lemma 2.1. Suppose that a fusion poset P is o-short and D is a o-short dense subset

of P. Then
Dy={de€ D|3Im € wVz € Pl[d >, x = = ¢ D]}

15 a dense subset of P.

Proof. Suppose not. Then there exists d' € D such that d ¢ D, for every d < d’. Hence
it holds that Vd € D[d < d' = Vm € w3z € D[d >,, z]]. Now we define a strictly
decreasing fusion sequence {p,} in D as follows. Let py = d and p,,1 be an element
z € D such that p, >, z. Since P satisfies the condition (A3) and D is dense , there
exists ¢ € P and r € D such that Vn € w[p, >, ¢ > r] . This contradicts that D is
o-short. O

Lemma 2.2. Suppose that a fusion poset P satisfies conditions (C1),(C2) and (C3). If P
is o-short, then there exists a family { X, }ne, which satisfy the following three condition.

(1) X, is a pairwise incomparable subset of P.
(2) Ifzr € Xn,y € Xpn and n < m, theny # x.
(3) U Xn is a dense subset of P.

new
Proof. Suppose that P is o-short and D is a o-short dense subset of P. Let D, be
the dense subset of P as in Lemma 2.1. Then for every d € Dy, there exists m € w
such that Vz € P[d >, * = « ¢ D]. Let my be the minimum number of {m € w |
Vz € Pld >, * = z ¢ D]}. Then put X; = {d' € Dy | d ~p, d',mgq = mg} for every
d € D. Then X, is a pairwise incomparable subset of P. It holds that X; = X if and
only if d ~y,, d',mg = mg, so that {X; | d € D} is at most countable by (C2). Let
{X'4, | n € w} be an enumeration of {X,; | d € D}. We define {X,_ | n € w} inductively
by Xn = X'q,\{d € X'q, | Ik < n3d' € X;|d’ < d|}. Then it holds the second condition.
Since Dy = U X'4, is a dense subset of P, U X, is also a dense subset of P. O
ncw new

Theorem 2.3. Suppose that a fusion poset P satisfies conditions (C1),(C2) and (C3). If
P satisfies the following condition (C4), then P is not o-short.

(C4): Ifp € P and X is a pairwise incomparable subset of P, then for every n there is
q <, p such thatr £ q for allr € X.
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Proof. Suppose that P is o-short. Then, there exists a family {X,} which satisfy the
conditions as in Lemma 2.2. We define a fusion sequence {py, }ne. inductively as follows.
Put po = p. Suppose that p, is already defined. There exists ¢ <, p, such that r £ ¢
forall » € X, by (C4). Let pny1 be such an element g. Then {pn}rc. is a fusion sequence,
so that there exists a fusion p, of {pn}neo. Since U X,, is a dense subset of P, there

new

exists n € w and r € X,, such that r < p,. On the other hand, since p, < pp4+1, we have
' £ p, for all ' € X, by virtue of the definition of p,;. This contradicts that r € X,
and r < p,. [

3 Frame system

Definition 3.1. Let (P, <, {<n}ne.) be a fusion poset which satisfies (C1),(C2) and (C3).
And let f be a map from P x w to w. We denote {k € w |0 < k < f(p,n)} by I, and
{kewl|0< k< f(stemn(p),n)} by I},,. We say that {apns € P|n€w,p€ P,O<k<
f(p,n)} is a frame system for P if it satisfies the following conditions.
(FS1): Vn € w¥p,q € Plp ~n g = f(p,n) = f(g, n)]
(FS2): Vn € wVp € P [{apnktock<fipn)is a partition of p and

{apn+1,5}osi<spnt1)i8 a refinement of {apnk}ock<spm)]
(FS3): Vn € wVp,q € Plp >, ¢ = Vk € Ip,[apnk >0 Ggni)]
(FS4): Vp,r€e Plp>r=3In€wik € I, nlapni =07l

(FS5): Vn € wVp,r € Plp>1=
g <nplg>r AV €Plg2 T AT ~ppir 7 =1 21

(FS6): Vn € w¥Vp,r € Plp>r=3Ir € Plr > 1" AT ~ppni1 7]

(FS7): VYn € wVp, 7 € Plapnk =0T = Gpnk ~pnt1 T)

where r ~op i1 1 is defined bY 7 T Astemn(p)nt1,; S T T Qstema(p)nt1, for all € Ipo .
Let n € w,p,r € P and p > r. Then by (FS5), we can find ¢ <, p such that ¢ > r and
Vr' € Plg > 7' AT ~pnp1 7 = r > 1']. We denote such element ¢ by p|r and call it the

n-amalgamation of r into p.

Example 3.2. In the following examples, we consider a canonical enumeration of 2<“ or
w<. And, when we enumerate elements of a subset of those sets, we use this canonical

enumeration. If t appears in an enumeration after s, then we denote it by s < t.



Sacks forcing: (Ps, <) is defined as follows.

Ps ={p| pis a perfect tree of 2<“} and p > q iff p D q.

We define a partial order <, by p >, ¢ & p > ¢ and B,(p) = B,(q) where B,(p) is
a set of the (n 4 1)-st branching points of p. For p € Py and n € w, put p* = {t €
2<“} | 3s € Bu(p) [t C s or s C t]}. Then p* >, p and p’ >, p implies p* >, p'. Hence Ps
satisfles (C1). It holds that p ~, g iff B,(p) = Bn(q). So P satisfies (C2) and (C3).

Forp € Psand n € w, let f(p,n) =2" — 1 and B,(p) = {so,.-.,82n_1}-

Put apnir =plsy ={t €p|tCspors, Ct}. Then {apnr € 5| |n€w,pe P,0<k<
f(p,n)} is a frame system for Ps.

Prikry-Silver forcing: (Prg, <) is defined as follows.

FPrg = {p|p:dom(p) — {0,1},dom(p) is a co-infinite subset of w}andp > q < p C q.

We define a partial order <, by p >, ¢ iff p > ¢ and [w\dom(p)], = [w\dom(q)], where
[w\dom(p)], is a set of the first n elements of w\dom(p). For p € Prg and n € w, let
k be an n-th element of w\dom(p) and put dom(p*) = {m € dom(p) | m < k} and
p*(m) = p(m) for every m € dom(p*). Then p* >, p and p' >, p implies p* >, p'.
Hence Fpg satisfies (C1). It holds that p ~, ¢ iff [w\dom(p)], = [w\dom(q)], and p |
dom(p) N [0, k] = ¢q[dom(q) N [0,k]. So Fpg satisfies (C2) and (C3).

For p € Pps and n € w, let f(p,n) = 2" — 1, [w\dom(p)], = {fo,-- -, bn-1}{lo < €1 <
oo <Atpq)and {0,1}" = {sp,...,89m_1}. Put appr =pU {{€,s1(i)) | 0 <i < n}. Then
{apni € Prs | n € w,p € Prs,0 <k < f(p,n)} is a frame system for Prg.

Mathias forcing: (Py, <) is defined as follows.

Py ={(s5,5) | s €w<¥ is increasing, S is an infinite subset of w\ max(s)} and (s, S) >
(t,T) & t 2 s, T C S and range(t)\range(s) C S.

We define a partial order <, by (s,S) >, (¢,T) iff (s,5) > (¢,T),s = t and [S], = [T]n].
For p = (s,5) € Py and n € w, put p* = (s5,w\max(s)). Then p* >, p and p >, p
implies p* >, p'. Hence Py satisfies (C1). It holds that (s,S) ~, (t,T) iff s = ¢t and
[S]n = [T]n. So Py satisfies (C2) and (C3).

For p = (5,5) € By and n € w, let f(p,n) = 2" — 1 and P([S],) = {7 € w< |
7 is increasing ,range(7) C [S],} = {70,...,7on—1}. Put apnr = (s°7%, S\[S].). Then
{apnie € Py |n€w,p€ Py,0<k< f(p,n)} is a frame system for Py.

Laver forcing: (P, <) is defined as follows.

B, ={p| pis a tree of w<* which has a stem s such that V¢t D s[S(t) = {k € w | t ~
k € p} is infinite]} and p > g < p D q.

For p € B, let s5 = stem(p),s?,..., s, ... be an enumeration of {t € p | t 2
stem(p)}. We define a partial order <, by p >, ¢ iff p > ¢q and ¥ = s? for all
t=0,...n. Forpe FLandn € w,p* ={t €ep |t C Stu{sh,...,ssIU{t €
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w<* | t appears in an enumeration of w<* after s}. Then p* >, p and p’ >, p implies
p* >, p/. Hence B, satisfies (C1). It holds that p ~, ¢ iff s = s! for all i =0,...n. So
B, satisfies (C2) and (C3).

Forp € B, and n € w, let f(p,n) =n and K = {s},s},...,s2}. If s} is a C-maximal
node among K, then put a,,x = {t €p |t C s} or t D sh}. Otherwise, put a,,x = {t €
pltCshor(t2shandVj > k[s] € t]]}. Then {apnr € B |n € w,p€ F,0< k<
f(p,n)} is a frame system for F.

Lemma 3.3. Let (P, <, {<,}new) be a fusion poset with a frame system which satisfies
(C1),(C2) and (C3). Ifn € w,p,7 € P and r <o apnk, then we have apjrnk = 7.

Proof. Suppose that n € w,p,r € P and r <o apni. Let ¢ = p|r. Then we have
(x) V' ePlg>rAr~ppar =127

Since {apnkto<k<f(pn) is a partition of p and r < ap .k , 7 is not compatible with ap, ;
for all j # k. By virtue of (FS3), we have ap,; > a4n,;. So 7 is not compatible with
agny for all j # k. Since ¢ = p|r > r, we have a,nx > r. On the other hand, we have
Apnk 20 Ggnk bY (FS3) and apnx >0 r by assumption, so that we have r ~y ag . Hence
by virtue of (FS3), agnx >0 7. Therefore agpnx ~gn+1 7 by (FS7). Since p >, ¢, we have
Qgnk ~pn+1 T SO we have r > agnx by (x). Thus agnx = apjrnr =7 O

Lemma 3.4. Let (P, <,{<p}new) be a fusion poset with a frame system which satisfies
(C1),(C2) and (C3). Suppose that W is a partition of P and p € P. Then there exists
q <o p such that q is compatible with at most countably many r € W.

Proof. Let {a,,x} be a frame system for P. We construct a fusion sequence {pn}new
and a sequence of at most countable sets {A,}ne, inductively as follows. Let pp = p
and Ay = 0. Given p, and A,, we shall define {g¥}o<k<f@pn) and {AX}ock<ipn) a8
follows. Let ¢° = p,, A2 = A,. Suppose that we already have ¢¥, and AX. If there

exists p’ and 7 € W such that ag ,x >0 p’ and r > p/, then we put ¢i*! = ¢¥|p’ and

Akt — Ak{r}. Otherwise let g¥+! = ¢ and A¥*+! = AX. Finally, we put pp,1 = g2 ®™
and A, = AL® M+ Gince P Zn Pnt1, {Pn}new is a fusion sequence. Thus, {p, }neo, has
a fusion p,, by (A3). p, <, p, for alln € w. Let A = J,.;An. A is at most countable
by the construction of A,. We shall show that p, is compatible with at most countably
many 7 € W. Since A is at most countable and W is a partition of P, it suffices to show
that for all ¢ < p,, there exists r < g such that r €¢ W N A. Let ¢ < p,. Since W is a
partition of P, we can find ¢’ and r € W such that ¢ < ¢ and ¢’ < r. Since ¢’ < ¢ < p,,
q' <o ap, nk for some n, k € w by (FS4). Then we have ¢’ <o ap,nr <o gt ni by (FS3).

Hence by the construction of ¢, and A¥, ¢**1 = ¢¥|¢* and A¥+1 = A* U {r*} for some ¢*



and r* € W such that ag ., >0 ¢* and 7 > ¢*. Then we have r* € W N A. By Lemma
3.3, agkg* e = 4*, 80 that ¢’ <o ap,mi <o At g = Gkl = ¢~ < r*. Hence r and r*

are compatible. Hence we have r = r* € W N A. O

Lemma 3.5. If (P, <,{<p}ncw) 18 a fusion poset with a frame system which satisfies
(C1),(C2) and (C3), then (P, <,{<,}tnecw) satisfies (A4d).

Proof. Let {a,,x} be a frame system for P, W be a partition of P and p € P. We
shall show that there exists ¢ <, p such that ¢ is compatible with at most countably
many r € W. We construct a sequence {gx }o<k<f(pn)+1 inductively such that gey1 <n gk
for all k. Let g9 = p. Suppose that we already have g;. By virtue of Lemma 3.4, there
exists pr <o Qg nk such that p; is compatible with at most countably many » € W. Then
PUt Gr+1 = Gk|Pk. gy, mk = Pr Dy Lemma 3.3. Finally we put ¢ = gypn)+1. Then we
have ¢ <, p and agnx < g, ni = pifor all k. If r € W is compatible with ¢, then r
is compatible with a,,, for some k, so that r is compatible with p, for some k. Since
Pk 1s compatible with at most countable many r € W, ¢ is also compatible with at most

countable many r € W. (]

Lemma 3.6. If (P, <,{<p}new) s a fusion poset with a frame system which satisfies
(C1),(C2) and (C3), then (P, <,{<n}newn) satisfies (C4).

Proof. Let {a,,x} be a frame system for P, X be a pairwise incomparable subset of P
and p € P. We shall show that there exists ¢ <, p such that r £ g for all r € X. If there
exists no r € X such that r < p, then we put ¢ = p. So we assume that there exists r € X
such that r < p. Let £ = f(stemn(p),n+ 1) and P(I},.,) = {t1, ..., toe+1}. We construct
a {gkYo<k<oe+1,, inductively such that g1 <, g for all k. Put go = p. Suppose that
we already have gi. In the following, we denote {j | r T Gstemn(p)nt1,;} by C(r). If there
exists 7 € X such that r < ¢ and C(r) = t,. We pick such an element r and take 7 < r
such that r ~, ,11 7 by (FS6). Then put gr41 = gk|F. If there exists no r € X such that
r < g, and C(r) = ti, then put gry1 = k. Finally we put ¢ = goer14,. By virtue of the
definition, we have ¢ <, p. So we shall show that ¢ # r for all » € X. Suppose that ¢ > r
for some r € X. Put ¢t = C(r). Then t = #; for some k. Thus we have g, > ¢ > r and
C(r) = t,. So, by the definition of the sequence {p;}, we have defined gx,; = g where
7 <17 ~png1 rrand C(r*) =t for some r* € X. Then C(F) = C(r*) =t = C(r).
Since gi|F = qxr1 > ¢ > r , 7 > r by (FS5). Hence we have r* > 7 > r and 7*,7 € X.
This contradicts that X is a pairwise incomparable subset of P. (]
By virtue of Theorem 2.3 and Theorem 3.6, we have

Theorem 3.7. If (P, <,{<n}necw) is a fusion poset with a frame system which satisfies
(C1),(C2) and (C3), then (P, <,{<n}new) 18 not o-short.
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4 Mildenberger’s finiteness property

In [1], Mildenberger defined the finiteness property for Axiom A posets. It is defined as

follows.

Definition 4.1. An Aziom A poset (P, <,{<p}necn) whose elements are subsets of 2<%
or of w<“ has the finiteness property iff

(1) p > q implies p D q,

(2) there is a function f: P X w — w such that for every n,p,q,
P >nq iff p>q and g0 f(p,n) "™ = pn f(p,n)f @™,

In the case of 2<%, we can write 2/®™ instead of f(p,n)f®m,

We assume that elements of P are trees. We say that P has the uniform finiteness
property if it has the finiteness property and for every n € w,p,q € P, p >, q implies
f(p,n) = f(g,n). For p € P, s € pis called the stem of p if (i): for every t € p, s C t or
t C s, and (ii): pis a branching point, i.e., s has at least two successors in p. We denote the
stem of p as st(p). If o is a finite subtree of p, we denote it by 0 € p. We say thatt € ois a
o-branching point of p if there exists k € w such that ¢~ (k) € p and t"(k) ¢ 0. We denote
the set of o-branching points of p by o®. Let 07 = {t € w<¥ | 3s € pN f(p, n) @™ [t C s]}.
Then every element of pN f(p,n)/®™ is a o7-branching point of p. Let p > r and ¢ € o*.
Then we say that ¢ is a r-o-branching point of p if there exists s € r such that ¢t C s and
Vk € w [t~ (k) C s =t (k) ¢ o]. We denote the set of r-o-branching points of p by o®".
For p > r,7’ and o € p, we define r =, r’ if and only if rN o = r' No and o> = o>,

We say that P has enough elements if P satisfies the following

(1) I=2<%orw<¥ e P,
(2) for every r € P, there exists 7' € P such that r > 1’ and st(r) = st(r'),

(3) for every p € P,

pr=I\{tel|t¢p3se(flp,n)!®\p) [sCtortCs]}eP

(4) for every pe P and s € p,

pls={tep|tCsorsCt}eP

(5) for every p € P and r < p,

plr=rU{tep|t g st(r) and st(r) £ t} € P.



Lemma 4.2. Let (P, <,{<p}new) be an Aziom A poset with uniform finiteness property
which has enough elements. Then for everyn € w,p € P and p > r, there exists r' < r

such that r ~gn r.

Proof: If r N f(p,n)f®™) = (), then pick any 7’ such that r > r’. Otherwise, let s €
r N f(p,n)f®™. Pick 7y such that r[s > ry and st(r[s) = st(ry) and let ' = r|ro. Then

we have r ~zgn 1.

Theorem 4.3. Let (P, <,{<,}necw) be an Aziom A poset with uniform finiteness property
which has enough elements. Then we have

(1) P satisfies (C1),(C2) and (C3).

(2) If (P, <,{<n}new) satisfies the following strong amalgamation property (AP), then
P s not o-short.

(AP):VnewVpe PNre Pp>r=
3 <aplg2r AV €Plg2 T ArRgg 1! =1 2]

Proof. (1): Since P has enough elements, P satisfies (C1). Then p ~, g if and only if
f(p,n) = f(g,n) and pN f(p,n) @™ = gn f(g,n)’@™ by (C1) and the finiteness property.
So it is easy to show that P satisfies (C2) and (C3).

(2): Suppose that P satisfies (AP). By virtue of (1), P satisfies (C1), (C2) and (C3).
Hence by Theorem 2.3, it is sufficient to show that P satisfies (C4). At first, we shall
show that the following claim

Claim 4.4. If p € P and X is a pairwise incomparable subset of P with same stem, then
for every n there is ¢ <, p such thatr % q for allT € X.

Proof: Let p € P,n € w and Vr € X [st(r) = t*]. If p # r for all r € X, then put ¢ = p.
We assume that p > r and r € X. If st(r) ¢ o,, then put g = p|r’ for some ' such that
r > 1’ and st(r) = st(r'). Then q <, p and ¢ ? r* for all r* € X. So we assume that
st(r) € op. Put K = {(p,7) | 7 C p Cop} = {(p1,7),---,(pe, 7¢)}. We define inductively
{gx }o<k<e+1 such that g <, p as follows: Let go = p. Suppose that g is already defined. If
there exists r € X such that g > 7, pp = 7N f(p,n)/®™ and 7, = ¢, let v’ be r > r’ and
7 ~gn r', and g1 be defined such that gy > ' AVT" € Plge > r" A1' =g, 7" = 7' > ")
by (AP). Otherwise, qx+1 = gi- Finally, put ¢ = go.1. We shall show that ¢ 2 r for all
r € X. Suppose that ¢ > r for some r € X. Put p = 7N f(p,n)/®™ and 7 = (o7)>".
Then there exists (px, 7x) = (p, 7) for some k. Since gx > ¢ > 7, pr = r N f(p,n) ™ and
T = 0% qry1 is defined from r* and 7 such that p, = r* 0 f(p,n)f @™ 7, = o> 7 >
Tt Rgn 7 g > " and Vr” € Plge1 > 1" A1’ =, " = ' > r"]. Since gx4+1 > ¢ > 7 and
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T R, T Ry, r', we have r* > r’ > r. This contradict that X is a pairwise incomparable

subset of P. Hence g 2 r for all r € X. O
By using Claim 4.4, we can easily show that P satisfies (C4), since P satisfies (A3) and
X = Usep<u{r € X | st(r) = s}. O

5 Hechler forcing

~ In this section we show that Hechler forcing which adds a strictly increasing function

from w to w is not o-short.
The Hechler forcing P is defined as follows.

(s,f) € Pe=s e w A few’AsC fA fstrictlyincreasing

(s, f) < (t,9)=s 2t AVn € w[f(n) > g(n)]
To prove that P is not o-short, we need the following lemma proved by Todorcevié.

Lemma 5.1 (Todorcevié¢[5]). Suppose {ao | & < 0} C w* is <*-increasing and <*-
unbounded in w* and that each a, is an increasing function. Then there exists a < 3 < 6

such that a, < ag.
Theorem 5.2. If P is o-short , then (w*, <) is o-short.

Proof: Let D be a o-short dense subset of P. For (s, f) € D, put f,(0) = |s|, fs(n) =
|s|] + 1+ f(n —1). Since f is strictly increasing, f, is also strictly increasing. Then put
Do = {fs | (s, f) € D}. We shall show that Dy is a dense o-short subset of (w*, <). Let
g € w*. W.lLo.g we may assume that g is strictly increasing. Put g*(n) = g(n) +g(n+1).
Then g¢* is strictly increasing. Put ¢t = g* | ¢*(0). Since D is dense in P, there exists
(s,f) € D such that (¢,g*) > (s,f). Then f,(0) = |s| > |¢| > ¢(0) and fy(n) =
Is|l+14+ f(n—1) > g*(n—1) = g(n) + g(n — 1) > g(n). So we have f, > g. Hence
Dy is a dense subset of (w*”,<). We shall show that Dy is o-short. Suppose that {fI}
is strictly increasing sequence in Dy. We show that {f7 (¢)} is unbounded for some 7. If
limy, oo |$n| = 00, then {f7 (0)} is unbounded in w. So w.l.o.g we assume that |s,| = k
for all n € w. If {s,(4)} is unbounded for some ¢ < k, then {fZ (i + 1)} is unbounded
in w. Hence we assume that {s,(7)} is bounded in w for all # < k. Then there exists s
such that {s, | s = s,} is infinite. W.l.o.g we assume that s = s, for all n € w. Since
fr@) = frE+1)— sy = 1= f*(i+1) —|s| — 1, we have (s, f1) > (s, f2) > ---. Since
(s, f*) € D and D is o-short, {f7 ()} is unbounded for some . O

Put Dy ={f €Dy | IVgew”[fIn=gInAf < g=>g ¢ Do}

Claim 5.3. D; is a dominating family of (w*, <).



Proof. Suppose not. Then there exists f € w® such that g ¢ D; for every f < g . That
is , it holds that for every g > f

Vn3h € w’[gin=h[nAg < hAheE D

Let go € Dy be such that f < go. Then we have go ¢ D;. Hence there exists g; € Do
such that g1 [1=go 1A go < g1. Since f < go < g1, we have g; ¢ D;. So Hence there
exists go € Dy such that g, [1 =g, 1A g1 < go. Continuing this construction, we have
{9} such that Vn € w[g, [n+1 = gpi1 [n+ 1 A gn < gnt1. There exists g, such that
gn < go for all n € w. Since D, is dense, there exists h € Dy such that g, < h. But this
contradicts that Dy is o-short. O

Forn € w,t € w<¥, put
Dy ={feDi|t=flnAVgeuw’[t=gInAf<g=>g¢ Do}

Since D; = U U D} and D, is a dominating family of (w*,<), D} is a dominating
new tew<w
family of (w“, <*) for some n € w and ¢t € w<¥. Let D} be such a dominating family.

Claim 5.4. Elements of D} are mutually incomparable.

Proof. Suppose that f,g € D and f # g. Sincet = fIn =g[n and f,g € Do, we

have f £ g and g £ f. O
On the other hand, every dominating family of (w“, <*) has a <*-increasing and <*-
unbounded subset, so that D has comparable different elements by Lemma 5.1. This

contradict to Claim 5.4. d
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