Davey-Stewartson II 方程式の dark型線ソリトン相互作用

早稲田大学基幹理工学研究科 永原 新 Arata Nagahara

School of Fundamental Science and Engineering, Waseda University 早稲田大学理工学術院 丸野 健一

Ken-ichi Maruno

Faculty of Science and Engineering, Waseda University

1 はじめに

Davey-Stewartson(DS) 方程式

$$iu_t - \sigma_1 u_{xx} + u_{yy} - 2\sigma_2 |u|^2 u - 4\sigma_1 u \phi_x = 0, \qquad (1)$$

$$\sigma_1 \phi_{xx} + \phi_{yy} + \frac{1}{2} \sigma_2 (|u|^2)_x = 0, \qquad (2)$$

は KP 方程式と共に代表的な 2 次元可積分系として知られている [1, 2]. ここで, $\sigma_1 = \pm 1$, $\sigma_2 = \pm 1$ であり, $\sigma_1 = -1$ のとき Davey-Stewartson I (DS1) 方程式, $\sigma_1 = +1$ のとき Davey-Stewartson II (DS2) 方程式と呼ばれている. また $\sigma_2 = -1$ のとき focusing に対応 し, $\sigma_2 = +1$ のとき defocusing に対応する [2]. DS 方程式は有限水深の 2 次元表面波を記 述する Benney-Roskes 方程式の長波長極限で得られる [14]. またプラズマ物理においても DS 方程式が逓減摂動法を用いて導出されている [4].

近年、二次元弱非線形浅水波を記述する Kadomtsev-Petviashvili II (KP2) 方程式のソリ トン相互作用の詳細な解析が児玉らによってなされ、二次元ソリトン相互作用の数理的か らくりが明らかとなってきた [5, 6, 7]. DS 方程式においても同様の解析ができると期待 されるが、これまで DS 方程式においてそのような解析は十分にはなされていない。DS 方程式は2つのパラメーターを含んでおり多様な厳密解を持つため、KP 方程式以上に興 味深いソリトン相互作用を示すことが期待される.また、DS 方程式のソリトン相互作用 の数値計算を用いた研究も、ランプ解やドローミオン解などの局在波についてのみなされ ており、線ソリトンに関しての数値計算は全くなされていないのが現状である.

本稿では主に DS2 方程式(双曲ー楕円型)の dark 型線ソリトン相互作用について理論 (厳密解を用いた解析)と数値計算(split-step Fourier 法と window 法)を用いた詳しい解 析を報告する.

2 Davey-Stewartson II 方程式のソリトン解

DS2 方程式のソリトン相互作用を詳細に調べるために、できるだけ多くのパラメーター を含む厳密解を広田の方法を用いて構成する. DS 方程式 (1), (2) に $u = \rho_0 e^{i(kx+ly-\omega t+\xi^{(0)})} g_f$, $u^* = \rho_0 e^{-i(kx+ly-\omega t)} \frac{g^*}{f}$, $\phi = (\log f)_x$ を代入すると双線形方程式

$$(iD_t - 2ik\sigma_1 D_x + 2ilD_y - \sigma_1 D_x^2 + D_y^2) g \cdot f = 0,$$
(3)

$$(-iD_t + 2ik\sigma_1 D_x - 2ilD_y - \sigma_1 D_x^2 + D_y^2) g^* \cdot f = 0,$$

$$(4)$$

$$\left(\sigma_1 D_x^2 + D_y^2 - \sigma_2 \rho_0^2\right) f \cdot f + \sigma_2 \rho_1^2 g g^* = 0, \qquad (5)$$

が得られる.ここで f は実関数, g は複素関数, g* は g の複素共役であり, $k, l, \omega, \rho_0, \xi^{(0)}$ は実定数である.広田の方法により 1 ソリトン解を求めると,以下のようになる:

$$u = \rho_0 e^{i(kx + ly - \omega t + \xi^{(0)})} \frac{g}{f}, \quad \phi = (\log f)_x, \tag{6}$$

$$\omega = -\sigma_1 k^2 + l^2 + \sigma_2 \rho_0^2, \tag{7}$$

$$f = 1 + e^{px+qy-\Omega t + \theta^{0}}, \quad g = 1 + \alpha e^{px+qy-\Omega t + \theta^{0}}, \quad g^{*} = 1 + \alpha^{*} e^{px+qy-\Omega t + \theta^{0}}, \tag{8}$$

$$\alpha = \frac{2\sigma_1 kp - 2iq + i(\sigma_1 p^2 - q^2) + \Omega}{2\sigma_1 kp - 2iq - i(\sigma_1 p^2 - q^2) + \Omega}, \quad \alpha^* = \frac{2\sigma_1 kp - 2iq - i(\sigma_1 p^2 - q^2) + \Omega}{2\sigma_1 kp - 2iq + i(\sigma_1 p^2 - q^2) + \Omega}, \quad (9)$$

$$\Omega = \begin{cases}
\Omega_{+} = -2\sigma_{1}kp + 2lq + \frac{\sqrt{(\sigma_{1}p^{2} - q^{2})(p^{2} - q^{2})(p^{2} - q^{2})(p^{2} - q^{2})}{\sigma_{1}p^{2} + q^{2}}, \\
\vdots \\
\Omega_{-} = -2\sigma_{1}kp + 2lq - \frac{\sqrt{(\sigma_{1}p^{2} - q^{2})(p^{2} - q^{2})(p^{2} - q^{2})(2\sigma_{2}\rho_{0}^{2} - \sigma_{1}p^{2} - q^{2})}{\sigma_{1}p^{2} + q^{2}}.
\end{cases}$$
(10)

$$u = \rho_0 e^{i(kx + ly - \omega t + \xi^{(0)})} \frac{1 + \alpha e^{px + qy - \Omega t + \theta^0}}{1 + e^{px + qy - \Omega t + \theta^0}},$$
(11)

$$|u|^{2} = \rho_{0}^{2} - \rho_{0}^{2} \frac{2 - \alpha - \alpha^{*}}{4} \operatorname{sech}^{2} \frac{px + qy - \Omega t + \theta^{0}}{2},$$
(12)

$$\phi_x = \frac{p^2}{4} \operatorname{sech}^2 \frac{px + qy - \Omega t + \theta^0}{2} = A \operatorname{sech}^2 \sqrt{A} (x + y \tan \Psi - Ct - x^{(0)}), \quad (13)$$

となるので、uについては dark 型のソリトン解となることがわかる。変数uにおける dark ソリトンの深さは $D_{|u|} = \rho_0 \sqrt{1 - \frac{2-\alpha-\alpha^*}{4}}, \phi_x$ でのソリトンの振幅は $A = \frac{p^2}{4},$ ソリトンが y 軸の正の部分となす角 (反時計周りを正とする) は $\Psi = \tan^{-1} \frac{q}{p},$ ソリトンの速度は $C = \frac{\Omega}{p}$ で与えられる.

さらに、2ソリトン解を求めると以下のようになる:

$$u = \rho_0 e^{i(kx + ly - \omega t + \xi^{(0)})} \frac{g}{f}, \quad \phi = (\log f)_x, \tag{14}$$

$$\omega = -\sigma_1 k^2 + l^2 + \sigma_2 \rho_0^2, \tag{15}$$

$$f = 1 + e^{\theta_1} + e^{\theta_2} + A_{12}e^{\theta_1 + \theta_2}, \tag{16}$$

$$g = 1 + \alpha_1 e^{\theta_1} + \alpha_2 e^{\theta_2} + \alpha_1 \alpha_2 A_{12} e^{\theta_1 + \theta_2}, \tag{17}$$

$$g^* = 1 + \alpha_1^* e^{\theta_1} + \alpha_2^* e^{\theta_2} + \alpha_1^* \alpha_2^* A_{12} e^{\theta_1 + \theta_2}, \tag{18}$$

$$\theta_i = p_i x + q_i y - \Omega_i t + \theta_i^0, \quad (i = 1, 2)$$
 (19)

$$\alpha_{i} = \frac{2\sigma_{1}kp_{i} - 2lq_{i} + i(\sigma_{1}p_{i}^{2} - q_{i}^{2}) + \Omega_{i}}{2\sigma_{1}kp_{i} - 2lq_{i} - i(\sigma_{1}p_{i}^{2} - q_{i}^{2}) + \Omega_{i}},$$
(20)

$$\alpha_i^* = \frac{2\sigma_1 k p_i - 2lq_i - i(\sigma_1 p_i^2 - q_i^2) + \Omega_i}{2\sigma_1 k p_i - 2lq + i(\sigma_1 p_i^2 - q_i^2) + \Omega_i},$$
(21)

$$\Omega_{i} = \begin{cases}
\Omega_{i,+} = -2\sigma_{1}kp_{i} + 2lq_{i} + \frac{\sqrt{(\sigma_{1}p_{i}^{2} - q_{i}^{2})(p_{i}^{2} - q_{i}^{2})(p_{i}^{2} + q_{i}^{2})(2\sigma_{2}\rho_{0}^{2} - \sigma_{1}p_{i}^{2} - q_{i}^{2})}{\sigma_{1}p_{i}^{2} + q_{i}^{2}}, \\
\underbrace{\sharp \not z} \not t \not t \\
\Omega_{i,-} = -2\sigma_{1}kp_{i} + 2lq_{i} - \frac{\sqrt{(\sigma_{1}p_{i}^{2} - q_{i}^{2})(p_{i}^{2} - q_{i}^{2})(p_{i}^{2} + q_{i}^{2})(2\sigma_{2}\rho_{0}^{2} - \sigma_{1}p_{i}^{2} - q_{i}^{2})}{\sigma_{1}p_{i}^{2} + q_{i}^{2}},
\end{cases}$$
(22)

$$A_{12} = 1 - 4 \frac{(\sigma_1 p_1 p_2 - q_1 q_2)(\sigma_1 p_1^2 - q_1^2)(\sigma_1 p_2^2 - q_2^2)}{B},$$

$$B = 4(k^2 - \sigma_1 l^2)p_1^2 q_2^2 + p_1^2 q_2^2(p_1^2 - \sigma_1 q_2^2) + 2p_1^2 p_2 q_2^2(p_1 + p_2) - \sigma_1 p_1^2 p_2^2(p_1 + p_2)^2$$

$$-q_1^4(\sigma_1 p_2^2 - q_2^2) - 2q_1^3 q_2(\sigma_1 p_2^2 - q_2^2) - 8(k^2 - \sigma_1 l^2)p_1 q_1 p_2^2 + 2p_1^2 q_1 p_2(p_2^2 - \sigma_1 q_2^2)$$

$$+q_1^2 q_2^2(q_2^2 - 2\sigma_1(p_1^2 + p_1 p_2 + p_2^2)) + q_1^2 p_2^2(4(k^2 - \sigma_1 l^2) + 2p_1^2 + 2p_1 p_2 + p_2^2)$$

$$+4\sigma_1(p_1 q_2(kq_2 - lp_2) + q_1 p_2(lp_2 - kq_2))\Omega_1 - (\sigma_1 p_2^2 - q_2^2)\Omega_1^2 - (\sigma_1 p_1^2 - q_1^2)\Omega_2^2$$

$$+4\sigma_1((kq_1^2 p_2 + lp_1^2 q_2) - (kp_1 q_1 q_2 + lp_1 q_1 p_2))\Omega_2 + 2(\sigma_1 p_1 p_2 - q_1 q_2)\Omega_1\Omega_2.$$
(23)

以後, $\sigma_1 = 1$, $\sigma_2 = 1$ の場合, すなわち defocusing DS2 方程式を考える. この場合に, 上記のソリトン解は以下のように比較的簡単になる:

1ソリトン解:

$$u = \rho_0 e^{i(kx + ly - \omega t + \xi^{(0)})} \frac{g}{f}, \quad \phi = (\log f)_x,$$
(25)

$$\omega = -k^2 + l^2 + \rho_0^2, \tag{26}$$

$$f = 1 + e^{px + qy - \Omega t + \theta^{0}}, \quad g = 1 + \alpha e^{px + qy - \Omega t + \theta^{0}}, \quad g^{*} = 1 + \alpha^{*} e^{px + qy - \Omega t + \theta^{0}}, \quad (27)$$
$$2kp - 2lq + i(p^{2} - q^{2}) + \Omega \qquad \qquad 2kp - 2lq - i(p^{2} - q^{2}) + \Omega \quad (27)$$

$$\alpha = \frac{2kp - 2kq + k(p - q^2) + 0!}{2kp - 2lq - i(p^2 - q^2) + \Omega}, \quad \alpha^* = \frac{2kp - 2kq - k(p - q^2) + 0!}{2kp - 2lq + i(p^2 - q^2) + \Omega}, \tag{28}$$

$$\Omega = \begin{cases} \Omega_{+} = -2kp + 2lq + |p^{2} - q^{2}| \sqrt{\left(\frac{p^{2}}{p^{2} + q^{2}} - 1\right)}, \\ \ddagger t c \, l \ddagger \\ \Omega_{-} = -2kp + 2lq - |p^{2} - q^{2}| \sqrt{\left(\frac{2\rho_{0}^{2}}{p^{2} + q^{2}} - 1\right)}, \end{cases}$$
(29)

$$u = \rho_0 e^{i(kx+ly-\omega t+\xi^{(0)})} \frac{1+\alpha e^{px+qy-\Omega t+\theta^0}}{1+e^{px+qy-\Omega t+\theta^0}},$$
(30)

$$|u|^{2} = \rho_{0}^{2} - \frac{p^{2} + q^{2}}{2} \operatorname{sech}^{2} \frac{px + qy - \Omega t + \theta^{0}}{2},$$
(31)

$$\phi_x = \frac{p^2}{4} \operatorname{sech}^2 \frac{px + qy - \Omega t + \theta^0}{2} = A \operatorname{sech}^2 \sqrt{A} (x + y \tan \Psi - Ct - x^{(0)}), \quad (32)$$

$$A = \frac{p^2}{4}, \quad \Psi = \tan^{-1}\frac{q}{p}, \quad C = \frac{\Omega}{p}.$$
 (33)

変数 u における dark ソリトンの深さは

$$D_{|u|} = \sqrt{\rho_0^2 - \frac{p^2 + q^2}{2}}$$

で与えられる. k = 0, l = 0のとき $q = \pm p (\Psi = \pm 45^{\circ}, \pm 135^{\circ})$ でソリトンの速度 C は 0 となる.

2ソリトン解:

$$u = \rho_0 e^{i(kx+ly-\omega t+\xi^{(0)})} \frac{g}{f}, \quad \phi = (\log f)_x, \tag{34}$$

$$\omega = -k^2 + l^2 + \rho_0^2, \tag{35}$$

$$f = 1 + e^{\theta_1} + e^{\theta_2} + A_{12}e^{\theta_1 + \theta_2}, \tag{36}$$

$$g = 1 + \alpha_1 e^{\theta_1} + \alpha_2 e^{\theta_2} + \alpha_1 \alpha_2 A_{12} e^{\theta_1 + \theta_2},$$

$$g^* = 1 + \alpha^* e^{\theta_1} + \alpha^* e^{\theta_2} + \alpha^* \alpha^* A - e^{\theta_1 + \theta_2},$$
(37)
(38)

$$g^* = 1 + \alpha_1^* e^{\theta_1} + \alpha_2^* e^{\theta_2} + \alpha_1^* \alpha_2^* A_{12} e^{\theta_1 + \theta_2},$$
(38)

$$\theta_i = p_i x + q_i y - \Omega_i t + \theta_i^0, \quad (i = 1, 2)$$

$$(39)$$

$$\alpha_{i} = \frac{2kp_{i} - 2lq_{i} + i(p_{i}^{2} - q_{i}^{2}) + \Omega_{i}}{2kp_{i} - 2lq_{i} - i(p_{i}^{2} - q_{i}^{2}) + \Omega_{i}}, \quad \alpha_{i}^{*} = \frac{2kp_{i} - 2lq_{i} - i(p_{i}^{2} - q_{i}^{2}) + \Omega_{i}}{2kp_{i} - 2lq + i(p_{i}^{2} - q_{i}^{2}) + \Omega_{i}}, \quad (40)$$

$$\Omega_{i} = \begin{cases} \Omega_{i,+} = -2kp_{i} + 2lq_{i} + |p_{i}^{2} - q_{i}^{2}| \sqrt{\left(\frac{2\rho_{0}^{2}}{p_{i}^{2} + q_{i}^{2}} - 1\right)}, \\ \ddagger \mathcal{E} \text{ is } \end{cases} \quad (i = 1, 2) \qquad (41)$$

$$\left(\begin{array}{l}\Omega_{i,-} = -2kp_i + 2lq_i - |p_i^2 - q_i^2| \sqrt{\left(\frac{2\rho_0^2}{p_i^2 + q_i^2} - 1\right)},\\A_{12} = 1 - 4 \frac{(p_1p_2 - q_1q_2)(p_1^2 - q_1^2)(p_2^2 - q_2^2)}{B},\end{array}\right) (42)$$

$$B = 4(k^{2} - l^{2})p_{1}^{2}q_{2}^{2} + p_{1}^{2}q_{2}^{2}(p_{1}^{2} - q_{2}^{2}) + 2p_{1}^{2}p_{2}q_{2}^{2}(p_{1} + p_{2}) - p_{1}^{2}p_{2}^{2}(p_{1} + p_{2})^{2} - q_{1}^{4}(p_{2}^{2} - q_{2}^{2}) -2q_{1}^{3}q_{2}(p_{2}^{2} - q_{2}^{2}) - 8(k^{2} - l^{2})p_{1}q_{1}p_{2}^{2} + 2p_{1}^{2}q_{1}p_{2}(p_{2}^{2} - q_{2}^{2}) +q_{1}^{2}q_{2}^{2}(q_{2}^{2} - 2(p_{1}^{2} + p_{1}p_{2} + p_{2}^{2})) + q_{1}^{2}p_{2}^{2}(4(k^{2} - l^{2}) + 2p_{1}^{2} + 2p_{1}p_{2} + p_{2}^{2}) +4(p_{1}q_{2}(kq_{2} - lp_{2}) + q_{1}p_{2}(lp_{2} - kq_{2}))\Omega_{1} - (p_{2}^{2} - q_{2}^{2})\Omega_{1}^{2} - (p_{1}^{2} - q_{1}^{2})\Omega_{2}^{2} +4((kq_{1}^{2}p_{2} + lp_{1}^{2}q_{2}) - (kp_{1}q_{1}q_{2} + lp_{1}q_{1}p_{2}))\Omega_{2} + 2(p_{1}p_{2} - q_{1}q_{2})\Omega_{1}\Omega_{2}.$$
(43)

さらに、場合分けすることで A12 は以下のように書くことができる: $\Omega_1 = \Omega_{1,+}, \Omega_2 = \Omega_{2,+}$ または $\Omega_1 = \Omega_{1,-}, \Omega_2 = \Omega_{2,-}$ の場合:

$$A_{12} = \frac{B_{s,-}}{B_{s,+}},$$

$$B_{s,+} = \sqrt{(p_1^2 + q_1^2)(2\rho_0^2 - p_1^2 - q_1^2)(p_2^2 + q_2^2)(2\rho_0^2 - p_2^2 - q_2^2)} - \operatorname{sgn}(p_1^2 - q_1^2)\operatorname{sgn}(p_2^2 - q_2^2)((p_1^2 + q_1^2)(p_2^2 + q_2^2) + 2\rho_0^2(p_1p_2 + q_1q_2)),$$

$$B_{s,-} = \sqrt{(p_1^2 + q_1^2)(2\rho_0^2 - p_1^2 - q_1^2)(p_2^2 + q_2^2)(2\rho_0^2 - p_2^2 - q_2^2)} + \operatorname{sgn}(p_1^2 - q_1^2)\operatorname{sgn}(p_2^2 - q_2^2)((p_1^2 + q_1^2)(p_2^2 + q_2^2) - 2\rho_0^2(p_1p_2 + q_1q_2)).$$
(44)

 $\Omega_1 = \Omega_{1,+}, \Omega_2 = \Omega_{2,-}$ または $\Omega_1 = \Omega_{1,-}, \Omega_2 = \Omega_{2,+}$ の場合:

$$A_{12} = \frac{B_{d,-}}{B_{d,+}},$$

$$B_{d,+} = \sqrt{(p_1^2 + q_1^2)(2\rho_0^2 - p_1^2 - q_1^2)(p_2^2 + q_2^2)(2\rho_0^2 - p_2^2 - q_2^2)} + \text{sgn}(p_1^2 - q_1^2)\text{sgn}(p_2^2 - q_2^2)((p_1^2 + q_1^2)(p_2^2 + q_2^2) + 2\rho_0^2(p_1p_2 + q_1q_2)),$$

$$B_{d,-} = \sqrt{(p_1^2 + q_1^2)(2\rho_0^2 - p_1^2 - q_1^2)(p_2^2 + q_2^2)(2\rho_0^2 - p_2^2 - q_2^2)} - \text{sgn}(p_1^2 - q_1^2)\text{sgn}(p_2^2 - q_2^2)((p_1^2 + q_1^2)(p_2^2 + q_2^2) - 2\rho_0^2(p_1p_2 + q_1q_2)).$$
(45)

このことから A_{12} はk, lには依存しないことがわかる.

以下,このソリトン解を用いて、ソリトン相互作用の角度依存性を議論する.KP方程 式と同様にDS2方程式でも A_{12} がソリトン相互作用の型を決めると考えることができる [12,13,14].2ソリトン相互作用には、(I) $0 < A_{12} < 1$,(II) $A_{12} < 0$,(III) $1 < A_{12}$ の3 つの場合が存在する.KP方程式の場合には2つのソリトンのなす角度を徐々に大きくし ていくと、(I)→(II)→(III)と変化していく.しかし、(II)の場合はタウ関数が0となる点 が存在し、解が破綻する.(II)の場合に対応する実際のソリトン相互作用はT型ソリトン と呼ばれるものになることが数値実験を行うとわかる.このT型ソリトンはKP方程式 のロンスキアン解から得られるものであり、漸近的なソリトンは(II)の場合と同じで、時 間発展とともに相互作用部分に穴が形成されてくる解である.(I)の場合はP型ソリトン と呼ばれるものであり、KP2方程式の場合には相互作用部分がへこむ特徴がある.P型 ソリトン相互作用は2つのソリトンの振幅が同じである時は存在しない.(III)の場合は O型ソリトンと呼ばれるものであり、KP2方程式の場合には相互作用部分が盛り上がる 特徴があり、相互作用部分の最大振幅が漸近ソリトンの振幅の4倍にまでなりうる.

2つのソリトンの間の角度を徐々に変化させていった時のソリトン相互作用の遷移は KP 方程式の場合は P型 \rightarrow T型 \rightarrow O型となることがわかっているが,DS2 方程式の場合 にどのような遷移をするのかを調べたい.

このために、まず得られた2ソリトン解の A_{12} の角度依存性を調べる. KP 方程式と違っ て DS2 方程式のソリトンは逆方向に進むことができるが、今回は同方向に進む2つのソ リトン相互作用を調べる.以下、 $\Omega_1 = \Omega_{1,+}, \Omega_2 = \Omega_{2,+}$ の場合を考えることにする.すな わち (44)の角度依存性を調べる.ソリトンの一つを y 軸に平行で右方向に進行するよう にとり、もう一つのソリトンを反時計まわりに回転させていく、ソリトンを回転させる際 には、dark ソリトンの深さは一定に保つ.

 $\rho_0 = 2 \ \&blacklet \ > 0 \ \&blacklet \ > 0$

このグラフで特筆すべきことは、 $-\pi < \Psi < \pi$ で曲線がない領域が4つあること、そして曲線がない領域の間に $\delta > 0$ の曲線があることである。このグラフから、角度 Ψ を徐々に回転させていくとソリトン相互作用はP型 \rightarrow T型 \rightarrow P型 \rightarrow T型 \rightarrow O型と遷移していくと予想でき、KP方程式のソリトン相互作用の遷移とは大きく異なってくることを示唆し

ていく. もちろん,実際にこれらの相互作用が安定であること,曲線がない領域でT型ソリトン相互作用が生じることを確認する必要があるので,次に数値計算を行い,実際にこの遷移過程が生じることを確認する.

図 1: DS2 方程式の2ソリトン解に対する $\delta = -\log A_{12}$ の角度依存性を示すグラフ. $\rho_0 = 2$, $(p_1, q_1) = (2, 0), \quad (p_2, q_2) = (\sqrt{2}\cos\Psi, \sqrt{2}\sin\Psi), \quad \Omega_1 = \Omega_{1,+}, \quad \Omega_2 = \Omega_{2,+}.$

3 数值計算

DS2 方程式のソリトン相互作用を数値的に調べる。数値計算法は split-step Fourier 法を 使用した [8]. DS2 方程式の dark 型線ソリトンの数値計算では境界が 0 とならないために 境界の処理が必要であるが window 法を用いて境界を処理した [9, 10, 11]. 今回, window 法で用いた window 関数は

$$w(x,y) = 10^{-a^n \left|\frac{L_x - 2x}{L_x} - 1\right|^n} 10^{-a^n \left|\frac{L_y - 2y}{L_y} - 1\right|^n}$$
(46)

であり、w(x,y)は領域の中央部で大きさ1の平面となり境界近傍で急速に0に減少する 関数である.ここで L_x , L_y はそれぞれx方向とy方向の領域の幅である.この関数はaが大きくなるにつれて平面部が増え、nは小さいほど両端近傍の傾斜が緩くなる.数値計 算にはa = 1, n = 75を用いた.初期値に window 関数をかけたものを split-step Fourier 法で解き、得られたデータを dewindowing する(切り落とした境界のデータを復元する.) dewindowing は、計算して得られたデータをu'とし、vを厳密解とすると

$$u(x, y, t) = (1 - w)v + u',$$
(47)

で実現できる.

今回行った数値計算の初期値は、前節で求めた2ソリトン解で $A_{12} = 0.1$ とおいたものを用いる(したがって、これは厳密解ではない).数値計算におけるパラメーターは

図1に対応するもの、すなわち $\rho_0 = 2$, $(p_1, q_1) = (2, 0)$, $(p_2, q_2) = (\sqrt{2}\cos\Psi, \sqrt{2}\sin\Psi)$, $\Omega_1 = \Omega_{1,+}, \Omega_2 = \Omega_{2,+}$ に設定した。搬送波の波数はk = 0, l = 0とした.

 Ψ を徐々に変化させていくと、ソリトン相互作用の遷移が図1と同じになることが確認 された.すなわち図1で曲線がない領域では穴が生じT型のソリトン相互作用をすること、 2つの曲線がない領域に挟まれた領域ではP型ソリトン相互作用が生じること、 $\delta < 0$ の 領域では相互作用部分が徐々に増加していきO型のソリトン相互作用が生じることが確 認された.図1における曲線がない領域にある角度での数値計算結果を図2,3に示す.

図 2: 2つのソリトンのなす角度が 40°の場合の数値計算結果. $t = 4 \text{ con } u \ge \phi_x \text{ o} f$ ラフ.

図 3: 2つのソリトンのなす角度が 130°の場合の数値計算結果. $t = 4 \operatorname{con} u \ge \phi_x \operatorname{op} f$ ラフ.

4 DS2方程式の行列式解

DS2 方程式には以下の行列式解(2ソリトン解のみを表示する)が存在する:

$$u_{[i,j]} = 2e^{i(kx+ly-\omega t+\xi^{(0)})}\frac{g}{f}, \quad \phi = (\log f)_x$$
(48)

$$f = \tau^{\left(-\frac{1}{2}\right)} = \begin{vmatrix} \psi_1^{\left(-\frac{1}{2}\right)} & \psi_1^{\left(\frac{1}{2}\right)} \\ \psi_2^{\left(-\frac{1}{2}\right)} & \psi_2^{\left(\frac{1}{2}\right)} \end{vmatrix},$$
(49)

$$g = \tau^{\left(\frac{1}{2}\right)} = \begin{vmatrix} \psi_1^{\left(\frac{1}{2}\right)} & \psi_1^{\left(\frac{3}{2}\right)} \\ \psi_2^{\left(\frac{1}{2}\right)} & \psi_2^{\left(\frac{3}{2}\right)} \end{vmatrix}, \quad g^* = \tau^{\left(-\frac{3}{2}\right)} = \begin{vmatrix} \psi_1^{\left(-\frac{3}{2}\right)} & \psi_1^{\left(-\frac{1}{2}\right)} \\ \psi_2^{\left(-\frac{3}{2}\right)} & \psi_2^{\left(-\frac{1}{2}\right)} \end{vmatrix}, \tag{50}$$

$$\tau^{(n)} = |\psi_i^{(n+j-1)}|_{1 \le i,j \le 2} \tag{51}$$

$$\psi_i^{(n)} = \sum_{j=1}^4 a_{ij} e^{\sqrt{2}x \sin\varphi_j - \sqrt{2}y \cos\varphi_j - \omega_j t + \mathrm{i}n\varphi_j}, \quad \psi_i^{(0)} \equiv \psi_i, \tag{52}$$

$$\dot{\omega} = -k^2 + l^2 + 4, \tag{53}$$

$$\omega_i = \begin{cases} \omega_{i,+} = -2\sqrt{2}k\sin\varphi_i - 2\sqrt{2}l\cos\varphi_i + 2\sin2\varphi_i, \\ \omega_{i,-} = -2\sqrt{2}k\sin\varphi_i - 2\sqrt{2}l\cos\varphi_i - 2\sin2\varphi_i, \end{cases}$$
(54)

この行列式解は2次元戸田階層の行列式解から導くことができる.

今,

$$p = \sqrt{2}\rho_0 \cos \Psi \sin \Phi = \frac{\rho_0}{\sqrt{2}} (\sin \varphi_i - \sin \varphi_j), \tag{55}$$

$$q = \sqrt{2}\rho_0 \sin \Psi \sin \Phi = -\frac{\rho_0}{\sqrt{2}} (\cos \varphi_i - \cos \varphi_j), \qquad (56)$$

$$\rho_0 = 2, \quad \Psi = \frac{\varphi_i + \varphi_j}{2}, \quad \Phi = \frac{\varphi_i - \varphi_j}{2}, \tag{57}$$

とおくと [i, j]-ソリトン $(\varphi_i \ge \varphi_j$ で決まる漸近ソリトン) は以下のようになる:

$$u_{[i,j]} = 2e^{i(kx+ly-\omega t+\xi^{(0)})} \frac{a_{11}e^{\sqrt{2}x\sin\varphi_i - \sqrt{2}y\cos\varphi_i - \omega_i t + i\varphi_i} + a_{12}e^{\sqrt{2}x\sin\varphi_j - \sqrt{2}y\cos\varphi_j - \omega_j t + i\varphi_j}}{a_{11}e^{\sqrt{2}x\sin\varphi_i - \sqrt{2}y\cos\varphi_i - \omega_i t} + a_{12}e^{\sqrt{2}x\sin\varphi_j - \sqrt{2}y\cos\varphi_j - \omega_j t}},$$
(58)

$$|u_{[i,j]}|^2 = 4 - 4\sin^2\frac{\varphi_i - \varphi_j}{2}\operatorname{sech}^2\sqrt{A_{[i,j]}}(x + y\tan\Psi_{[i,j]} - C_{[i,j]}t - x^{(0)}).$$
(59)

$$\phi_{x[i,j]} = A \operatorname{sech}^2 \sqrt{A_{[i,j]}} (x + y \tan \Psi_{[i,j]} - C_{[i,j]} t - x^{(0)}).$$

ここで $\phi_{x[i,j]}$ の最大振幅 $A_{[i,j]} = \frac{(\sin \varphi_i - \sin \varphi_j)^2}{2}$, y-軸の正の部分からのなす角(反時計まわりを正): $\Psi_{[i,j]} = \frac{\varphi_i + \varphi_j}{2}$, 速度 $C_{[i,j]} = \frac{\Omega_{[i,j]}}{\sqrt{2}(\sin \varphi_i - \sin \varphi_j)}$ であり、 $\Omega_{[i,j]}$ は

$$\Omega_{[i,j]} = \begin{cases}
\Omega_{[i,j],+} = \omega_{i,+} - \omega_{j,+} = -2\sqrt{2}k\sin\varphi_i - 2\sqrt{2}l\cos\varphi_i \\
+2\sqrt{2}k\sin\varphi_j + 2\sqrt{2}l\cos\varphi_j + 2(\sin 2\varphi_i - \sin 2\varphi_j), \\
\Omega_{[i,j],-} = \omega_{i,-} - \omega_{j,-} = -2\sqrt{2}k\sin\varphi_i - 2\sqrt{2}l\cos\varphi_i \\
+2\sqrt{2}k\sin\varphi_j + 2\sqrt{2}l\cos\varphi_j - 2(\sin 2\varphi_i - \sin 2\varphi_j),
\end{cases}$$
(60)

で与えられる. dark ソリトンの深さは

$$D_{|u|} = 2\sqrt{1 - \sin^2\frac{\varphi_i - \varphi_j}{2}},$$

で与えられる.したがって、dark ソリトンの深さを一定に保つには $\frac{9i-9i}{2}$ を一定に保てば よい. k = 0, l = 0 のとき、

$$\sin 2\varphi_i - \sin 2\varphi_j = 2\cos 2\Psi_{[i,j]}\sin 2\Phi_{[i,j]} \tag{61}$$

であるから $\Psi_{[i,j]} = \pm 45^{\circ}, \pm 135^{\circ}$ で $\Omega_{[i,j]} = 0$ となるのでソリトンの速度 $C_{[i,j]}$ は0となる. ソリトンの速度が0となる前後でソリトンの進行方向が逆転する. 広田の方法を用いて求 めたソリトン解ではソリトンの進行方向は変わらない. つまり, 2ソリトン解の行列式表 示と広田の方法で求めた2ソリトン解は一致しない. 実はこのことがソリトン相互作用の 遷移が KP 方程式と大きく異なる原因である. 上記の行列式解を用いてソリトン相互作用 の遷移を調べると, P型 → T型 → O型となり KP 方程式のソリトン相互作用と同じとな ることがわかる. 実は, 広田の方法で求めた1ソリトン解は, 上記の行列式解に対応にお ける1ソリトン解の $\Omega_{i,j} \in \Omega_{[i,j],+}$ としたものと $\Omega_{[i,j],-}$ としたものを $\Psi_{[i,j]} = \pm 45^{\circ}, \pm 135^{\circ}$ でつなぎ合わせたものである. つまり,

$$\Omega_{[i,j]} = \omega_i - \omega_j$$

= $-2\sqrt{2}k\sin\varphi_i - 2\sqrt{2}l\cos\varphi_i + 2\sqrt{2}k\sin\varphi_j + 2\sqrt{2}l\cos\varphi_j + 2|\sin 2\varphi_i - \sin 2\varphi_j|,$
(62)

とすると、広田の方法で得た2ソリトン解に対応させることができる。この ω_i, ω_j を用いた行列式解は先に広田の方法で求めた2ソリトン解に一致する。

このようなことが起こるのは, KP2 方程式のソリトンは同方向にしか進行できないの に対して DS2 方程式ではソリトンが異なる方向に進行できるためである。

5 まとめ

本稿では、DS2 方程式の dark 型線ソリトン相互作用の角度依存性について、厳密解を 用いた理論解析と数値計算を用いて詳しく調べた。DS2 方程式の dark 型線ソリトン相互 作用の遷移は KP2 方程式の線ソリトン相互作用の遷移とは大きく異なっていることがわ かった。KP2 方程式の線ソリトン相互作用は chord 図を用いて説明できるが、DS2 方程 式の線ソリトン相互作用も chord 図を用いて説明できると考えられる。これについては今 後の課題である。

本研究内容についていろいろと議論していただいたオハイオ州立大学の児玉裕治教授と コロラド大学の Sarbarish Chakravarty 教授に感謝する.

参考文献

[1] A. Davey and K. Stewartson, Proc. Roy. Soc. London A, bf 338 (1974) 101-110.

[2] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, (Cambridge Univ. Press, Cambridge, 1991).

- [3] D. J. Benney and G. J. Roskes, Stud. Appl. Math., 48 (1969) 377-385.
- [4] K. Nishinari, K. Abe and J. Satsuma, J. Phy. Soc. Jpn., 62 (1993) 2021–2029.
- [5] S. Chakravarty and Y. Kodama, J. Phys. A: Math. Theor., 41 (2008) 275209.
- [6] S. Chakravarty and Y. Kodama, Stud. Appl. Math., 123 (2009) 83-151.
- [7] Y. Kodama, KP solitons in shallow water, J. Phys. A, 43 (2010) 434004 (54pp).
- [8] P. W. White and J. A. C. Weideman, Math. Comp. Sim., 37 (1994) 469-479.
- [9] P. Schlatter, N.A. Adams and L. Kleiser, J. Comp. Phys., 206 (2005) 505-535.
- [10] Y. Kodama, M. Oikawa, and H. Tsuji, J. Phys. A, 42 (2009) 312001 (9pp).
- [11] C-Y. Kao and Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math. Comp. Sim., 82 (2012) 1185–1218.
- [12] 及川正行, 辻英一, 児玉裕治, ソリトン相互作用–実験, 理論, 数値計算の比較, 数理 解析研究所講究録, **1645** (2009) 38–50.
- [13] F. Kako and N. Yajima, J. Phys. Soc. Jpn., 51 (1980) 2063–2071.
- [14] 丸野健一, 児玉裕治, 辻英一, Bao-Feng Feng, 応用力学研究所研究集会報告, 23AO-S7 (2012) 19-34.