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MODIFIED KDV AND ASYMPTOTICS OF SOLUTIONS

NAKAO HAYASHI AND PAVEL I. NAUMKIN

1. INTRODUCTION

We survey the large time asymptotics of solutions to the Cauchy problem for the
modified Korteweg-de Vries (KdV) equation

1.1) { Bu— 383u =20, (u¥), t>0, r€R,

u(0,z) =uo(z), z€R
with mass condition [p uo (z)dz #0,A € R
Large time asymptotics of solutions to the generalized Korteweg-de Vries equa-
tion
1 -1
Btu -_ :—3-“1;;3 == 63 (Iu]p ’l.t)

was studied by W. A. Strauss [16], [17], S. Klainerman [11], S. Klainerman and G.
Ponce[12], J. Shatah [15] G. Ponce and L. Vega [14], F.M. Christ and M.I. Weinstein
[2], and ours [5] for different values of p in the super critical region p > 3. Stability
of solutions in the neighborhood of solitary waves was shown by T. Mizumachi [13].

For the KdV equation and the modified KdV equation (1.1), the Cauchy problem
was solved by the Inverse Scattering Transform method and thus the large time
asymptotic behavior of solutions was studied (see [1], [3]). This method depends
on the nonlinearity in the equation and note that if we replace nonlinear term by
a (t) 8; (u?) with |a (t)| < C it does not work. Therefore it is important to develop
alternative methods for studying the large time asymptotics of solutions to the
Cauchy problem (1.1).

To state our results precisely we introduce Notation and Function Spaces. The
weighted Sobolev space is

HY = {p € 8/ Il = ||@)° @0)* ¢||_, < oo},

k,s € R,1 < p < oo, {x) = V1+ 2, (i8;) = /1 — 82. We also use the notation
H* = H*° shortly.

2. ZERO TOTAL MASS CASE

In [6], we showed the large time asymptotics of solutions to (1.1) in the case of
small real-valued initial data uo € H!'! with zero total mass assumption fn uo(z)dx =
0. We have the asymptotics

u(t,z) = V2rt ¥ReAi (xt—%) %y (32) exp (-——3i7r [©s (30)]° log t)
(2.1) +0 (t“i—*) ‘
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for large time ¢, where 0 < X\ < &, 3c = (.'L'/t')’if , iy € L* is uniquely defined by
the data ug, is such that %3 (0) = 0, and

Ai(z) = %[) eiwﬁ“§£3d§

is the Airy function.
It is known that the following asymptotics for the Airy function

i) = Cni oxp (Filnlt +% ) +0 (1) s m =174 — oo

is valid. Airy function oscillates rapidly and decays slowly as £ — oo, When
z — —00, Ai(n) decays exponentially as

Ai(m) =Clg~te-¥mi Lo (mrm e—é!"*%) asp =zt~ % — —oo.
These asymptotics are obtained by the stationary method (see [4]).

3. STABILITY OF THE SELF SIMILAR SOLUTION I
In [7] we showed

Proposition 3.1. Assume hat the initial data ug € HY1 are real - valued functions.

with sufficiently small norm ||uo|lgg1.2 = €. Then there exists a unique global solution
u € C ([0,00) ; HY) of the Cauchy problem for (1.1) such that
& lu@®)llp, < Ce
Jor allt € R, where 4 < 3 < oo.
‘We denote by
Om (£, 2) =t~ 3 £, (mt‘%)
the self similar solution of (1.1). Note that if the function f,, (n) satisfies the second
Peinleve equation

then v, satisfies (1.1).
The next result from [7] says the asymptotic stability of solutions in the neigh-
borhood of the self similar solution.

Proposition 3.2. Let u € C ([0,00) ; HY!) be the solution of (1.1) constructed in
Proposition 8.1 and [ fp () dz = [uo (z)dx. Then for any ug € HY, there exist
unique functions H; and B; € L (Bj; are real-valued), j = 1,2, such that the
Jollowing asymptotic formula is valid for large time t > 1

w(t,z) = t 3f, (wr%)
+v/27t~ % ReAi (mt—%) (Hl (5¢) exp (2‘81 (5¢) log |z| r%)
+Hy (5¢) exp (1B (30) log |z|t ™4 )
(3.1) +0 (at‘*”/—i% (1v+ || t—%)-lM) ,

where v € (0, 25) and » = (z/t)% .
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Since H; in the second term of the right-hand side of (3.1) are not necessarily
zero at the origin, and asymptotic property of solutions to the second Peinleve

172

equation is not stated explicitly in [7], therefore it is not determined which one

is the leading term f,, (1) or A¢ (n) from the previous work. In the recent work
[8], we proved that the leading term of f, () as n = xt—% — oo is similar to the
leading term of Ai(n) for n > 0. Thus the previous work says that the main term
consists of the first and the second terms of the right-hand side of (3.1). In (8], we
developed the factorization technique to obtain the sharp time decay estimate of
solutions and make an improvement of the previous result from [7].

4. STABILITY OF THE SELF SIMILAR SOLUTION II

We are now in a position to state our first result from [8].

Theorem 4.1. Assume that the initial data

3
ug €H30H0’1,8> Z

are real-valued with o sufficiently small norm
lwollggempron < e.
Then there exists a unique global solution
Fe %%y e C ([0,00); L® NH®Y)
of the Cauchy problem (1.1). Furthermore the estimate

o (”‘Fem%aiu(t)“]‘w + ()78 “:ce"'11525’52'11(t)“Lz +@)30-3) Il (t)l]Lp) < Ce
is true, where p > 4.

In order to state the stability of global solutions in the neighborhood of the self
similar solution

Um (t, ) = t_%fm (xt_?%) ,
we need

Theorem 4.2. Assume that m is sufficiently small real number. Then there exists
a unique real-valued solution of the Cauchy problem (1.1) in the form vy, (t,x) =

t'%fm (mt‘lﬁ) , such that
/ Sm () dx = m,

Fe %9y, € C ([1,00) ; L), ze~ 4%y € C ([1,00);L?).

Furthermore the estimates
sup (er“’g‘a:vm (t)“ +¢8
t>1 Leo

ze~ $9%qy,, (t)“m) < C|m|

and
5 1ml e 3078) < o (@)l < 2}m e 10-3)

are true, where p > 4.
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Theorem 4.3. Suppose that

_\/%.;r-/afm(x)dwm%Luo(x)dmzm#().

Let u (t,z) and vy, (t,x) be the solutions constructed in Theorem 4.1 and Theorem
4.2, respectively. Then there exists a v > 0 such that the asymptotics
(4.1) lu(t, ) — v, (8, 2)| < Cet™ 3+

Jor x > 0 and

-3
(4.2) [u (£, ) — Uy (8, )| < Cet™ %7 <a:t“%> ¢

for x < 0 are true for large t > 1. Also the sharp time decay estimate of solutions
is valid, namely there exist positive constants Cyi, Ca such that

Ciet™3073) < flu(®)|lpe < Coet~ 3013

for 4 < q < oo.

5. STRATEGY OF PROOFS IN [§]

Local existence and uniqueness of solutions to the Cauchy problem (1.1) was

shown when up € H®, s > $ and the estimate of solutions such that fOT 10z (£) |00 dE <
C for some time T was also shown by C.E. Kenig-G. Ponce-L. Vega [9], [10]. By
using the local existence result, we have

Theorem 5.1. Assume‘ that the initial data

3.
ug € H® mHO’l,s > i

Then there exists a unique local solution u of the Cauchy problem (1.1) such that
U(-t)ue C([0,T]; H* NH>).
We can take T > 1 if the data are small in H® N H%! and we may assume that
(5.1) IFU (=) u (Dllgee + 1 Tu (Dl + llu Dllp, <&

where p > 4. To get the result, in [8] we showed a priori estimates of solutions
under the following norm

lullx, = sup (IFU (=) u @)llge + ¢ F 1Tu @llgs +¢3C ) [ @)lles ) »
te[1,T) :

where J = z—t82 = U (¢t) xU (—t) . In particular, we use the factorization method to

get a priori estimates of |FU (—t) v (t)||p~ in Theorem 4.1 and “f'e‘%‘aivm (16)”LOo

in 4.2. In order to prove these estimates we introduce the free evolution group
U(t) = Fle 38 F,

dilation operator

| Degp = It| "t ¢ (at7?),

scaling operator

(Bg) (2) = ¢ (]2 7%).
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Define the cut off function x (§¢) € C? (R) such that

X (€)=0for < —3,x(€)=1for €23
and
x@)+x(-§=1.
Then we write
U(t) f‘1¢
% 2
% af 2 3
+DtB\|;l—2——7; = 6—_“(32. f—é‘€ )¢ (.,5) b (Em_l) d&

for x > 0. Also we have
It}
vem J-

for z < 0. Since u = U (t) F~1¢ is a real-valued function, we have ¢ (—§&) = ¢ (),
hence

U(t) F ¢ = DB -“@’5*’%5“’“5) d¢

U ()6 (2) F1¢
tg s 1gs
- Dtsﬂyﬁ_% I e () x (gaT) de

3 oo
AR’ —it(22e— A3y T -
DBl ™ ey g g (o) a
= DB (MVé -+ MVP)

with 6 (z) = 0 for £ < 0, and 8 (z) = 1 for £ > 0, where the multiplication factor
M (t,z) = %",
the phase function
_ 23 2 1.3
S(x,&)-—g.’t $§+3§,

and the operator

3 o)
ve=H2D [~ cuseon ) x (o) at.
Also we have

_ U@)F 1o =DBW¢
for x < 0, where the operator

1
[tz (1 —6(x)) /°° —itSo(x,£)
W D e o * N
¢ or L€ @ (&) d€
and the phase function S (z, £) = z2£+1¢3. If we define the new dependent variable
P = FU (—t) u(t), then we obtain the representation

(5.2) w(t) =U ) F~13 =D,B (MV¢‘+ M va) + D,BWG
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The first term of the right-hand side of (5.2) is the main term comparing with the
second one.
We also need the representation for the inverse evolution group FU (—t)

(5.3) FU(—t) ¢ = QMB D ¢ + RB™ID; 19,

where
Dl = [t} ¢ (zt), (B~1¢) () = ¢ (2 |z|)

and the operators

~% oo
0p = 2t |1t2|7r [ eS8 ¢ () zdz,
and
2t|t|"% 0

R = == "% @) ¢ () zdz.
\% -0

Since FU (—1) L = 0, FU (~t), with £ = 9, — 183, applying the operator FU (—t)
to equation (1.1) we get with @ = FU (—t)u :

0P = Oy FU (—t) u = FU (—t) Lu = FU(—1) 8; (v*) = 3FU (—1t) (v?uy) .
Then by (5.2) we find the following factorization property
89 = 3FU (—t) (u®uy)
= 3t-1QWM (Mv¢+ 'M'Tfa!)z (MVz‘EcE + m) +R.
Note that ‘
M (MVe+T1V3) " = M2 (V) +3(va)® (VB)
+382° (V) (1755) * At (T)Tﬁ) 3
and for o % —1
Q(t) M = E~ Tt Dy, o Q(¢(1+ @) 6, E = e~ $¢°.
Thus we obtain the equation for the new dependent variable @ (t,&) = FU (—t) u (t)

at@ (t’ f)
= 3tT'*E~3$D;Q (3t) (V@)? (Vitd)

+3t710(1) (2(v9) (V2) (vied) + (vo)* (ViEgp) )
3710120 ((V9)” vigo) + 2 v5) (V6) (View) )
(5.4) 13t E-3D_50 (—3¢) (“1755)2 (Vi) + &.

Now we explain how to use equation (5.4) for estimating |3 (¢, £)] uniformly with
respect to £. For the real-valued solution u, we have @ (¢,£) = @ (¢, —¢£), hence it is
sufficient to consider the case £ > 0 only.
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The second term of the right hand side. of (5.4) is a main term. We have
3719 (1) (2(ve) (VB) (viep) + (vo)* (Viga) )

3 ~% 2 o

G GICON R CONERG

1 1 -1 ~D o~
St (et 190 (),

1R

1R

where
1 ~ 3 e 3
Q) f (@) =g (©) Vot (a3) " viep =¥ (ed)”.
The main term for the second summand of the right-hand side of (5.4) will be
3 -1 1 1 -1 ~ 2 o~
sitleed (eed) BB () -

To justify the above procedure, we need the estimates of the derivatives 9;V and
B¢V, for details, see [8]. We have the desired a priori estimate of || FU (—t) u (¢) || =
1@ (t)]lLo - In the similar way we have the result for the self-similar solution. There-
fore Theorem 4.1 and Theorem 4.2 follow. To obtain Theorem 4.3 we consider the
estimates for the difference of two solutions u; with the same mass. Define

1 —
i = wally, = sup (377 flus — ualipe + 77 1T (w1 — u2)lg2)
te(1,T]

with a small v > 0. Then we have Theorem 4.3 by the following lemma if we put
uy = u and ug = v, = t"%fm (xt‘%) .

Lemma 5.2. Suppose that ||lu;llx, < Ce, j = 1,2, where € is sufficiently small.
Let 91 (t,0) = 3 (¢,0) for j = 1,2, t > 1, where p; (t,£) = FU(—t)u;(t). Let
up =t-%f (mt“’i‘) be a self-similar solution. Then the estimate

lur — uzlly, < Ce

is true for all T > 1.

6. ASYMPTOTICS OF THE SELF SIMILAR SOLUTION

Let us consider the asymptotics of the self similar solutions. We assume that
. it 53 .
@ = Fe$ %y satisfies

. 3. 1.1 N7~ —~
o = sitletd (ett) 1p(LOLB O+ R
3. _ -1 ~
= Sited (et 18,0 @ (16 + R
_ 3. 2.2 i\ o
= silmPed(etd) FO+R
which suggests the self-similar solution is

Ym ({t%) = me%i!mlzlog<§t§>-
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Indeed
Ot (€41) = Zilml?m (e} " e geimition(eed)

- gzt“lét% <§t§>~1 o (%) T tt)

It is possible to consider the difference between 1, (ét%) and (¢, £). Therefore it
suggests the self similar solution is

g (1)
= et [T g yan
— t-—% —Z!mizlog<wt %>\/~<xt-l>

X exp (52 {wt*% l : + zz) + O (t"% <xt“%‘>‘7/4) .

However it is not stated in [8] since the estimate of 1, ({;‘t%) — @ (t,€) is not enough

to show the leading term of ¢t~ 3 Jm (a;t”“) is the first term of the right hand side
of the above.
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